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PREFACE

Taose who have becn following the recent developments
of physics would probably agree that its two most vital prob-.
ems are the structure of matter and the nature of radiation.
It is true that much has been done toward the solution of both
of these problems. Matter, we find, is built up of molecules,
these of atoms, and the atoms in turn of electrons. We now
have before us the problem of finding how an atom can be
formed out of a few positive and negative electrons. X-ray
studies have enabled us to count the number of electrons in the
various atoms, and have informed us regarding their distribu-
tion and the forces that hold them in position. Perhaps no
single field of investigation has contributed more to our knowl-
edge of atomic structure than has the study of X-rays.

This is in part because of the very short wave-length of
X-rays. The theoretical limit of the microscope, using ordi-
nary light, is such that we cannot hope by its help to determine
the shape of a body much smaller than a wave-length of light,
.000¢ mm. If an X-ray microscope could be employed, this
limit might be reduced by a factor of ten thousand, and we
should then be working on a sub-atomic scale. Though such
an instrument does not exist, intesference effects are measure-
able due to X-rays traversing groups of atoms, and from them
we are able to interpret the structure of the matter giving rise
to the diffraction almost as definitely as if we were employing
an X-ray mlcroscope.

blmnlarly in the field of radlatlon it is the high frequency
which gives significance to experiments with X-rays. Since
the magnitude of the energy quantum is proportional to the
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vi PREFACFE.

frequency, quantum phenomena such as the photoelectric
effect, which can be studied only statistically when light is
used, can with X-rays be considered as individual events.
That is, the effects of individual X-ray quanta can be ob-
served and measured. It is perhaps for this reason that X-ray
investigations have supplied us with our best determinations
of Planck’s fundamental constant 4. It is also the compara-
tively large energy and momentum associated with the quan-
tum of X-rays which have made possible the recent experi-
ments on the change of wave-length of scattered X-rays and
allied effects, pointing so definitely to a quantum structure ot
radiation itself.

This book has grown from lectures on X-rays which I have
given at the University of California and the University of
Chicago during the last five years. Though I have tried to
cover the whole field of the physics of X-rays with some com-
pleteness, those aspects have naturally been treated in greater
detail which are most closely allied with my own researches.
Such emphasis is perhaps the more justified by the recent
appearance of a new edition of the Braggs’ notable book
X-rays and Crystal Structure, together with treatises by
Wyckoff, Rinne, Ewald and others covering about the same
field, and Siegbahn’s excellent account of The Spectroscopy of
X-rays. In the present volume only an introduction to the
problems of crystal structure and X-ray spectroscopy has been
given. Kaye and de Broglie in their books on X-rays have
described in some detail the experimental aspects of the sub-
ject. It is rather with the interpretation of the properties
of X-rays in terms of the interaction between radiation and
electrons that the present work deals. I have been chiefly con-
cerned with the information X-ray studies have afforded re-
garding the structure of the atom and the nature of the X-rays
themselves.

Since Barkla’s discovery of the polarization of X-rays, it
has been generally recognized that the study of X-rays is a
branch of optics. The first half of the present book treats the
subject from this standpoint. It has been of great interest to
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me to see how, while the manuscript has been in preparation,
discoveries of the refraction and total reflection of X-rays and
of their diffraction by slits and ruled gratings have extended
all branches of optics to the very high frequencies of X-rays.
In view of the failure of the classical electrodynamics to account
for the radiation of light, it is perhaps not surprising that it
should also fail to account completely for the origin of X-rays.
It is however a matter of prime importance that the laws of
interference and diffraction, which have been found flawless in
ordinary optics, are found to fail when X-rays and vy-rays
are used. This observation, resulting from the classical treat-
ment of X-ray scattering given in Chapter II1, is the natural
(as well as historic) introduction to the quantum treatment of
the scattering problem given in Chapter IX.

The X-rays thus constitute a powerful tool for solving
physical problems. In order to give a correct impression of the
methods and reasoning employed in solving these problems,
it will be necessary to deal with many parts of the subject from
a mathematical standpoint. It is by these mathematical proc-
esses that the most important results are often first obtained,
and it would be unfair to give the impression that they can be
secured in any other way. At the same time I have tried to
keep uppermost the physical concepts, since it is these which
point out the path which the mathematics must follow.

I wish to thank Professor P. A. Ross for his generous
assistance in reading the proof, without which the publication
of the book would have been considerably delayed.

A.H.C.

Chicaco,
May 24, 1926.
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CHAPTER I

TuE DiscovErRY AND PROPERTIES OF X-RAYS

1. Roentgen’s Early Experiments

It was in the course of a systematic attempt to see if any
radiation could be produced which would traverse matter
opaque to ordinary light that Roentgen discovered the X-rays.!
He was passing an electric discharge through a highly evac-
uated tube, and had been studying the ultra-violet light pro-
duced, using for its detection the fluorescence of crystals of
platinum-barium-cyanide spread on a paper screen. Having
covered his discharge tube completely with opaque paper, he
found that the screen continued to fluoresce. From the fact
that heavy objects plited between the tube and the crystal
stopped the fluorescence, it was obvious that the effect was due
to some type of radiation sent out by the discharge tube. This
radiation was named by Roentgen ““X-rays,” indicating their
unknown nature. Thé discovery of these rays attracted great
interest, and experimenters the world over began to study their
characteristics.

Besides producing fluorescence in certain salts, these rays
were found to affect a photographic plate and to ionize gases,
so that three methods, the visual, the photographic and the
clectrical, could be employed in their examination. It was
shown also by Brandes and Dorn that X-rays produce an
effect, though a small one, directly upon the retina, g1v1ng rise
to a very faint illumination of the whole field of view. The

1W. C. Roentgen, Sitzungsber. der Wiirzburger Physik-Medic. Gesellsch. Jahrg.

1895, reprinted in Ann. der Phys. 64, 1 (1898). I'ranslation by A. Stanton in Science,
3, 227 (1896).



2 . X-RAYS AND ELECTRONS

rays were not subject to refraction nor reflection like ordinary
light, nor were they bent by a magnetic field as were cathode
rays. They were, however, diffusely scattered by all substances,
and were partially absorbed by matter of all kinds. This
absorption was much stronger by elements of high than by
elements of low atomic weight.

The tube with which Roentgen made his original discovery
was of the type shown in Fig. 1. The tube was well evacuated
with a mercury pump until a potential difference of about
40,000 volts was required to produce a discharge. The cathode

FiG. 1.

rays, shot perpendicularly from the cathode’s surface, then
struck the broad end of the tube, producing a vivid fluorescence
and at the same time giving rise to the X-rays. It was soon
found that any substance struck by the cathode rays emitted
X-rays, but that these rays were more intense from a target of
high atomic weight. In order to obtain a point source of rays,
the cathode was made concave, so that the cathode rays were
focused on a small spot at target. This modification made
necessary the use of a target of high melting point, in order to
avoid damage due to the heat developed at the focus of the
cathode rays. Thus the type of tube shown in Fig. 2 was soon
developed, which, with minor modifications, is still widely used.
It is a characteristic of the low pressure discharge tube that the
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potential difference between the anode and the cathode re-
mains practically constant for large variations in the current
through the tube. In order to change the voltage across a tube
of this type, therefore, it is necessary to alter the pressure of the

Fic. 2.

gas in the tube. In many of the tubes now in use, such changes
can be effected by various ingenious devices. A tube which
avoids this complication has been invented by Coolidge.!
In this tube the cathode consists of a flat spiral of tungsten

Fia. 3.

wire which is heated by a battery current to such a tempera-
ture that it emits thermoelectrons. The tube is evacuated
until there is no appreciable amount of gas remaining, so that

!W. D. Coolidge; Phys. Rev. 2, 409 (1913). See also J. E. Lilienfeld and W. J.
Rosenthal, Forts. auf d. Geb. d. Roentgenstrahlen, 18, 256 (1912).
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all of the current through the tube is carried by the thermo-
electrons. Thus the current through the tube is determined
almost completely by the temperature of the filament, and the
potential difference between the cathode and anode of the tube
can be altered at will.

2. Tonization Produced by X-rays

The manner in which ionization is produced by X-rays is
elegantly shown by C. T. R. Wilson’s remarkable photographs
of the passage of X-rays through air. Without entering into
the details of the methods,! it will suffice for the present to
point out that the curved lines shown in Fig. 4 consist of series
of water drops, which have been illuminated by an intense
spark. Fach drop has formed upon a separate ion as a nucleus.
In this photograph, the X-rays passcd from left to right through
the middle of the picture. The part of the air exposed to the
X-rays differs from the rest of the air only in the fact that it is
this region in which the curved lines originate. In other words,
the action of the N-rays is to eject from the air high speed
particles (8-rays) which break into ions the molecules through
which they pass. Thus the process of ionization is to a large
extent an indiréct one. Whereas in the present photograph
the X-rays have cjected about twenty p-rays, these particles,
while tearing their way through the air, have produced
thousands of ions. )

It is the ions thus formed which give to air and other gases
their electrical conductivity when exposed to X-rays. The
number of high speed g-particles, and hence also the total
number of ions produced, is found to be proportional to the
energy of the X-rays which traverse the air. A measurement
of this ionization by means of an electroscope or an ionization
chamber connected with an electrometer thus affords a con-
venient method of measuring the intensity of an X-ray beam.

1C. T. R. Wilson, Proc. Roy. Soc. A. 87, 277 (1912).
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3. Absorption of X-rays

We have noticed that X-rays are much more strongly ab-
sorbed by some substances than by others. The reduction in
intensity of X-rays as they traverse matter can be studied by
the use of such apparatus as that shown in Fig. 5. Here the
X-rays are produced in a tube §, and are measured by means of
an ionization chamber I which is connected to some form of
electrometer E. The ionization produced by the X-rays per-
mits the batteries to send a current through the chamber,
which is measured by the electrometer. If the potential of the

| I
R g
] S -
A SR
E

FiG. 5.

batteries is sufficiently great, practically all of the ions reach
the electrodes before they recombine, and this ionization cur-
rent is proportional to the intensity of the X-rays. Thus the
ratio of the current with an absorbing screen at A to the cur-
rent without it, measures the relative ingensity of the X-ray
beam in the two cases.

In order to speak of the absorption quantitatively, it is con-
venient to define what is known as the “absorption coefficient.”
Let us suppose that the fraction dZ/I of the intensity 7 of a
beam of X-rays absorbed as they pass through a thin layer of

matter is proportional to the thickness dx of this layer.
Then
dI

'I— = _T#dx)
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where p is the constant of proportionality, and the negative
sign indicates a decrease in intensity. On integration,

log I = — px + log I,

taking log 7, as the constant of integration. This may be

written,
1 (L) -
og 1, = KX,y

I =1, (1.o01)

or

It 1s clear from the latter expression that I, represents the in-
tensity of the rays when x is zero, whereas I is the intensity
after traversing a layer of matter of thickness . The quantity
u is the absorption coefficient, or linear absorption coefficient,
and 1s defined by the expression

w =— dI/Idx,

that is, it is the fractional decrease in mtens1ty per unit path
through the absorbing medium. =~

If we consider a beam of X-rays 1 cm.? in cross section, an
equivalent definition of the linear absorption coefficient is the
fraction of the energy of this beam which is absorbed per cm.?
of the matter traversed. For many purposes, instead of the
absorption per unit volume, we desire to know the fraction of
the energy absorbed when a beam of unit cross section traverses
unit mass of the material. This fraction is um = u/p, where p
is the density of the material, and is called tAe mass absorption
coefficient. The reason for the importance of this quantity is
that 1t is characteristic of the absorbing substance, whereas
the absorption per unit volume coefficient u is not. Thus the
linear absorptlon coefficient of a given beam of X-rays is much
greater in water than in steam, whereas the mass absorption
coefficient is the same in both. For in the latter case the
amount of matter, I gram, traversed by an X-ray beam of
unit cross section is independent of the density.
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For purposes of calculation, we often wish to compare the
amount of energy absorbed by an atom of each of several
different elements. Since u is the fraction of a beam of X-rays
of unit cross section which is absorbed by unit volume of
matter, the fraction of this beam absorbed by an individual
atom is we = u/n, where # is the number of atoms per cm.®
This quantity is called the ““ atomic absorption coefficient.”

The remark has just been made that the mass absorption
coefficient of water is the same whether in the form of liquid or of
gas. This is an example of the experimental fact that the mass
absorption coefficient of a substance for X-rays 1s independent
of its physical state.! It is also found that the fraction of the
energy absorbed per atom or per unit mass of an clement is
independent of its state of chemical combination. This has
been tested, for example, in the recent experiments of Olson,
Dershem and Storch. From theoretical considerations 1t 1s
clear that differences due to chemical condition should be more
prominent for the lighter clements, for in these elements there
is a relatively larger number of valence clectrons.  Their most
significant experiments are thus with carbon and oxygen. The
results are summarized in the following table:

TABLE T-1

Mass ABsorpTION COEFFICIENTS OF X-Ravs or WAVE-LENGIH, 1078 cm.

'

Element Form L Mm ‘ Observer
. Graphite I 1 oar } Hewlett *
Carbon............ e ! Aliphatic compounds | 1.18 | O.D.&S. %
. Aromatic compounds ' 1.2r i O.D.&S.
Liquid I 2.81 | Hewlett
Oxygen.....coovvveveennnnnn. { L1 !
xygen . Organic compounds I 2.94 ‘ O0.D. &S.

* C. W. Hewlett, Phys. Rev. 17, 284 (1921).
t A. R. Olsen, Elmer Dershem and I, H. Storch, Phys. Rev. 21, 30 (1923). Cf. also E. G.
Taylor, Phys. Rev. 20 (Dcc., 1922).

1This is not quitc true. Recent experiments by H. S. Read (Phys. Rev. Apr.,
1926) have seemed to show a small variation of up with temperature, and J. A. Bearden
(Phys. Rev. June, 1926) has called attention to minor variations of u, with the state
of crystallization that are doubtless cannected with the reflection from the crystal
faces.
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The small differences which remain are probably within the
experimental error.

This independence of the mass and atomic absorption coeffi-
cients from the physical and chemical state of an element sharply
distinguishes X-rays from ordinary light. Thus, while liquid or
solid mercury 1s opaque to light, its vapor is almost perfectly
transparent. Carbon in the form of diamond is highly trans-
parent, while in the form of graphite it absorbs light very
strongly; but the mass absorption of both forms for X-rays is
the same.

The absorption coefficient of the total radiation from an
X-ray tube is found to depend chiefly upon two factors, the
potential applied to the NX-ray tube, and the atomic number of
the absorbing screen. The penetration or * hardness” of the
X-rays increases very rapidly as the voltage rises, the absorp-
tion coefficient in most substances vary.ng inversely as the
potential raised to some power between 2 and 3. Using the
same beam of X-rays, the penetration decreases rapidly as
atomic weight, or more exactly the atomic number, of the
absorbing material increases. There are, however, certain
irregularities in the curve relating the atomic number and the
absorption coefficients, which later will be considered in detail.

In deriving our expression 1.01 for the intensity of the
X-ray beam after it has traversed a layer of matter, we assumed
that the quantity x was a constant for all values of x. Experi-
ment shows that this assumption is valid only under very
special conditions. When the direct radiation from an X-ray
tube is studied, the first layers of the absorption screen remove
a large fraction of the less penetrating, or *“ soft "’ radiations, so
that only the more penetrating, or ““ hard ”’ portions reach the
final layers. The effective value of u is accordingly greater for
the rays which enter an absorbing screen than for those that
leave. When, however, a ray is used which is all of the same
wave-length, its absorption coefficient rema’ns unchanged as it
traverses matter. Such a ray is said to be homogeneous.
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4. Secondary Rays Produced by X-rays

When X-rays traverse matter, the matter becomes a source
of secondary X-rays.! The intensity of the secondary rays is
usually very small compared with the intensity of the primary
radiation falling on the matter. This is necessarily the case.
For in the first place, only a part of the energy of the primary
beam which is dissipated in the radiator reappears as X-rays,
and in the second place the reradiated X-rays spread in all
directions, so that their intensity in any one direction is small.

—]

L ;
q ]
1, 6

Fic. 6.

The usual method of investigating secondary X-rays may
be explained by reference to IKig. 6. Radiation from the
target § of an X-ray tube, or from some other source of X-rays,
is allowed to traverse a radiator R. This radiator is then found
to emit radiation in all directions. These rays may be in-
vestigated by means of an ionization chamber I which is care-
fully screened from the primary beam.

1 Cf. M. 1. Pupin, Science, 3, 538 (1896).
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If the radiator consists of a plate of matter so thin that the
X-rays are not appreciably diminished in intensity on travers-
ing it, the intensity I of the secondary beam as it enters the
ionization chamber may be written as

I,- = TOIV//.EZ’

where I is the intensity of the primary beam at R, 7 is the
volume of the radiator, % is the distance from the radiator
to the 1onization chamber, and 7, 1s a constant of pro-
portionality which may be called the *“ radiating coefficient for
the angle 6.” FExperiment shows that this cocfficient 1s a
function of the wave-length or hardness of the incident rays,
their state of polarization, the composition and physical state
of the radiator, and the angle 6.

Scattered and Fluorescent X-Rays—It is found that many
materials when used as radiators give rise to two distinct types
of secondary radiations. One of these, known as ““scattered ”
rays, is very nearly identical in absorption coefficient or wave-
length with the primary beam. The other type, known as
the “ fluorescent ”’ rays, is distinctly less penetrating, or of
greater wave-length, than the primary X-rays. Scattered
rays seem to be primary rays which have merely had their
direction altered by the matter through which they pass. The
fluorescent rays, on the other hand, are characteristic of the
radiator, and do not change in character with change in
wave-length of the primary beam as long as this beam is of
sufficiently short wave-length to excite the fluorescence. Re-
fined experiments show that the scattered rays are also some-
what less penetrating than the primary rays which produce
them, though this change in hardness or wavelength is
usually small compared with the change which occurs when
fluorescent radiation is excited. The two types of radiation
can however be distinguished by the fact that, whereas the,
wave-length of the fluorescent rays is characteristic of the;
radiator and independent of the wave-length of the primary,
rays, the wave-length of the scattered rays depends upon that|
of the primary beam and is nearly independent of the radiator.;
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The origin of the scattered ray becomes at once apparent if we
think of the primary X-ray as an electromagnetic wave. When
such a wave strikes an electron, the electron is accelerated by
the electric field. But, according to electrodynamics, an
accelerated electric charge must radiate. Consequently the
electron radiates energy due to its forced oscillations under the
action of the primary beam. Since these forced oscillations
are of the same frequency as the incident wave, the rays pro-
duced by these oscillations must also be of the same frequency.
The fact that experiment shows a slightly different frequency
between the primary and the scattered ray indicates that this
explanation must be somewhat modified. This will be done
(Chapter 1X) when we introduce the quantum theory of
X-ray scattering.

The fluorescent ray originates in the ionization and sub-
sequent recombination of the atoms of the radiator. As we
have seen, when the X-rays traverse matter, a part of their
energy is spent in cjecting B-rays, or electrons, from some of
the atoms. The remainder of the atom is in an ionized con-
dition, and when it draws to itself another electron to regain
its normal state, energy is liberated which reappears as the
fluorescent X-rays. We now have evidence that the ionized
atom returns to its normal condition usually through a series
of steps, and that at each step radiation is emitted whose fre-
quency is proportional to the energy emitted. At the halting
places, between the steps, the atom is said to be in one of its
‘“ stationary states,” of which more will be said when we
consider Bohr’s theory of the atom.

If an electron is ejected from the innermost portion of the
atom, where the energy is a minimum and the greatest amount
of energy is therefore required to liberate the electron, a large
amount of energy will correspondingly be liberated when an
electron returns to the vacated position. The frequency of the
fluorescent radiation emitted, being proportional to the energy
radiated, will accordingly have the highest value possible for
this atom.

There are two prominent types of fluorescent X-rays which
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may be excited in most of the elements, known as the K and
the 7. characteristic radiations.! The former is apparently the
most penetrating type of fluorescent radiation which the ele-
ment is capable of radiating, and is thus presumably excited
when an electron is ejected from the most stable position in
the atom. The L radiation is much less penetrating, and occurs
when electrons are ejected from the next most stable position.
It is a remarkable fact that similar characteristic fluorescent
radiations are emitted from all the elements, which differ by
regular gradations in penetrating power or wave-length as one
goes from one element to another.

Spectra of these characteristic radiations, taken however
directly from the target of the X-ray tube instead of from
fluorescing matter, are shown below (p. 28) for several elements.

Photoelectrons Ejected by X-rays. According to the inter-
pretation of fluorescent radiation which we have just given,
emission of photoelectrons from matter exposed to the X-rays
should always accompany the emission of fluorescent rays.
This is indeed found to be the case. We can even distinguish
the photoelectrons which are ejected from the different por-
tions of the atom corresponding to the emission of a K or an
L fluorescent ray. When light falls upon the alkali metals 1t
has been found that photoelectrons are ejected with a kinetic
energy whose maximum value 1s

met = hv — w, (1.02)

where w is the work done in pulling the electron out of the
metal, » is the frequency of the light, and % is a constant of
proportionality known as ‘“ Planck’s constant.” When X-rays
instead of light are employed, the photoelectrons are found to
be ejected with different groups of velocities, but the energy
of the fastest electrons in each group is again given by equation
(1.02). The constant 4 keeps the same value,6.56 X 10-%7 erg
seconds; but w, the work done in removing the electron from
the atom, has a different value for the different groups of

1C. G. Barkla and C. A. Sadler, Phil. Mag. 16, 550 (1908).
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photoelectrons. If it requires an amount of energy w: to re-
move an electron from the lowest or K energy level, it is clear
from equation (1.02) that such an electron cannot be ejected
if Av < wy, 1.e., if the frequency of the incident X-rays is less
than » = wx/A = wn. But if the electrons are not removed
from the K level, it is impossible for any K fluorescent radiation
to be emitted. This result has been fully verified by experi-
ment, which shows that fluorescent radiation of the K or L
type is not emitted by an element unless it is traversed by
radiation whose frequency is greater than the critical value
wi/h or w,/h required to eject photoelectrons from the cor-
responding energy levels.

It has been noted above that after ionization has occurred
an atom usually returns to its normal condition through a
series of steps. One of these steps may be the transition of an
electron from an L to a K energy level, in which case the amount
of energy liberated is w; — we, which can be determined by
measuring the difference in energy of the photoelectrons ejected
from these two levels. It is interesting to note that the most
prominent line in the spectrum of the fluorescent K radiation
has the frequency » = (w. — w:)/A, where 4 is again Planck’s
constant. It is thus natural to suppose that if the energy lib-
erated during any change of the electron’s position in the atom
is w, the frequency of the radiation emitted during the process is
w/h. As we shall see, this is a fundamental postulate of Bohr’s
theory of spectra, and as a part of that theory has received
very strong support.

It is a consequence of this postulate that the highest fre-
quency fluorescent ray that can be excited is no greater than
the frequency of the primary ray. For the greatest amount of
energy which the primary ray can impart to an atom in ejecting
an electron is /v, and this is therefore also the greatest amount
of energy that can be liberated as a fluorescent ray when the
atom returns to its normal condition. It will of course usually
happen that the frequency of the fluorescent ray is considerably
lower than that of the primary ray. This corresponds to Stokes’
law in optics. Though the law is by no means always valid in
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the visible region, in the region of X-rays no exceptions have
been found.

5. Polarization of X-rays

According to the explanation of the scattering of X-rays
given above, we should expect the rays scattered at an angle of
9o° with the primary beam to be polarized. For the electric
vector of the primary wave is perpendicular to the direction of
propagation, and the accelerations of the scattering electrons
must therefore also be perpendicular to this plane. If we were

to look at these scattering electrons in a direction at right
angles with the primary beam, their motions would all be in a
plane which we would be seeing edge-on. Imagine, as in Fig. 7,
that the primary beam .is
propagated horizontally to- g0
ward the north when it passes N
over the electron e. The ac- 72 max
celeration of this electron will W ek ;E
then be in a vertical, east—
west plane. The electric vec-
tor of the wave which it emits Fic. 7
toward the east must also lie v
in this plane, since there is no component of the accelera-
tion of the scattering electron in any other direction. Con-
sequently, the scattered ray reaching an electron ¢’, having its
electric vector in a vertical plane, is completely plane polarized.
This polarization may be detected by examining the rays
scattered by the electron ¢’. This is accelerated in a vertical
direction. The amplitude of the electric vector of the wave
emitted is, according to the usual electrodynamics, proportional
to the sine of the angle between the acceleration and the direc-
tion of propagation. Thus the maximum intensity of the beam
scattered by electron ¢’ is in the horizontal plane, while in the
vertical direction the intensity is zero. The polarization of the
beam scattered by electron e is thus detected by comparing the
intensity of the scattered rays from electron ¢’ in the horizontal
and vertical directions.
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A test of this character was first made by C. G. Barkla! in
1906. In place of the electrons ¢ and ¢’, he used blocks of car-
bon to produce the scattering, and he compared the ionization
produced in two chambers placed at H and # respectively. He
found the ionization in the chamber H much more intense than
in chamber 7, thus proving that the rays scattered by the first
radiator were strongly polarized. The fact that the scattered
rays are thus polarized in the predicted manner gives strong
evidence in favor of the view that the X-rays consist of electro-
magnetic waves or pulses.

6. Diffraction and Interference of X-rays

It was recognized early in the study of X-rays that most of
the properties of these rays might be explained if they consisted
of electromagnetic waves of wave-length much less than that of
light. Many attempts were therefore made to secure diffraction
of X-rays by passing them through a narrow slit. Haga and
Wind performed a careful series of experiments? to detect any
possible diffraction through a wedge-shaped slit a few thou-
sandths of a millimeter broad at its widest part. Photographs
were obtained which showed a broadening where the rays
passed through the narrow part. The magnitude of the broad-
ening was about that which would result® from rays of wave-
length 1.3 X 10-8 cm. Walter and Pohl repeated the experi-
ments by yet more refined methods,* and came to the conclusion
that if any diffraction effects were present, they were consider-
ably smaller than Haga and Wind had estimated. Later, A.
Sommerfeld® recalculated the wave-lengths from Walter and
Pohl’s plates on the basis of photometric measurements per-
formed by Koch.® He thus found from their photographs that
the effective wave-length of hard X-rays is about 4 X 10-%cm.,

1C. G. Barkla, Proc. Roy. Soc. A. 77, 247 (1906).
? Haga and Wind, Wied. Ann. 68, 884 (1899).

3 A. Sommerfeld, Phys. Zeits. 2, §9 (1900).

4 Walter and Pohl, Ann. d. Phys. 29, 331 (1909).

§ A. Sommerfeld, Ann. d. Phys. 38, 473 (1912).
8 P. P. Koch, Ann. d. Phys. 38, 507 (1912).
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and that the wave-length of soft X-rays is measurably greater.
These values are of the correct order of magnitude as tested by
the methods of crystal spectroscopy. On account of the diffi-
culties of the experiments, however, these results did not carry
as great conviction as their accuracy would seem to have
warranted.

Recently two experimenters, Walter! and Rabinov,? have re-
peated experiments of this type, using respectively the K, lines
of copper and molybdenum. Both obtained s
definite diffraction effects and were able to
make approximate estimates of the wave-
length, which agreed within a rather large prob-
able experimental error with the wave-lengths
determined by crystal spectrometry. Walter’s
results are reproduced in Fig. 8, which shows
a definite diffraction band beside the central
image.

Diffraction by Ruled Grating. Though these
photographs obtained with narrow slits show
definite diffraction effects, they have not enabled
us to make any precise determination of the
X-ray wave-lengths. Absolute wave-lengths
of X-rays have however been measured by
means of ruled reflection grating§, similar to
those used for visible light.> Though in the early experi-
ments it was found impossible to reflect X-rays from a
polished surface, later work (described on page 40) showed that
such specular reflection does occur when the X-rays graze the
surface at a sufficiently fine angle. Within this angle, of less
than half a degree, it is thus possible to use a reflection grating.

FiG. 8.

1 B. Walter, Ann. der Phys. 74, 661 (1924); 75, Sept., 1924.

21, I. Rabinov, Proc. N. A. Sci. 11, 222 (1925).

3 The possibility of securing X-ray spectra from a ruled grating in this manner was
first suggested by N. Carrara (N. Cimento, 1, 107, 1924). His efforts to secure such
spectra were, however, fruitless. R. L. Doan and the author, independently of Car-
rara, succeeded in obtaining such spectra, of which Fig. 9 is an example (Proc. Nat.
Acad. Sci. 11, 598, 1925). Similar spectra, using a grating ruled on glass, have also
been secured by J. Thibaud (Comptes Rendus, Jan. 4, 1926).
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A spectrum thus obtained when the Koy line from a molyb-
denum target is diffracted by a grating ruled on speculum metal
is shown in Fig. 9. The line D is the image of the dixeel” beam
obtained with the grating removed. The direety reflected
beam is at O, and the different orders of the diffracted beam

appear at — I, 1,2,3. Using the
1? "l' ?: ,?;3 usual grating formula,

n\ = D (sin 7 + sinr),

where D is the grating space, i the
angle of incidence and r the angle
of diffraction, it is possible from
such a photograph to calculate the
absolute value of the wave-length.
In this case D was .002 cm.,and M
was calculated tobe.707 X 10-8cm.
» This very direct method of

L 1) measuring X-ray wavelengths is’
1‘30 "™ not at present as precise as the less
FIG. 9. . . )

direct method in which crystals are

used as gratings. But the fact that the two methods give, within
experimental error, identical results serves as an important
confirmation of the crystal wave-length measurements.

Diffraction of X-rays by Crystals—While these direct meth-
ods of measuring X-ray wave-lengths were being developed,
and long before they were brought to a successful conclusion,
Laue discovered the remarkable fact that crystals act as
suitable gratings for diffracting X-rays. From this discovery
has grown on the one hand a surprisingly exact knowledge of
the structure of many crystals, and on the other hand a means
of studying X-ray spectra which is comparable in precision with
our methods of studying optical spectra.

Reasoning from several different standpoints, Laue esti-
mated that the wave-length of ordinary X-rays should lie be-
tween 10-8 and 10-? cm. But knowing as he did the number of
molecules in unit volume of a substance, he noticed that the
average distance between the atoms or molecules of solids was
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between 10~7 and 108 cm. Now in a crystal, in order to get
the symmetry which is observed, we must suppose that there is
a unit, presumably of atomic or molecular size, which arranges
itself in a régular repeating order. It is therefore natural to
suppose that in a crystal there are layers of molecular units
which are arranged successively at uniform distances not much
greater than the wave-length of X-rays. But these conditions
are very similar to those which occur when light traverses an
optical grating—regularly spaced discontinuities separated by
distances several times the wave-length of the light. Tt there-
fore occurred to Laue that a crystal might act toward X-rays in
much the same manner as a grating acts toward light. He

L
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accordingly asked Friedrich and Knipping to try the experi-
ment of passing a narrow beam of X-rays through a crystal of
zinc blende. g

The apparatus which was used in the original experiments is
shown diagrammatically in Fig. 10. X-rays from the target §,
after being collimated by two circular holes H, passed through
the zinc blende crystal C onto the photographic plate. In Fig.
11 is shown a photograph of the type thus obtained. Around
the central spot, produced by the direct beam passing through
the crystal, appear a group of symmetrically arranged spots.
The positions of these spots changed when the orientation of
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the crystals was altered, and was different for different crystals.
They formed exactly the type of pattern which might have been
expected from a three dimensional grating.

FiG. 11.

A simple interpretation of these photographs was offered by
W. L. Bragg.! He pointed out that each of the images sur-
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rounding the central spot could be interpreted as the reflection
of the incident X-ray beam from some plane within the crystal
1W. L. Bragg, Proc. Camb. Phil. Soc. 17, 43 (1912).
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which was especially rich in atoms. Consider a two-dimensional
pattern of points as shown in Fig. 12. It will be seen that the
lines (corresponding to the planes in the three dimensional
crystal) which have many points per unit length are those
drawn at “ simple ” angles. Similarly the position of the spots
to be expected in a Laue photograph with a cubic crystal can
be calculated on Bragg’s assumption merely from the crystal
symmetry, the more intense spots being refiected from planes
drawn at simple angles with
the cubic axes. A comparison
with the position of the spots
thus calculated with the posi-
tions of the spots in Friedrich
and Knipping’s photographs
showed that the idea was
sound.

The cleavage face of a
crystal should be parallel to
these ““ simple” planes which
are rich in atoms. W. H.
Bragg therefore tried the ex-
periment of reflecting a beam
of X-rays from the cleavage
surface of a crystal, and found
on the photographic plate a
spot at the angle of reflec-
tion.! He then replaced the
photographlc plate with an Fic. 13.
ionization chamber, mounted
upon the arm of a spectrometer, and placed the crystal upon the
prism table, so that both could be conveniently oriented at any
desired angle with the primary beam. A diagrammatic plan of
the apparatus as thus employed is shown in Fig. 13. 4 and B
are slits which collimate the primary X-tay beam, C is the
crystal, D is a slit which defines the beam entering the ioniza-

11t is interesting to note that Roentgen tried a rather similar experiment in 1895
using a crystal of calcite, but with negative results.
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tion chamber /. As the glancing angle 6 at which the X-rays
struck the crystal was varied, the angle between the ionization
chamber and the primary beam was kept equal to 26, in order
to receive the secondary beam reflected from the crystal.

A record of the intensity of ionization as the angle 6 was
varied is shown in Kig. 14. In this experiment X-rays from a
tube containing a platinum target were reflected by a crystal
of rock-salt. It will be seen that instead of varying uniformly
with the angle, the ionization rises to large values at certain

sharply defined angles.

tonization

-

F16. 14.

An interpretation of this curve may be obtained if we
examine further the manner in which X-rays are diffracted by
a crystal. Suppose that a wave comes from a source § and
strikes a crystal, as in Fig. 15. A fraction of the wave is re-
flected by the first layer of atoms at an angle 6, equal to the
incident glancing angle, and another fraction is reflected from
the second layer. It is clear from the construction of the figure
that the difference in the length of the paths followed by these
two rays is /BC. But 4B = BC = OB sin 6, so that the differ-
ence in path is 2 OB sin 6. In order to secure co-operation be-
tween these beams, the difference between their paths must
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be an integral number of wave-lengths. It follows, writing

OB = D, that
n\ = 2D sin g, (1.,03)

where 7 is an integer, and represents the order of the diffraction.

According to this equation, a change of the angle 6 should
alter the wave-length of the rays reflected from the crystal. Itis
therefore natural to suppose that the three peaks, .71, B, and
Ci represent X-ray spectrum lines. If this is the case, second
orders of these lines should appear at angles whose sines are
twice those of lines .7), By and C1. Such lines actually do appear

T1G. 15.

at A, B: and Cs, and not only are their angles just what they
should be according to equation (3), but their relative inten-
sities also are in the same ratio as those of the corresponding
lines in the first order.

The fact that these lines are characteristic of the target
from which the X-rays are emitted is shown by the fact that if
an X-ray tube with a nickel target is substituted for the one
with the platinum target, an entirely different type of spectrum
is observed, two lines instead of threce appearing, and at differ-
ent angles. If, on the other hand, the crystal is changed, the
same lines appear with about the same relative intensity, but
the angles at which they appear is changed, indicating, accord-
ing to equation (3), that the grating space between the layers of
atoms is different for different crystals. It is therefore clear
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that we are dealing here with true spectra of X-rays character-
istic of the target, diffracted by a crystal grating.

If the distance between the layers of atoms can be deter-
mined, we can by this means measure the wave-length of the
X-ray spectrum lines emitted by different metals used as tar-
gets. We shall show in Chapter IV that there is good reason to
believe that the atoms in a crystal of sodium chloride are
arranged alternately at the corners of a cubic
lattice, thus (Fig. 16). Now if the number
of molecules per gram molecule is N =
6.06 X 10%, the molecular weight of sodium
chloride /7 = 8.5, and its density p = 2.17,
then the number of molecules per cm.? of
rock-salt is Np//#’, and the number of atoms
is 2Np/W. The average volume occupied
by each atom is thus /#7/2Np, and since the
atoms are arranged cubically, the distance between the adja-
cent atoms Is

O =Sodium
@ =Chlorine
F1c. 16.

D = (W/2Np)*,
or when the numerical values are substituted,
D = 2.81 X 10-8 cm. (rock-salt).

In the case of calcite, the grating space calculated in a similar
manner is
D = 3.029 X 10-8 cm. (calcite).

Having thus determined the grating space between the
layers of atoms in rock-salt, we can now measure the absolute
wave-lengths of the X-rays. Thus in Fig. 14 the B, peak occurs
at about 11.4° Substitution this angle in equation (3), using
n = 1,and D = 2.81 X 1078 for rock-salt, we find for the wave-
length of this line, 1.12 Angstréims, where 1 A = 10-8 cm.

We have seen that the wave-lengths of the X-ray spectrum
lines as thus measured agree accurately with those measured by
ruled diffraction gratings of known spacing. The values of D
calculated for the crystals are thus confirmed. This means in
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turn that we have assumed the correct fundamental structure
for the rock-salt and the calcite crystals.

7. X-ray Spectra

A systematic study of the X-ray spectra of the different
elements was first made by Moseley! in 1913-14. His experi-
ments covered a range of from o.4 to 8 A., using 38 different
elements as targets of his X-ray tube. He found that the spec-
trum lines emitted by these elements belonged to two very
distinct series, which were identified with the K and L types of
characteristic fluorescent radiation which had previously been
observed by Barkla and Sadler. Moseley’s photographs of the
X-ray spectra of the K or shortest wave-length series lines from
the elements of atomic weight between 40 and 65 are shown in
Fig. 17. Since in these spectra the wavelengths are nearly
proportional to the angles, the wave-lengths can be taken as
nearly proportional to the distances of the lines from the left-
hand side of the figure.

The most striking thing in this figure is the great regularity
of the spectra. Each element exhibits a spectrum identical with
that of the other elements except that the scale of wave-lengths
is changed. It will be noticed also that as one goes from the
lighter to the heavier elements, the wave-length of the corre-
sponding lines decreases in a regular manner. Thus even if we
did not know that there is an element scandium between the
elements calcium and titanium, the large gap between the spec-
tra of these two elements would have suggested strongly that
such an element should exist. An examination of these spectra
revealed the fact that the square root of the frequency of either
of the two lines in this spectrum is nearly proportional to the
atomic number of the radiator, or more exactly, that the fre-
quency is given by

= K(N — k) (1.04)
Here K is a universal constant for all elements, NV is the atomic

number, and % is another universal constant. This is usually
1H, G. J. Moseley, Phil. Mag. 26, 1024 (1913); a7, 703 (1914).
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spoken of as Moseley’s law. It applies not only to the K series
lines as shown in Fig. 17, but also, with appropriate changes
in the values of the constants K and %, to the lines of the L
series. While precise experiments have shown that this law is
not exact, it is nevertheless sufficiently accurate for many pur-
poses, and affords, as we shall see, an important clue to the
origin of these spectrum lines.

F16G. 17.

The appearance of the L-series lines is beautifully shown by
Siegbahn’s photographs in Fig. 18. The spectra of these ele-
ments also exhibit the same regular changes that are found in
the spectra of the K series, but the spectrum has a considerably
greater number of liies. Two series of still greater wave-length
are known, an M series and an N series. It has'been possible to
examiney these spectroscopically only for the heavier elements.
The spectrum of the M series of tungsten, as obtained by
Stenstrom, is shown in Fig. 19. Tables of the wave-lengths of
the different X-ray spectrum lines are given in the appendix.



X-RAY SPECTRA 27

The Continuous X-ray Spectrum.—The continuous portion
of the X-ray spectrum also has some very interesting features.
In Fig. 20 are shown a series of spectra obtained by Ulrey from
a tungsten target, taken with different potential differences

y1 Babr 1%
l‘ \/ N/

across the X-ray tube. It will be seen that for a definite poten-
tial, no radiation occurs of wave-length less than a certain
critical value. Having passed this wave-length, the intensity

rises sharply to a maximum, and then gradually falls to a rela-
tively low value.

Fi1G. 19.

Accurate measurements show that the snort wave-length
limit of the spectrum is inversely proportional to the potential
applied to the tube, or that the frequency of this limiting radia-
tion is proportional to the potential. It is customary to state
this fact thus: .

Ve = hvmnx‘ = hc/)‘min. (I 05)
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In this expression, / represents the potential across the tube
and ¢ the charge on the electron, so that »e is the energy with
which the cathode ray strikes the target; ¢ is the velocity of
light, and 4, the constant of proportionality, is the same as
Planck’s constant which we used in discussing the photoelectric
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effect. From careful determinations of the minimum wave-
length Am corresponding to definite potentials #, Duane and
his collaborators have found!

A

Ven,/c,

6.556 X 10-27 erg sec.

1 Blake and Duane, Phys. Rev. 10, 624 (1917). Duane, Palmer and Chi-Sun-Yeh,
J. Opt. Soc. Am,, 5, 376 (1921).
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8. Bohr's Theory of Spectra

In order to understand the significance of the remarkable
regularities observed in the X-ray spectra, we may profitably
consider at this point Bohr’s theory of the structure of the atom.
For the present we shall discuss this only in a s'mple form,
leaving till a later chapter the detailed theory which will
account more completely for the different lines observed. Bohr’s
theory ! postulates the type of atom proposed by Rutherford,
which consists of a heavy, positively charged nucleus about
which the negative electrons revolve in orbits. He proceeds, on
the basis of three principal assumptions, to calculate the posi-
tions and the energies of the electrons in their orbits and the
frequency of the radiation which they may emit.

The first of these assumptions is that an electron revolves in
a circular orbit,® its centrifugal force being balanced by the
electrostatic attraction of the nucleus modified by the forces
due to the other electrons in the atom. For a single electron
revolving about a nucleus, the mathematical statement of this

assumption 1s
mv:  Fe  Ze*

a a2 a?’

where m is the mass of the clectron whose charge is ¢, v is its
speed in its orbit of radius a4, and E = Ze is the charge on the
nucleus, Z being the atomic number.?

' N. Bohr, Phil. Mag. 6, 1, 476-857 (1913).

2 Bohr’s original assumption was an elliptical orbit. The assumption of a circular
orbit is made here for the sake of simplicity, since it leads to the same results regarding
frequencies and energies.

. 3 Rutherford’s experiments (Phil. Mag. 21, 669 1911) demonstrated the existence of
a small and massive nucleus within the atom which repelled alpha particles according to
an inverse square law of force. The magnitude of this force was shown to be about that
which should exist if this nucleus possessed a charge of about half the atomic weight.
More recent experiments by Chadwick (Phil. Mag. 40, 734 1920) on the scatter-
ing of alpha rays showed that, measured in electronic units, this charge is at least very
nearly equal to the atomic number. These results are supported by Barkla’s measure-
ments of the scattering of X-rays (cf. Chapter I1I), which indicate that the number
of mobile electrons in an atom is equal to about half the atomic weight. The assump-
tion that the charge on the atomic nucleus is, in electronic units, exactly equal to the
atomic number is therefore strongly supported.
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In every atom except hydrogen there exists more than 1
electron, and the forces due to the other electrons must be
considered. If these electrons could be considered as charges
uniformly distributed over the surface of spheres concentric
with the nucleus, it is clear that those electrons outside the one
whose motion is considered would have no effect, while those
inside this orbit would act as if their total charge were concen-
trated at the nucleus. The force due to the outer electrons
would thus be zero, and that due to the inner electrons would
be pe?/a®, where p is the number of inner electrons. This cor-
rection is of course only approximate, since the electrons are not
uniformly distributed over a spherical surface, and since the
electron under consideration will itself doubtless modify to some
extent the distribution of the other electrons. If the remaining
electrons at the same distance from the atomic nucleus were
similarly arranged at random on a spherical surface, a simple
clectrostatic argument shows that the force which they would
produce on the electron in question would be a repulsion of
magnitude (g — 1)e?/a?, where ¢ is the total number of
electrons in this shell. A more accurate expression for the
electric force on the electron would therefore be

Zet  pe

1 (g —1)e2 6
a® a’ 2 a* T a2

where F =7 — p — (g — 1).

The relation between the centrifugal and the centripetal forces
is thus more nearly

my? e?

. ﬂzF. (1.06)

The second assumption made by Bohr states that of the
infinite variety of orbits which are possible according to equa-
tion (1.06) only those orbits will be stable for which the
angular momentum is an integral multiple of 4/2x, where 4 is
Planck’s constant, having the value 6.556 X 1027 erg seconds.
The idea is that, whereas according to the classical electro-
dynamics an electron revolving in an orbit must radiate because




BOHR’S THEORY OF SPECTRA 31

of its centripetal acceleration, if an atom of the type postulated
by Rutherford is to exist, there must be some condition under
which the revolving electron will not radiate. It is the present
assumption which supplies that condition, assigning to the
clectron certain orbits in which radiation will not occur. ‘The
assumption is to large extent arbitrary, its chief justification
lying in the fact that it leads to results in agreement with
experiment. The mathematical statement of this assumption is

mva = nh/2n, (r.07)
where # is an integer.

By combining equation (1.06) and (r.07), we can cal-
culate the radii and the energies corresponding to the different
stationary states. On solving for the radius we obtain

n2h?

a= ., .
gniletm

(1.08)

The total energy of the sytem is the sum of its potential and
kinetic energies. In calculating the potential energy, let us sup-
pose that initially the dimensions of all the electron orbits are
magnified by a very large factor N, so that the potential energy
is zero, though the electrons retain their usual relative positions.
As N is gradually reduced to unity, the clectron orbits shrink to
their normal size. At each stage of this process, the force on the
electron whose potential energy we calculate is always — Fe?/r?,
where 7 is its distance from the nucleus, and # has the value
given above. Thus the work done on the electron in bringing
it to its final position is

a I':2
U=—j; ];fjdr=-Fez/a,

or substituting the value of 4 from equation 1.08, the potential
energy is

4#2€4F ’m

U= n2h?
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To calculate the kinetic energy, we have merely to evaluate
}mv? from equations (1.06) and (1.07), obtaining

an2e¥F2m

= Ly =
T = imy YT

The total energy is accordingly

_ 28etF2m

W=U+T=-"0

(1.09)

where, as before,

F=2-p—1ig-0.

Before proceeding with the third assumption, it will be of
value to test the theory at this point. The energy required to
remove an electron from its orbit is —/# where # is given by
equation (1.09).! If this energy is supplied by an electron
striking the atom, in order to have acquired sufficient energy
the electron must have fallen through a potential difference /
such that Y¢ = — W. Thus the “ ionizing potential” of the
atom is

V=-— },Z = 2n28F,2/ .

In the simplest case, that of the hydrogen atom, F = Z = 1,
and if the atom is in its normal condition » = 1. On substi-
tuting the usual values,

e = 4774 X 10710¢,s. u,,

m
A

9.01 X 10728 g,

6.556 X 10727 erg sec.,
we find
V= .o45e.su.
= 13.5 volts (calc.).

1 From the way in which we have calculated the potential energy, it will be seen that
this statement is only approximately true when the shielding effect of the other elec-
trons is considered. It is strictly accurate, however, for hydrogen where F = Z.
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The recent experiments of Olmstead and Compton,! how-
ever, have shown that in order that an electron may ionize an
atom of hydrogen, it must have fallen through a potential
difference

V = 13.54 volts (expt.),

in perfect accord with the theory. This suggests strongly that
we are working along the right line, especially since when Bohr
originally proposed his theory the ionization potential of hydro-
gen was considered to differ very considerably from this value.

Bohr’s third assumption enables us to predict the frequency
of the radiation emitted by the atom. He supposes that if an
electron finds itself in an outer orbit (# > 1) it may drop to an
inner orbit, and that the energy liberated in the process is
radiated with a definite frequency such that

hy = Wi — W, (1.10)

where /7 is the energy of the atom in its initial state and 7
its energy in the final state.2 From cquation (1.09) the fre-
quency of the emitted radiation should therefore be

1 Fg 1
n,z Ffz n¢2 ’

2,4
y =TT F7 {
where as before the subscripts f and 7 refer to the final and
initial states of the electron respectively. Since 1/#2is usually
small compared with 1/#2, we can without serious error put
F2/F2 = 1, and writing
2n2etm

RET,

the expression for the frequency becomes
v = R-F2(1/n? — 1/5?). (1.11)

In the case of hydrogen F, = Z = 1 exactly, and substituting
the values of ¢, m and 4 given above, the frequencies of the

1P, S, Olmstead and K. T. Compton, Phys. Rev. 22, 559 (1923).
2 We shall see later (Chapter X) that this assumption is not independent of the sec-

ond assumption.
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various spectrum lines can be calculated. Forn, = 2and », =
3, 4 §, etc., this formula gives the frequencies of the visible
hydrogen lines and those in the ultraviolet which compose what
is known as the Balmer serics. Within experimental error the
agreement is exact. Thus for example, if 7, = 2 and », = 3,
the calculated wave-lengthis A = ¢/» = 6.75 X 10-5cm., while
the observed wave-length 1s 6.563 X 10-% cm. For #, = 1, the
frequencies are much greater, and correspond exactly with those
of the Lyman series of hydrogen. Similarly, for #, = 3,4 and s,
the various values of 7, give frequencies which agree accurately
with those of known lines in the infra red spectrum of hydrogen.
Thus equation (1.11) predicts accurately the position of all the
known lines of atomic hydrogen, and does not predict any lines
which do not occur under suitable conditions.

When we apply this formula to the case of X-ray spectra,
we may take the experimental value of R as 3.29 X 10'5 sec. 1,
as determined from optical spectra, instead of the value 3.19 X
1015 calculated from the measured values of ¢, m and 4. For the
Kaline of molybdenum, we have Z = 42, and supposing that the
K rays come from the innermost shell of electrons, we may take
p = o0 and ¢ = 2.1 Thus F; = 41.5. Since the K« line is the
longest of this series, we may take #, = 1 and 7 = 2. Sub-
stituting these quantities in equation (1-11) we find X = ¢/» =
0.70 X 10-8 cm., which agrees very satisfactorily with the
value 0.71 X 1078 cm. determined experimentally. Similarly
for the Lo line from tungsten, we have N = 74, p = 2 and
g = 8, whence F; = 68.5; n =2, and # = 3. Thus » =
1.40 X 1078 cm., which again agrees acceptably with the
experimental value 1.47 X 108 cm.

If we write

2 _ I__L>
K R(nfz =

1 The assumption that there are two electrons in the inner shell is suggested by the
fact that helium has but two electrons, and that the chemical properties of lithium
indicate that it has one electron, boron two electrons, etc., which are active in chemical
reactions. This leaves two electrons in each of these atoms inert, and hence presum-
ably in aninner shell. A number of other lines of evidence lead to the same conclusion.
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and
Fi=Z-{p+ilg-—1}=2-4%
equation (1.11) becomes

vi= K(Z — &),

which is identical with Moseley’s experimental law (1.04).
These results thus indicate that Z, the charge on the nucleus of
the atom, increases by 1 electronic unitas one passes from an
element to the element next higher in atomic weight. More-
over, since k remains constant, the number of electrons in the
inner shells must remain constant for the elements for which
the spectra are examined. These X-ray spectra, with the help
of Bohr’s theory, therefore supply very valuable evidence con-
cerning the inner structure of the atom.

9. The Refraction of X-rays

In his original examination of the properties of X-rays,
Roentgen tried unsuccessfully to obtain refraction by means of
prisms of a variety of materials such as ebonite, aluminium and
water. Previous to the use of homogeneous rays reflected from
crystals, perhaps the experiment conducted under conditions
most favorable for measurable refraction was one by Barkla.!
In this work X-rays of a wave-length which excited strongly the
characteristic K radiation from bromine were passed through a
crystal of potassium bromide. The accuracy of his experiment
was such that he was able to conclude that the refractive index
for a wave-length of 0.5A. probably differed from unity by less
than § X 10-6. A test of the refraction of homogeneous X-rays
has been made by Webster and Clark.2 They found that the
refractive index for the different K lines of rhodium, transmitted
by a rhodium prism, differed from unity by less than about
3 X 1074

Although these direct tests for the refraction of X-rays were
unsuccessful, Stenstrom has observed?® that for X-rays whose

1 C. G. Barkla, Phil. Mag. 31, 257 (1916).

2 D, I.. Webster and H. Clark, Phys. Rev. 8, 528 (1916).
3 W. Stenstrom, Dissertation, Lund (1919).
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wave-lengths are greater than about 3A, reflected from crys-
tals of sugar and gypsum, Bragg’s law, #\ = 2 D sin 8, does
not give accurately the angles of reflection. He interprets the
difference as due to an appreciable refraction of the X-rays as
they enter the crystal. Precise measurements by Duane! and
Siegbahn? have shown that the same type of discrepancies
occur, though they are very small indeed, when ordinary X-rays
are reflected from calcite.

The direction of the deviations in Stenstrém’s experiments
indicated that the index of refraction of the crystals employed
was less than 1. If this is the case also for other substances,
total reflection should occur when X-rays in air strike a plane
surface at a sufficiently sharp glancing angle, just as light in a
glass prism is totally reflected from a surface separating the
glass from the air if the light strikes the surface at a sufficiently
sharp angle. The condition for total reflection is that sin 7 =
1/nsin i > 1, where 7 is the angle of incidence, 7 is the angle of
refraction, and # = sin i/sin 7 is the index of refraction. For
in this case the angle of refraction is imaginary, and all of the
energy must be refracted. In terms of the glancing angle 6,
which is the complement of the angle of incidence 7, this may
be written, 1/7 cos § > 1, i.e., cos 8 > n, or approximately,

6 =sing <V2V1 — n, (r.12)

By measuring this critical angle for total reflection, we can thus
measure the index of refraction of the X-rays.

The experiment has been carried out by the author3 using
the apparatus shown in Fig. 21. A very narrow sheet of
X-rays fell upon the mirror M, and was reflected onto the
crystal of a Bragg spectrometer. It was found that the beam
could be reflected from surfaces of polished glass and silver
through angles of several minutes of arc. By investigating the
spectrum of the reflected beam, it was possible to show that the
critical glancing angle is approximately proportional to the

! Duane and Patterson, Phys. Rev. 16, p. 532 (1920).

2 M. Siegbahn, Comptes Rendus, 173, p. 1350 (1921); pp. 174, 745 (1922).
3 A. H. Compton, Phil. Mag. 45, 1121 (1923).
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wave-length, which means, according to equation (1.12), that
the index of refraction differs from unity by an amount pro-
portional to the square of the wave-length. For glass and
silver, also, the quantity 1 — # for a given wave-length is
approximately proportional to the density. Kor the wave-
length 1.279A crown glass of density 2.52 was found to have
a critical angle of 6 = 11’, corresponding to an index of refrac-
tionz = 1 — § X 106, We shall see later (Chapter VII) that
these total reflection experiments are in good accord with the
usual electron theory of dispersion,

\ —§ o Mo )\ yea) Scta

xh 8 8 Ionization

FicG. 21.

More recent experiments by Von Nardroff ! and Hatley,?
using a modification of Stenstrom’s method, and by Larson,
Siegbahn and Waller,? who have finally succeeded in deviating
the X-rays by means of a prism, have confirmed these results,
obtaining meaurements of the refractive index of surprisingly
high accuracy. A more detailed account of this work is given
in Chapter VII.

2 R. Von Nardroff, Phys. Rev. 24, 143 (1924).

3 C. C. Hatley, Phys. Rev. 24, 486 (1924).
1A, Larson, M. Siegbahn and T. Waller, Phys. Rev. 25, p. 245 (1925).



CHAPTER II

ELecTroMAGNETIC THEORY OF THE PropUCTION OF X-RAvs

10. Electromagnetic Pulses

The first hypothesis regarding the nature of X-rays which
led to important results was that put forward by Stokes! and
J. J. Thomson.2 On this view the X-rays consist of irregular
electromagnetic pulses due to the irregular accelerations of the
cathode particles as they traverse the atoms of the target.?

The intensity of the radiation emitted by an accelerated
electron may be calculated by an application of Maxwell’s con-
ception of displacement currents. Just as an electromotive
force is induced in a circuit toward which a magnetic pole is
moving, so a magnetomotive force is induced by the motion of
an electric charge. The use of the idea of displacement currents
may be illustrated by calculating on this basis the magnetic
field due to a moving electron.

11. Field Due to an Electron in Slow, Uniform Motion

Imagine, as in Fig. 22, an electron moving along the X-axis
with a velocity v small compared with the velocity of light .
We wish to determine the magnetic field at a point P (r, 6).
If we draw through P a sphere about the electron at O as a
center, the number of unit lines of electric force, or the electric
‘ displacement” across the sphere is equal to the charge e. If,

1 G. Stokes, Proc. Manchester, Lit. and Phil. Soc., 1898.

2 J. J. Thomson, Phil. Mag. 45, 172 (1898); *“Conduction of Electricity through
Gases,” 2d Ed., 658 et seq.

3 The conception of X-rays as transverse ether waves of very short wave-length was
suggested somewhat earlier by E. Wiechert (Sitzungsber. d. phys-okon. Ges. zu Konigs-
berg, 1894). '

38
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however, we consider the circle PSQ, perpendicular to 0X, the
displacement through this circle is

Area of Zone PR(Q

D = e. -
% Area of whole sphere
-, MR
" 20R
= }e(1 — cos0). (2.01)

Q

FiG. 22.

The displacement current passing through the circle PSQ is
ip = dD/dt, and this is supposed to produce precisely the same
magnetic effect as if 4D/dt were the rate at which electric
charge traversed the circle. The work done in carrying unit
magnetic pole about this circuit is thus

f His = 4, (2.02)
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where the magnetic field A is in e.m.u., and the displacement
current 7 is in e.s.u., or,

. d
H-27rsin § = ara
c dt

2re in 0{10
= — § —
¢ dt

[1e(1 — cos )]

That is,

edo

rc dt

dx

. . I .
Since df = dx sin 0/r, db/dt = . sin ] 7

v .
= —sin 6.
r

ev .
Thus H = —sin. (2.03)

ri
It will be seen that this is the same magnetic field at P as one
calculates from Ampere’s rule,

ids .

dH = Z sin o,
ric

if ev is taken as equivalent to the element of current ids.

12. Field Due to Accelerated, Slowly Moving, Electron

Referring again to Fig. 22, let us now imagine an electron
moving with a small unifprm velocity év along the X axis, which
is stopped at the point O'in a short interval of time 6. We wish
to calculate the intensity of the electromagnetic pulse at P
resulting from this change in the electron’s motion.

At the instant # = o, the electron is at the point O, and
since it has been in slow uniform motion, its field is the same
in all directions. The displacement through the circle PSQ is
now, as in equation (2.01),

1e(1 — cos¥).

After the additional short time interval & the electron has
stopped close to O. But an observer at P is unawarg of this
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change in the electron’s motion until after the time /¢, required
for an electromagnetic pulse to move from O to P. At the
instant ¢ = r/c, therefore, the field at P is just as it would be
if the electron had continued to move with uniform velocity
v during this interval, reaching a point O’ at a distance éx =
év.r/c from O. The displacement through PSQ is now there-
fore 1e (1 — cos ¢’). But at the moment ¢ = /¢ + é¢, and for-
ever after, the field at P is that due to an electron at rest at O,
so the displacement is again e (1 — cos 9).

During the short interval from ¢t = r/c to t = r/c + 8¢ the
displacement has accordingly changed at the average rate,

D
6—67 = le(cos 8" — cos 0), s8¢,

or
PR 06 cos 6
D 2 6[
o
= — lesin0—
26510 0
But
ox . ov .
60 = —sinf = --siné,
r ¢
whence
o0 I . o0 a .
-~ = -sinf - =—-snd,
ot ¢ ot ¢
where a =—1;;v is the acceleration to which the electron is

subject. It follows that

. ae. .
ip = }—sin? 6.
c*

As in equation (2.02) we have therefore,

H-2zrsin 0 =

n]"‘

ae
~ S sin2 @,

Nl’-‘

ae sin @

" (2.04)

H:
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When a magnetic field moves perpendicular to itself with a
velocity v, it gives rise to an clectric field of strength £ = H-z

if E is expressed in electrostatic and H in electromagnetic units.
In the present case, since the velocity of propagation of the
pulse is v = ¢, the intensity of the electric field of the pulse in
these units 1s identical with that of the magnetic field, i.e.,

ae .
E=H= 5 sin 0. (2.0%)

It will be noticed that these electric and magnetic intensities
due to the electron’s acceleration vary inversely as the dis-
tance r at which they are observed. But the electric intensity
due to a stationary charge and the magnetic intensity (equation
2.03) due to a charge in uniform motion vary inversely as the
square of the distance. Thus the radiation from the electron
may be perceptible at distances so great that its electrostatic
field is negligible.

The energy in the electromagnetic field 1s H?/8r + E*/8x per
unit volume, where, as above, // is the magnetic intensity
expressed in e.m.u., and £ is the electric intensity expressed in
e.s.u. The energy density in the pulse may thus be written,
since E and / are equal, as

E?  ¢%®sin? 0
4m 41rr2c.‘i
To obtain the total energy in the pulse, we integrate this quan

tity throughout the spherical shell of radius 7 and of thickness
or, thus:

/4 =f’21rr sind-7d6- or. o S;—n—z—o _ 2 or. (2.06)
o - 4rrict 3 ct
The fact that this energy is independent of the radius of the
shell means that the total energy within the pulse remains
constant as it leaves the electron with the velocity of light.
) This therefore represents energy which is actually escaping
ifrom the electron in the form of radiation.
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The rate at which the energy is radiated while the electron is
being accelerated may be calculated by finding the rate at
which the energy in the radiated pulse traverses a fixed
spherical surface described about the electron. In equation
(2.06), if we write & = cot, it is clear that the energy E of the
pulse traverses any fixed concentric spherical surface in the
interval 64, whence the rate at which the energy is radiated is

(_ZZ{/ _ 26%?
dt 3¢

. (2.07)

13. Intensity of X-rays on the Pulse Theory1

Let us assume, in accord with Stokes’s idea, that an elec-
tron, when it strikes the target, is subjected to a negative
acceleration in the direction of motion, which continues until
the electron has been brought to rest. We wish to calculate
the intensity and encrgy of the radiation which it emits. We
are now dealing with an electric charge whose velocity is com-
parable with that of light, and the results which we have
obtained for low velocities will be somewhat moditied. 1If at any
instant the electron’s velocity is B¢, it can be shown (see
Appendix 1, equation 33) that equation (2.05) should be re-
placed by

ae sin 0

E=H=%

¢ (1 — B cos 0)3

(2.08)

By the intensity of the radiation we mean the energy which
crosses unit area, taken perpendicular to the direction of
propagation, per unit time. Since the energy per unit volume
of the pulse is E2?/47, and since this is propagated with a
velocity ¢, the intensity at any instant is

cE? 4% sin?
4 47723 (1 — B cos )¢

I= (2.09)

1 As far as eq. 2.11, this discussion follows closely A. Sommerfeld, Phys. Zeits. z0
969 (1919); Atomic Structure and Spectral Lines, p. 33 (1923).
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The total radiated energy traversing unit area at P due to
stopping the electron is § = f Idt, where the integral is taken

over the complete pulse. If#is the time at which the radiation
reaches P which left the electron at the instant #, then
t =1t +r/c. Thus dt =dt’ + dr/c where, as a glance at
Fig. 23 will show, dr = vdt' cos 6 = Bc cos 6dt’, and hence,

FiG. 23.

dt = dt'(1. = Bcos6). Buta=cdg/dt',whenced:t' = cdB/a, and
dt=c/a(1— B cos 6)dp.
Thus

ae? sin? 9
=fldt = f41rr2c3 (1 — Bcos6)° a (1 = 8 cos 0,

41rr2c3 [ (- 6 cos 6)%

_ a¢® sin? 0[ 1 I]' (2.10)
16772¢® cos 0L(1 — B cos 6)* ’ ’

or for small values of g,

2
S, = ae262 sin? 6. (2.11)
4772

The result of this calculation may be tested both regarding
the spatial intensity distribution which it predicts and regard-
ing the absolute value of the predicted X-ray intensity. The
energy as a function of the angle 6 according to equation (2.10)
is plotted in Fig. 24 for different values of 8. In order to test
the theory under most favorable conditions, experiments
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using X-rays from thin targets have been performed by Kaye,!
and using targets of carbon have been done by Stark?2 and
Lobe3 The reason for using carbon is that with an element of
so low an atomic number no appreciable amount of energy goes
into the line spectrum, which necessarily consists of trains of
waves, instead of pulses. Moreover the absorption of the X-
rays by the target is so small that it can be corrected for.
Stark’s results for X-rays of two different degrees of hardness
are shown in Fig. 25.

F16. 24. F1G. 25.

There are marked qualitative similarities between the
theoretical curves 24 and the experimental data shown in
Fig. 25. The intensity seems to approach a minimum at o and
180 degrees, as the theory predicts, and the maximum intensity
is found to be at an angle less than go degrees. It is true that the
shapes of the curves are not identical, in that the experimental
curve does not approach zero intensity at the angle zero. Such
departures from the theory are, however, just what one would
anticipate from the known fact that the direction of motion of
the electrons is altered as they enter the target. This is well
illustrated by the curvature of the g-ray tracks in air as shown
in Fig. 4. Moreover, not all of the X-rays are produced when
the cathode particles are moving at their maximum speed.

1G. W. C. Kaye, Proc. Camb. Phil. Soc. 18, 269 (1909).

2 J, Stark, Phys. Zeits. 10, go2 (1909).
3 W. W. Lébe, Ann. d. Phys. 44, 1033 (1914).



46 X-RAYS AND ELECTRONS

Closely associated with the fact that the intensity of the
X-rays is greater at small angles with the stream of cathode
rays, is the fact, noticed by Stark,! that the absorption co-
efficient of the X-rays is less at small than at great angles.
This is in accord with the fact that the pulse, considered in the
discussion leading to equation (2.10), is thinner in the forward
than in the backward direction. We may think of this as a
kind of Doppler effect, due to the forward motion of the radia-
ting electron. Translating pulse thickness into terms of wave-
length, this means that according to Stokes’ hypothesis the
wave-length of greatest energy should be shorter for the rays
going forward than for thosc going backward. Exactly this
type of phenomenon is shown in Wagner’s spectra 2 (Fig. 26) of

ZInlensity
I I

v
>

0 Amin

Fi1G. 26.

the rays emitted in different directions. These experiments
show that the wave-length of maximum intensity is very appre-
ciably less for the rays proceeding forward than for those going
backward.

Polarization of Primary X-rays.—Referring again to Fig.
22 and the discussion leading to equation (2.05), it will be
seen that the magnetic field of the X-ray pulse at P is tangential
to the circle P§Q, and if the charge e is negative, the electric
field at P is in the direction PE, perpendicular both to PH and
OP. The pulse is thus completely plane polarized.

17. Stark, loc. cit.

2 E. Wagner, J. d. Rad. Elek. 16, p. 212, Dec. 1919. For a full discussion of this
matter, see D. L. Webster, Bull. N, R. C., No. 7, p. 442 (1920).
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Polarization of primary X-rays was first observed by
Barkla,! using the apparatus shown diagrammatically in Fig.
27. 'The method consisted essentially in using for the analyzer
a screen of paper which scattered the ray at go degrees and in
observing the effect of rotating the N-ray tube. He found that
the ionization chamber which received the scattered ray pro-
ceeding at right angles to the cathode rays registered the
greater current by 10 or 20 per cent. These results have been
extended by Haga,> Herweg? Bassler,t and Vegard.s It is
found that by filtering out the softecr components of the

FiG. 27.

primary beam the polarization can be increased, though in-
creasing the speed of the cathode rays seems to diminish the
effect.

These experimental results coincide in detail with the pre-
dictions of the pulse theory if we keep in mind the fact that
most of the cathodic electrons have their direction of motion

1C. G. Barkla, Nature, Mar. 17, 1go4; Mar. 9, 1905; Phil. Trans. Roy. Soc. 204,
467 (1905).

2 H. Haga, Ann. der Phys. 23, 439 (1907).

3 J. Herweg, Ann. der Phys. 29, 398 (1909).

4 K. Bassler, Ann. der Phys. 28, 808 (1909).

8 L. Vegard, Proc. Roy. Soc. 83, 379 (1910).
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altered before they produce X-rays, and that the softer X-rays
are presumably produced by electrons near the end of their
range, and which therefore are less likely to be moving in the
initial direction.

The efficiency of the production of X-rays by this process can
be calculated if we can determine the acceleration @ with which
the electron is brought to rest. An approximate method of
doing this is to compare the spectral energy distribution curve
for a pulse with the experimental energy distribution observed
for X-rays excited by cathode rays of definite energy. Let us
suppose, as Stokes’s theory suggests, that the pulse is uni-

I/ >

Wave length—-+
FiG. 28.

Inlensity —

directional, the electric field being of strength E for a time 8¢,
so that the pulse is of thickness / = C3t. It can then be shown,
by expressing the pulse as a Fourier integral (see Appendix II),
that it is equivalent to a continuous spectrum of radiation
whose intensity between wave-length X and N + d\ is

INdN = K-sin’r é\d)\. (2.12)

A graph of this function is shown in Fig. 28. It will be seen
that the intensity is a maximum for A = 2/, 2/, 2/, etc.

If we neglect the smaller peaks and consider only the por-
tion of the curve for wave-lengths greater than /, this curve is
rather similar to those shown in Fig. 20, representing the
spectrum excited by a constant potential. According to the
experimental curves, the wave-length of maximum energy
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density is about 4/3 times the minimum wave-length. We may
thus say approximately that

4 e _
7 2/,
or
2 A
=37 (2.13)

The radiated energy may now be calculated from equation
(2.06) by placing & = /, and noting that a = v/&t = vc/l,
whence

2 ¢2] vz 22y
), . =
4 3 ¢t 2 3¢/
_2¢,3Ve
3¢ 2k
U‘Z
—;wsVé*

by equation (2.13). Since the energy of the electron producing
the w-rays is Ve, the efficiency of their production is
v2e?
€ = '/1—(;,}
Since 3m? = Ve (approx.), or 12 = 2Ve/m, the efficiency may

be written as
=9 ,,_e:_;- (2 1 )
€ ¥y 14

An experimental investigation by Beatty,! has shown that
the efficiency of production of X-rays may be expressed by the
formula,
= 2.5 X 10744p?,

€expt.

where A is the atomic weight of the target of the X-ray tube
and gc is the velocity of the electrons as they strike the target.

1R, T. Beatty, Proc. Roy. Soc. A. 89, 314 (1913).
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Writing  imv? = Imp%2 = Ve, whence @2 = 2Ve¢/me?, this
empirical result becomes,
/Ifl/

me?

€ept. = § X 1071 (2.1%)
A comparison of this result with equation (2-14) shows that
experiments confirm the prediction of the pulse theory that the
efficiency of X-ray production is proportional to the potential
V applied to the X-ray tube. We find, however, that the effi-
ciency depends, through the atomic weight, upon the nature of
the target, a result not anticipated from the formula. Equating
(2.14) and (2.15) we find that if

2 ¢
== X 10*— = 4.6

5 hc
the calculated value of the efficiency is equal to the observed
value. Our calculation 1s thus inadequate because it fails to
take account of the increase in efficiency with the atomic num-
ber of the radiator. It will probably be unprofitable to study
the matter further from the present standpoint, since there is
convincing evidence that the hypothesis of X-ray pulses is in-
correct. It is, however, an interesting fact that the efficiency
calculated on this basis varies in the proper manner with the
potential and that its absolute value is not far from the proper
order of magnitude.

14. Difficulties with the Pulse Hypothesis

In spite of these qualitative successes of the pulse theory of
X-rays, an examination of X-ray spectra shows that any form
of pulse hypothesis is untenable. For if such pulses are reflected
from a crystal grating, the reflection should occur over a wide
range of angles. Thus we have seen in Fig. 28 the spectral
energy distribution which is equivalent to a simple rectangular
pulse. Other forms of pulses result in different distributions,
but it can be shown that every pulse of finite length is equiv-
alent to a continuous distribution of energy over the complete
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spectrum from zero to infinite wave-lengths. This is definitely
at variance with the experimental fact that the continuous
spectrum of X-rays has a sharp short wave-length limit.! In
order to give such a sharp limit to the spectrum, it is necessary
that a large number of waves should follow each other at
regular intervals, so that a small change in the angle of reflec-
tion from the crystal grating will make the last wave of the
train differ in phase sufficiently from the first to produce inter-
ference. [t follows that X-rays are not, as Stokes supposed,
short, irregular, electromagnetic pulses, but must consist of
comparatively long trains of waves.

When we adopt this point of view, however, new difficulties
arise in accounting for properties of the X-rays which were
described satisfactorily by the pulse hypothesis. According to
the electromagnetic theory, a long train of waves can only be
radiated by an oscillator which executes a large number of
accurately timed vibrations. There is no way in which the
cathode electron can do this as it moves at random among the
atoms of the target. We must therefore attribute the radiation
forming the continuous spectrum as well as that in the X-ray
line spectrum to electrons oscillating about atomic centers. Itis
possible to suppose that the directions of such oscillations
should preponderate in the direction of motion of the exciting
cathode electron, as would be necessary to account for the
partial polarization of the X-rays. In order, however, to
account for the shorter cffective wave-length of the X-rays in
the direction of motion of the cathode rays than in the reverse
direction, and for the asymmetry of the intensity as illustrated
in Fig. 25, it is necessary to suppose that the radiating electron
is moving forward with a speed comparable with that of light.
Only a kind of Doppler effect can account for these asym-
metries of wave-length and intensity. But we cannot suppose
that oscillating atoms are moving with the required velocity,
for the energy 7 of a cathode particle, even if all imparted to
a single atom, would give to it only a negligible fraction of the
velocity of light.

1 Cf. D. L. Webster, Phys. Rev. 6, 56 (1915).
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In order to escape from this dilemma, Webster! has sug-
gested that the cathode electron carries with itself a mechanism
which is set into oscillation as it traverses matter. Thus the
cathode electrons would be moving radiators while they are
passing among the atoms of the target. At one time there
appeared to be several lines of confirmatory evidence 2 for the
view that the electron might have a suitable structure for
executing such oscillations. This auxiliary evidence has re-
cently, however, almost completely fallen to the ground,® and
one hesitates to postulate such a complex structure for the
electron for which no other use is found.

As the situation stands, therefore, the sharp limit of the
continuous X-ray spectrum means that the X-rays come in long
trains of waves. The asymmetry of wave-length and intensity
of the X-rays requires us to suppose, however, that the oscil-
lators radiating these waves are moving forward with a velocity
approaching that of light. In the absence of any known oscil-
lator which can move with such a velocity, we can only conclude
that it does not seem possible on the basis of the usual electron
theory and electrodynamics to account adequately for the pro-
duction of X-rays.

We shall see (Chapter XII) that it is possible to arrive at a
solution of this problem on the basis of the idea of radiation
quanta which is somewhat more satisfactory.

15. Characteristic Radiations Producing Line Spectra

From what has been said regarding the significance of the
sharp limits to the wave-length of the continuous portion of
the X-ray spectrum, it will be obvious that the line spectrum of
the characteristic part of the radiation can also be produced
only by long trains of waves. The difficulties connected with
ascribing the continuous spectrum to long wave trains do not

1D, L. Webster, Phys. Rev. 13, 303 (1919).

2D. L. Webster, Bull. Nat. Res. Council No. 7, p. 453 (1920). A. H. Compton,
Phys. Rev. 14, 20 and 247 (1919). A. L. Parson, Smithsonian Miscellaneous Collec-

tions, 65 (1915). )
3 A. H. Compton, Phys. Rev. 21, 483 (1923)-
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apply to the characteristic radiations. For experiment shows
that this part of the radiation is unpolarized, and when correc-
tions are made for absorption in the target, is uniformly dis-
tributed in all directions. The wave-length of the lines is also
the same in all directions, showing that the oscillators producing
the radiation are not moving with appreciable velocity. There
is thus no difficulty with the view that electrons associated with
atoms of the target constitute the radiators emitting the charac-
teristic line radiations.

16. Energy and Intensity of Long IV ave Trains

Let us then imagine that an electron in the target of the
X-ray tube is executing simple harmonic motion in such a
manner that its displacement in some direction 2 is 2 = A cos
(pt' + 8), where A is the amplitude of the oscillation, p = 2w,
v being the frequency and § the phase of the motion when
t' = o. The electron’s acceleration will then be

2
a = %t—z = — Ap?cos (pt' + ).
This motion will produce an electromagnetic
disturbance which will arrive at a point P(r, 6), P
Fig. 29, after a time r/c. The phase of the
wave at this point at a time ¢ is accordingly

. r
that of the wave which left the electron at the 9
instant ¢ =t — r/c. But the acceleration of
the electron at that instant is 0
r
oo lpi=D) ke P

By the equation (2.05), the electric intensity of the wave at
the time ¢ is therefore

esin 6 r
E = _TCZ_APZ cos [P(’ - E) + 5}' (2.16)

At a distance » = ¢¢ the phase of the disturbance expressed
by (2.16) would be constant. This means that the equation
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epresents a wave propagated from the electron with the veloc-
ty c.

The rate at which energy is radiated by the oscillating
electron, by equation (2.07), is

v _2¢e N YN l.
ar =g ot =)+

To obtain the average rate of energy emission, we may inte-
M
grate this expression over a complete oscillation, thus:
t=2x/p

- = aw 2np
W _ = = ﬁf 2 &Pt cos*Ip(t — ") + 610'[
dt or/p ar), 3 & ¢ J

_ p wedpt 1l 2t (2.17)

2w 3 33 217

The energy per unit volume of the wave is as before E*/4r.
When this is averaged over a complete cycle, since the average
value of cos? x between x = o and x = 2r 1s }, we obtain from

(2.%3) the average energy per unit volume of the wave as

2 L)

9 1.9
esin* o, 1,
nrs ¢t
The energy passmg unit area per second 1s ¢ times this quantity,
being

*LPY Gn2o, (2.18)
= LI
81r 2c3 sin

17. Width of Spectrum Lines Due to Damping of Electron’s
Motion by Radiation

Though, as we have seen, the high degree of sharpness of
X-ray spectrum lines indicates that they come in long trains of
waves, the very fact that the radiating electron is losing energy
requires that the length of the wave-train shall be finite. If we
suppose, as has been assumed above, that it is a single electron in
simple harmonic motion which gives rise to the radiation, we can

calculate the rate at which its motion 1s damped by its own
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radiation. The energy (kinetic plus potential) of the oscillation

is 3mv?,., or tm.A’p* According to equation (2.17) the

fraction of the oscillator’s energy which is lost per second is thus
div. _1e Apt

Wdt 36 ymA2pt T 3 me

On solving this differential equation, we find

2 e2p?

W =1V, (2.19)
where
252 DR )
EI")P,=4T--L . (2.20)
3 med 3 mcN
But since //7 = m.[?p, it follows that
A= e (2.21)

Thus £ is the rate at which the amplitude decreases per second.
The rate of decrease per wave-length is £/», » being the number
of waves per secord.

According to cquation (2.20), an oscillator should have its
amplitude reduced to 1/¢ of its initial value in the number of
vibrations given in the second column of table II-1. It will be
seen that this number is inversely proportional to the wave-
length, so that the damping of an clectron radiating X-rays is
much more important than that of an electron radiating light.

TABLE 1l-1
° Damrinc or Waves Due to Rabiarion
Wave-length Effective No. of Waves Effective Length of
Angstroms in Train, Wave-train, cm.,
v/k c/k
o1 (hard y-rays).. ... 27 27X 1077
.§ (x-rays) ........... 1,350 6 75 X 1078
5000 (light) ...... .. . . I 35 X 107 6 75 X 10% o

Unless a wave-train is of infinite length, it must appear in the
spectroscope as a continuous band which shades from a maxi-
mum intensity at the center gradually to zero at either side.
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We may define the effective breadth of the band as its breadth
where the intensity is half that in the center. It has been shown
by a Fourier analysis! that a wave damped according to equa-
tion (2.21) has a breadth of

kX2
AN = —»
e
or by equation (2—20),
3 mc?
= .00012A.

The width due to damping is thus independent of the wave-
length.

Experiments show that X-ray spectrum lines do have a per-
ceptible width, which is, at least in some cases, greater than this
calculation would indicate.? Itis of course possible that other
factors than damping of the electron’s oscillations due to radi-
ation contribute to the width of these lines.

18. Minimum Wave-length of a Spectral Line

It will be seen from Table II-1 that as the wave-length be-
comes shorter the oscillations become more strongly damped.
When the damping becomes so great that k£ > p, oscillations of
the electron can no longer occur. Any displacement is instead
gradually reduced to zero. An approximate calculation indi-
cates that the maximum possible frequency of oscillation of an
electron which is thus damped by its own radiation is given by

3 med
2 e

Pmax. =

which corresponds to the wave-length,

N 4T €2
min. — 2
3 mc

= .00012A.

1G. E. M. Jauncey, Phys. Rev. 19, 64 (1922).
2A. H. Compton, Phys. Rev. 19, 68 (1922).
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This minimum wave-length is not much shorter than the
wave-length .00038A estimated by Millikan! for the most
penetrating cosmic rays. For radiation of the wave-length
.00038A, we have »/k = 1, which means, as in Table II-1, that
there is effectively only 1 wave in the train.

1R. A. Millikan, Proc. Nat. Acad. 12, 48 (1926).



CHAPTER III
THE SCATTERING OF X-RAvs

19. Thomson’s Theory of Scattering by Independent Electrons

One of the most important consequences of the electro-
magnetic theory of X-radiation is the fact that by its help we
can predict the intensity and the general characteristics of
scattered X-rays. We noticed in the first chapter that i1f X-rays
are electromagnetic waves they should set into forced oscillation
the electrons which they traverse, and these electrons in virtue
of their accelerations should themselves radiate energy. If we
suppose that the electrons in the scattering material are not
subject to any appreciable forces of constraint, and if they are
arranged in such a random manner that no definite phase rela-
tions exist between the rays scattered by the different electrons,
we can calculate very simply the intensity of the scattered
beam.!

If a wave whose electric intensity is £ traverses an electron
of charge ¢ and mass m, the acceleration of the electron is Ee/m.
According to equation (2.05) this electron will radiate a wave
whose electric intensity at a distance r1s

esin 8 Ee Ee?sin 6

E=_¢smoLe_  nesing

[] re:2 m rmc?

where 6 is the angle between the electron’s acceleration and the
ray which we are considering. Since the intensities of both the
primary and the secondary rays are proportional to the square
of their electric vectors, the ratio of their intensities is

I, Ez2 etsin?0

I E? rimict

(3.01)

1 This calculation follows in principle, though not in detail, that performed by J. J.
Thomson, “ Conduction of Electricity through Gases,” 2d Ed., p. 325.

58
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If the primary ray is unpolarized, the acceleration of the
scattering electron will be in a random direction in a plane per-
pendicular to the primary beam, O.X, Iig. 30. Let us take two
rectangular axes in this plane, OY and OZ, such that one of
them OY is in the plane POX in which lies the scattered ray
which we are studying. The electric vector of the primary ray
may be resolved into two components, £, and K. such that
E? 4+ E? = E* Since the direction of £ in the YOZ plane is

Y P
Oy
Ey
E U
¢
) >X
E
Z
F16. 30.

random, £, is on the average equal to E, whence on the
average,

Epr = E?2 = }E2
Thus

I, = I, = i1,

where 7, and I, represent the intensities of the Y and Z com-
ponents of the primary beam. The intensity of the scattered
beam at P due to the Y component of the incident ray is, by
equation (3.01),

etsin? @
Iay = Iu T 22 '41)
r2m3c
or
54
1,, = 31 - cos? ¢, (3.02)

r2m2‘-4
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where ¢ is the angle between the primary and the scattered
rays. Similarly, that due to the Z component is

A .
e¢sIn? g,
Lo =1y oy
rém?ct
1] s
r2m2c?

(3.03)

since 8, = =/2. Thus if the primary beam is unpolarized, the
intensity of the beam scattered by a single electron is

I =1Iy+ 1,
et 9
—— —(1 + cos? ¢). .0
Joramtyri Gy $) (3.04)
If a number # of electrons are independently effective in scat-
tering, the intensity of the scattered beam is then

Inet
2r2m2c

I, = 4(1 + cos? ¢). (3.0%)

The calculation of the total energy in the scattered beam is
effected most directly by integrating equation (3.05) over the
surface of a sphere of radius 7, thus:

W, =f I, 2nrsin ¢-rde

4 T
= WI,”if (1 4 cos? ¢) sin ¢d¢

m3cs J,
_ 87 met

3 mct

If n represents the number of electrons in a cubic centimeter,
since 7 is the energy in the primary beam per square centi-
meter per second, the fraction of the primary energy which is

scattered per cm. path is i
s 8mnet
CTT T gmid (3.06)

This quantity ¢ is called the scattering coefficient. .
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It is worth noting that these results have been obtained
without assuming any particular form of electromagnetic pulse.
They are thus independent of the wave-length and of the degree
of homogeneity of the NX-rays. The only unknown quantity
which enters into these equations is the number of electrons #
which is eftective in the scattering. An experimental measure-
ment of the scattering coefficient o will thus enable us to deter-
mine this number.

20. Determination of the Number of Electrons per Atom

In the case of carbon, Hewlett has measured the intensity
of the scattered X-rays over angles extending almost from
¢ =0 to ¢ = 180, so that he was able to perform experi-
mentally the integration required to obtain ¢. He thus finds!
for the mass scattering coefficient ¢/ p, the value 0.20. That is,
about 20 per cent of the primary X-rays (of effective wave-
length 0.71A in Hewlett’s experiments) are scattered as the
X-rays traverse a layer of carbon 1 cm.? cross section and of
mass 1 gram. According to equation (3.06) the number of
effective electrons per gram of carbon is

n o 3mict

p p 8met

Taking ¢/p = 0.20, and using the usual values of ¢, m and ¢

(cf. Appendix III), this gives

n ;
= 3.0 X 10% electrons per gram.

But the number of carbon atoms per gram is

N
A4
where N is the number of molecules per gram molecule and A is
the atomic weight of carbon. Thus the number of electrons per
atom which scatter X-rays is 3.0 X 10%/5.05 X 10?2 = 6.0,
which is the atomic number of carbon.
1C, W. Hewlett, Phys. Rev. 19, 266 (1922); 20, 688 (Dec. 1922).

23
= 6.06 X % = 5.0§ X 10?2 atoms per gram,
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On comparing this result with the conclusions drawn from
Boht’s theory (p.1.37), we see that this means that all of the
electrons exterior to the nucleus of the atom are effective in
scattering X-rays. The reasonableness of this result lends
strong support to the present theory of X-ray scattering.
Historically, an experiment of this type performed by Barkla
afforded our first accurate estimate of the number of mobile
electrons in the atom.!

In making this determination of the number of electrons
effective in scattering X-rays, it is fortunate that Hewlett and
Barkla used X-rays of moderately great wave-length. For,
although according to the theory just given the scattering co-
efficient should be independent of the wave-length, experiment
shows a considerable variation with wave-length of the fraction
of the X-rays that is scattered.

21. Hard X-rays Scattered Less than Predicted

A typical experiment showing this variation is that per-
formed by Hewlett on the absorption of X-rays in carbon.
Since the quantity o represents energy transferred from the
primary to the scattered beam, it corresponds to a kind of
absorption coefficient. There is, of course; energy removed
from the primary beam by other processes, such as the produc-
tion of photo-electrons. We may thus write for the total
absorption coefficient,

M= r+a, (3.0’7)

where p has the same significance as in equation (1.01), ¢ repre-
sents the energy dissipated in scattering, angd 7 the energy lost
by other methods.

In the case of short wave-length X-rays traversing elements
of low atomic number, it is found that the quantity r becomes
small, so that an approximate estimate of the scattering co-
efficient o can be made from such absorption measurements.
Hewlett? "has measured the mass absorption coefficients of

1 C. B. Barkla, Phil. Mag. a1, 648 (Egu). N
2 C. W. Hewlett, Phys. Rev. 17, 284 (1921).
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carbon over a wide range of wave-lengths. His values for wave-
lengths less than 0.5A are shown in Fig. 31, which also includes
the absorption coeflicient of hard y-rays (A = .024) in carbon.
It will be seen that in the neighborhood of 0.2 the total
absorption curve is nearly flat,-and has nearly the value .202
calculated from equation (3.06). The fact that the total ab-
sorption for greater wave-lengths exceeds this value may be
explained as due to the increasing value of the absorption 7;
but the fact that for short wave-lengths the total absorption
falls below the theoretical value of o/p alone has no such ex-
planation.? These experiments show that, as the wave-length

i
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of the X-rays becomes shorter and shorter, the intensity of the
scattered X-rays falls farther and farther below the value pre-
dicted by the present theory.

We shall see later (Chapter 1X) that this difficulty can be
removed by introducing a form of quantum theory. The intro-
duction of this change will modify considerably our present
conclusions regarding the intensity of X-rays of short wave-
length, but will alter only slightly these equations when applied
to wave-lengths greater than o.5A.

2 This inconsistency with the classical theory of scattering was first demonstrated
by Barkla and Miss White (Phil. Mag. 34, 270, 1917).
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22. Interference Effects with Heavy Scattering Elements

When X-rays of relatively great wave-length are used, the
experiments show a departure from the theory in the opposite
direction. Thus in Fig. 32 are shown data, obtained by Barkla
and his collaborators,! for the intensity of the rays scattered by
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aluminum and copper at go° with .the primary beam, when
traversed by rays of different wave-length. Whereas, over the
range of wave-lengths considered, the scattering by aluminum
is very nearly constant, the scattering by copper increases,
rapidly for wave-lengths greater than about 0.4A.

The interpretation of this effect is probably that when the
wave-length is long compared with the distances between the

1C. G. Barkla and J. C. Dunlop, Phil. Mag. 31, 229 (1916). C. G. Barkla and R.
Sale, Phil. Mag. 45, 743 (1923).
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electrons in the atoms, the phases of the rays scattered from the
different electrons are nearly the same, resulting in an increased
total intensity. Indeed, if the distances between the electrons
were negligible compared with the wave-length of the X-rays,
all the electrons in the atom would act as a unit. If Z is the
number of electrons in the atom, the intensity of the ray
scattered by a single atom would then be (equation 3.04).

Y/
1 = 12—77((7—62;), ~ (1 + cos? ¢)
1Z2¢4
= ;r;;n‘cg( + cos? ¢) = (3.08)

whereas if the electrons scatter independently the intensity

should be (equation 3.0%)
1Z¢

2r2m2 4

(1 + cos? ¢) = I,Z.

According to the degree of concentration of the electrons
nea: the center of the atom, the intensity of the scattered X-
rays may thus vary by a factor of Z. The fact that for the light
elements the scattering per atom is proportional to the first
power of the atomic number, rather than to its square, thus
indicates that in these atoms the electrons are spaced at dis-
tances which are considerable when measured in terms of X-ray
wave-lengths. The fact that for the heavier elements the in-
tensity of the scattering increases more rapidly than the atomic
number indicates that in these atoms some of the electrons are
close together when measured on this scale.!

23. Approximate Validity of (1 + cos* ¢) Rule for Soft X-rays

An experimental test of equation (3.05), describing the rela-
tive intensity at different angles, leads to equally interesting
results. Inorder to satisfy the conditions of the theory as well

1 According to some recent absorption measurements, the atomic scattering coeffi-

cient for heavy elements is more nearly proportional to Z2 than to Z (Cf. e.g.,S. J. M.
Allen, Phys. Rev. 24, 1, 1924).
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as possible, we shall consider first the scattering by a liquid, in
which the arrangement of the molecules is nearly random, and
of low atomic number, in order that the constraining forces on
the electrons shall be small. Such a substance is mesitylenc
(CsHs(CHa)3), whose scattering has been investigated by Hew-
lett,! using an approximately homogeneous beam of wave-
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length o.714. His experimental values of the intensity at
various angles are shown in Fig. 33 as a broken line. The solid
line shows the calculated value of the intensity, according tc
equation (3.05). We shall find that the variations from the
theoretical curve between the angles 0® and 30° are explicable
as due chiefly to the fact that at these small angles interference
occurs between the rays scattered by neighboring atoms. The
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agreement between the experiments and the theory for angles
greater than 30° is however very satisfactory.

24. Departures from Theary for Hard X-ravs

If the scattering of rays of shorter wave-length is considered,
however, the theory departs widely from the experiments,
Thus Fig. 34 exhibits the intensity of the scattered radiation
from iron at different angles with a primary beam of hard y-rays
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from radium C (A = .02A). Here again the broken line repre-
sents the intensity as calculated according to equation (3.05),
while the experimental points were determined by the author.!
Both the theoretical curve and the experimental values are
expressed in terms of the theoretical intensity at zero scattering
angle,

I, =12

T o 4
re2m2ct

1 A. H. Compton, Phil. Mag. 41, 758 (1921) and Phys. Rev. May, 483 (1923).
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calculated on the assumption that the number of electrons per
iron atom, effective in scattering, is equal to the atomic number,
26. These experiments are quite irreconcilable with the theory,
though there appears a tendency for the scattering to approach
the calculated value at small angles. This discrepancy also
seems removable through the introduction of the idea of radia-
tion quanta (Chapter 1X).

25. DPolarization of Scattered X-rays

A more satisfactory agreement between experiment and the
present theory of X-ray scattering is found in connection with
the polarization of the scattered X-rays. We notice that equa-
tion (3.02) represents the energy in the component of the
scattered ray whose electric vector lies in the plane POX (Fig.
30) including both the primary and the scattered ray. Accord-
ing to equation (3.02), the intensity of this component is zero
at right angles with the printary beam (¢ = =/2), whereas the
oppositely polarized component, equation (3.03), keeps its
normal intensity. Thus in this direction the scattered beam
should be completely plane polarized.

Such polarization can be detected by scattering again the
polarized beam, and comparing the intensity of the scattered
beam in two different directions, as already described on page
II-10. Barkla, in his classic measurement of the polarization
of X-rays,! found that at go degrees the secondary rays from
carbon were approximately 7o per cent polarlzed This result
has been confirmed by several experimenters.?

There are, however, two sources of error in these experi-
ments which have the effect of making the polarization appear
incomplete. One of these, whose presence was recognized by
Barkla, is the fact that in order to secure sufficient intensity in
the beam after being twice scattered, the solid angle subtended
by the scattering blocks at the source of X-rays must be very
appreciable. The result is that most of the scattering does riot
occur at exactly go degrees, so that neither the polarization nor

1 C. G. Barkla, Proc. Roy. Soc. 77, 247 (1906).
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the analysis of the beam can be complete. The magnitude of
this ““ geometrical error > as calculated in a typical caseis of the
order of § per cent. The second source of error is the multiple
scattering at angles other than go degrees which occurs in both
the polarizing and the analyzing radiators. Recent experiments
by Hagenow and the author ! have shown that when this mul-
tiple scattering is eliminated by using very thin radiators, and
when the geometrical error allowed for, the polarization of the
scattered X-rays is complete within an experimental error of
1 or 2 per cent. The X-rays employed were the complete radia-
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tion from a tungsten tube excited at about 130,000 volts, and
the test was made on scattering blocks of paper, carbon, alu-
minum and sulphur. These polarization experiments are there-
fore in complete accord with the electromagnetic theory of the
X-ray scattering.

26. Wave-length of Scattered X-rays

If the incident beam of X-rays consists of a train of waves
of definite frequency, as for example an X-ray spectrum line,
the electrons traversed will be set into forced oscillation with
the same frequency. Thus, in the special case of a free
electron traversed by a wave whose electric field at O is given
by

E = E,cos (pt + 5),
1 A, H. Compton and C. F. Hagenow, J. 0. S. A. and R. S. 1. 8, p. 487 (1924).
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the acceleration of the electron is

_ Fe

m

E“ Ve
=, cos (pt + o).

The ray scattered by this electron to a point P(r, 6) (kig. 30)
will have an electric field given by the equation

_esind Ee ooy T
E, = ety SO lp<t c) + 6} (3.09)

= E, cos (pt + §).

The frequency of this scattered ray is thus the same, » = p,
as that of the primary ray. It can be shown that the effect of
constraints and damping on the motion of the scattering elec-
tron is to modify the amplitude and phase of the scattered ray,
but not its frequency. The present theory accordingly demands
that the two frequencies be identical.

The remark was made in the first chapter that refined
measurements show that the wave-length of the scattered X-
rays is not identical with that of the primary ray. The result
of a typical experiment is shown in Fig. 36.!

The upper curve represents the spectrum of the Ka line of
molybdenum taken direct from the target. The lower curve
represents, on a much larger scale, the spectrum of the same
line after being scattered by graphite at ¢ = 135°. A part of
the scattered beam has the same wave-length as the primary,
but the greater part is of a slightly greater wave-length.

The suggestion at first occurs that the ““ modified ” ray
represents a type of fluorescent radiation, and that only the
““unmodified ” ray is truly scattered. There are, however,
strong arguments against this view. In the first place, the
wave-length of the modified ray is determined by that of the
primary ray and not by the nature of the radiator, contrary to
the case of other fluorescent radiation. In the second place, we
have seen that the secondary radiation at go°, which includes
the modified ray, is completely polarized; but no form of

l‘\
2w,

1 A. H. Compton, Phys. Rev. 21, 409 (1923).
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fluorescent radiation has ever been shown to be polarized.! And
finally, so large a part of the secondary energy is in the modified
ray that if the intensity of the scattered beam is to be at all
comparable in magnitude with that calculated from the electro-
magnetic theory the modified as well as the unmodified ray
must be considered as scattered X-rays.

Molybdenum Ke

Line, Primary

Scaltere from
Carlron at /135°

6°30’ 7° 7°30
Glancing Angle from Calcite —

Fia. 36.

We have seen that the electromagnetic theory is inconsistent
with the existence of such scattered rays of changed wave-
length. We shall, however, find their existence consistent with
a quantum theory which supposes that each individual electron,

! An apparent exception to this statement occurs in the recent experiments of Wood
and Ellct (Phys. Rev. 24, 243, 1924) in which the resonance radiation excited in mer-
cury vapor by polarized radiation from a mercury arc is found to be partially polarized.
It is doubtful, however, whether such radiation can properly be classed as fluorescent,
since both the primary and secondary rays are ot the same wave-length.
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if it scatters at all, scatters a whole quantum of X-radiation. If
this view is correct, no interference can have occurred in scatter-
ing the modified ray, since each quantum of this ray has been
scattered by a single electron. But it is consistent with this
view to suppose that the unmodified ray is due to quanta that
are scattered simultaneously by a group of electrons. In sup-
port of this suggestlon, it is found that the rays reflected by crys-
tals, which since interference is present must be rays scattered
by many electrons, have their wave-length unmodified. It ap-
pears, therefore, that the classical electromagnetic theory can
be applied to the problem of X-ray scattering only with great
caution. When interference is found to occur, it appears at the
present writing that the classical theory is applicable; but we
do not yet know how to predict under what circumstances
interference will occur.

27. Theoretical Formulas of Debye and Others

From these considerations we see that it is very important
to investigate the interference of the X-rays scattered by groups
of electrons. We wish to see in how far the classical theory of
interference can account for the experiments on the scattering
of X-rays. The simplest problem of this type, which is at the
same time representative of the more general problem, is that
of the scattering by 2 electrons at a distance s apart. A solu-
tion of this problem is given in Appendix IV. If the incident
rays are unpolarized, the average intensity of the ray scattered
at an angle ¢ with the primary beam, is found to be

]¢=2[,< +s_1p_ic) v (3.10)
where, as in equation (3 .04),
Iet
Ic = 2r2m2£4 ( + cos2 ¢))
and
e=46n 2 (3.11)
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According to this result, if x is small, that is, for great wave-
lengths, small distances between the electrons, or small angles
of scattering, the intensity of the scattered ray approaches a
value 4 times that for a single electron. If, however, x is large,
sin x/x becomes small, and the intensity approaches 2 times
that due to a single electron—in other words, the electrons
scatter independently of each other. The manner in which
1,/1. varies with the valuejofx is:shown in Fig. 37. It:will be
seen that the value of 1,/ approaches its final value of 2 by a
series of oscillations in intensity.
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If in the hydrogen and helium molecules there exist 2 elec-
trons whose distance apart remains constant,! this diagram
should represent the intensity of the scattering by these sub-
stances for different values of x. If the position of the minimum
near x = 3r/2 and the maximum near x = §r/2 could be
observed, we should be able to calculate the distance between
the electrons in the molecule. Thus, using the copper K, ray,
N = L.54A, if the electrons in the hydrogen molecule are 1.1 X
10-8 cm. apart, as predicted by an old form of Bohr’s theory,
the minimum at ¥ = §r should occur at a scattering angle of

1 According to present theories of atomic structure, the distance between the elec-
trons in helium and hydrogen does no# remain constant.
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¢ = 30° and the maximum at ¥ = §r should be at ¢ = 51°.
Experiments to test this prediction regarding the scattering by
hydrogen and helium have not been performed.

The suggestion that the electrons in the heavy elements co-
operate in their scattering seems to have been made first by
Webster,! and was first stated in a satisfactory form by Dar-
win,? Debye3 and Thomson ¢ have solved independently the
problem of the scattering of X-rays by atoms (or groups of
atoms) consisting of electrons arranged at fixed distances from
each other, taking into account the phases of the rays scattered
by the different electrons. Their result may be put in the form,

4ms ¢
7 7z sm( m o)

[ - Ict-lm—"m P ¢
1 1 e .
L AT I n @
A

(3-12)

Here, as before, /. is the intensity of the ray scattered at an
angle ¢ by a single clectron, Z 1s the number of electrons in
the group, and s is the distance from the mth to the nth
electron. It will be noticed that when Z = 2, this expression
becomes identical with equation (3.10).

The more general problem of scattering by atoms composed
of electrons in relative motion was investigated by Schott® with
unsatisfactory results.® Glocker and Kaupp,” however, have
calculated the scattering by atoms composed of two or three
coplanar circular rings of electrons revolving at different speeds.
Glocker 8 has also calculated the scattering from Lande’s pul-
sating tetrahedronal carbon atom, and finds a result practically
the same as that for Bohr’s plane carbon atom. This is in

1D, I.. Webster, Phil. 25, 234 (1913).

2 C. G. Darwin, Phil. Mag. 27, 325 (1914).

3 P. Debye, Ann. d. Phys. 46, 809 (1915).

4 J. J. Thomson, manuscript read before the Royal Institution in 1916, and loaned
to the writer.

8 G. A. Schott, Proc. Roy. Soc., 96, 695 (1920).

¢ Cf. A. H. Compton, Washington University Studies, 8, 98 (1921).

" R. Glocker and M. Kaupp, Ann. d. Phys., 64, 541 (1921).
8 R. Glocker, Zeitschr. f. Phys., 5, 54 (May 10, 1921).
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agreement with the conclusion that the author had reached,!
that the scattering by groups of clectrons in the atom depends
chiefly upon the distance of the clectrons from the center of the
group and only slightly upon their spatial distribution. I
accordingly calculated the intensity of the scattering on the
assumption that the electrons are arranged in pairs at opposite
sides of spherical shells of radii p, the axes of the pairs of elec-
trons having random orientation. On this basis the intensity
of the beam scattered by an atom 1is,?

11z sin 2k, sinthy o ARsin ke
L=t T(aka e )T p O

where 7 1s again the number of electrons per atom, and

k, = 4TPS Gin fi)
A

This formula is simpler in its application than are those of
Debye and Glocker, and it leads to equally reliable informa-
tion concerning the distances of the electrons from the centers
of the atoms. If sufficiently refined measurements of the scat-
tering can be made, however, it may be possible to distinguish
between the spatial arrangements considered in the different
formulas. If the present conception of an atom in which elec-
trons move in approximately clliptical orbits is correct, none
of these expressions is exactly applicable, and only approxi-
mate agreement with experiment may be expected.

28. Experiments Showing Interference Effects

Variations in the intensity of the type predicted by these
expressions and illustrated in Iig. 37 have been observed by
several experimenters. Iriedrich, in connection with his early
Laue photographs, noticed that when certain liquids are
traversed by X-rays, the diffraction photographs show rings
surrounding the central spot,® and similar effects have been

! A. H. Compton, Washington University Studies, 8, 99 (January, 1921).

2 A. H. Compton, Washington University Studies, 8, 99 (January, 1921).
3 W. Friedrich, Phys. Zeits., 14, 317 (1913).
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observed by Debye and Scherrer! and others. The phenomenon
is illustrated nicely by Hewlett’s curve of the scattering by
mesitylene, shown in Fig. 32 and in Keesom and Smedt’s photo-
graph (Fig. 38) of the scattering of the Ka ray of copper by
water.?

In these figures it will be noticed that just next to the
primary beam, where the scattering angle ¢ is small, the in-
tensity of the scattered ray is very low. According to expres-
sions (3.10), (3.12) and (3.13), however, as ¢ approaches zero
the intensity approaches a maximum. When this departure
from the theory was noticed,® it was at once obvious* that in

Fic. 38.

liquids such a departure was to be expected because of the
destructive interference at small angles between the rays
scattered from neighboring molecules. For in a liquid the
molecules are not really arranged at random, but possess a
certain regularity because they never approach closer than a
certain limiting distance from their neighbors. This results
at small angles in an interference similar to that obtained
with crystals at angles less than that given by A = 2D sin 6.
The question of the diffraction of X-rays by liquids has been

1 P. Debye and P. Scherrer, Nachr. Gottingen, 1916; E. Huckel, Phys. Zeits. 22,
561 (1921); R. W. G. Wykoff, Am. Jour. Sci. s, 455 (1923).

* W. H. Keeson and J. deSmedt, Jour. de Phys. 4, 1944 (1923).

3 C. W. Hewlett, Phys. Rev., 19, (1922).

¢ A. H. Compton, Bull. National Res. Council, No. 20, p. 14 (1922).
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examined in outline by Ehrenfest! and more thoroughly by
Raman and Ramanathan.? The rather complicated analysis by
the latter authors amounts approximately to identifying the
first maximum of the diffraction band with the peak B of
Fig. 37, the first peak A being eliminated by interference.

If this maximum occurs at an angle ¢, it follows that the
mean distance between adjacent molecules of the liquid is given,
according to equation (3-10), by

s = 7.72/4% sin %‘—" (3-14)

Using this expression, Keesom and Smedt have calculated from

their photographs the following intermolecular distances for
different liquids:

TABLE Ill-o
Substance ) $ 1.33(M /p)%$
Oxygen. . ... Co e 20 4 0A 4.0A
Argon.... .. . . ... ... 27 40 41
Benzene... ..... e 18 6 og 5.9
Water........ . Ceeee 29 375 36
Ethanol. .. e 22 49 5.2
Ethylether. . . . 19 57 6.2
Formicacid. ..... ....... .. 24 45 4.5

These values of 24 agree so well with the distance in the last
column calculated from the closest packing of spheres that one
feels little doubt but that the observed diffraction bands are
really due to molecules.

29. Empirical Electron Distributions

In other cases, however, in order to account for the observed
intensity of the scattered X-rays, it seems necessary to consider
1 P. Ehrenfest, Versl. Kon. Akad. Wet. Amsterdam, 17, 1184 (1915).

2 C. V. Raman and K. R. Ramanathan, Proc. Indian Ass. Cultivation Sci. 8, p. 127
(1923).
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the distribution of the electrons within the atoms rather than
the molecules. Thus the writer has found! arrangements of
electrons which will give the amount of excess scattering ob-
served by Barkla and Ayers? when X-rays traverse carbon, by
Owen? for filter paper, and by Barkla and Dunlop* for alu-
minum, copper, silver, tin and lead. As an example of this
work, we may consider the data of Barkla and Dunlop.

Their experimental points, shown in Iig. 39," represent the
2
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relative scattering of X-rays at 9o° per gram of various
metals as compared with that by aluminium. Supplementary
experiments indicated that the scattering by aluminium did not
change much with the wave-length, so that in the calculation it
was supposed that for this element the electrons scatter inde-
1 A. H. Compton, Washington U. Studics, 8, 109 (1921)
2 C. G. Barkla and T. Ayers, Phil. Mag. 21, 275 (1911).

3 E. A. Owen, Proc. Camb. Phil. Soc. 16, 165 (1911).
¢ C. G. Barkla and J. G. Dunlop, Phil. Mag. 31, 229 (1916).
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pendently of each other. The curves are calculated from equa-
tion (3.13), on the basis of certain arbitrary arrangements of
the electrons, and assuming, to take account of the heteroge-
neity of the N-rays employed, that the frequencies are dis-
tributed over a band an octave broad.

The numbers of electrons at different distances from their
atomic centers, as employed in these calculations, are as
follow:

Disirisviton or Frecirons 1n Aroms, Cancvraren rrom Excess ScarreriNg
(Distances in umts of 10 ¥ cm.)

H: Irogen Oxygen | Carbon |Aluminium | Copper | Silver and Tin Lead
No. No. Dist.] No.| Dist.| No.| Dist. | No.| Dist.| No. | Dist. | No.| Dist.
1 2 26| 2 3512 12 2 o052 2 036 | 2 022
42 4 6 8 26 | 10| 104 10 .073 | 10 | 04§
3 8 24 8 17 | 16| .ogo
8| 42 16 .34 | 16] 132
1 {1 0§ 8 51 |16 | 202

Al el o

6.6

While the exact distributions thus assigned are of little signifi-
cance, because of the comparatively low precision of the scatter-
ing measurements on which they are based, yet as to order of
magnitude the results can hardly be wrong. In any case, these
calculations represent one of the most direct experimental deter-
minations of these distances which have so far been made.

30. Scattering by Any Grouping of Electrons

It is possible to solve formally the problem of the scattering
by electrons arranged in any grouping whatever.! Although
this solution will not be in a form which we can use to predict
the intensity of the radiation scattered by the group, we shall
nevertheless be able to arrive at some interesting deductions
from the solution. We start with Debye’s expression (3.12)

1 Cf. A. H. Compton, Phil. Mag. 41, 770, 1921.
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for the scattering by a group of Z electrons. This expression is
not perfectly general, since it supposes that the distances sma
between the different electrons remain fixed. In an atom con-
sisting of electrons revolving in different orbits about the
nucleus, this condition obviously is not satisfied. In order to
take account of these motions, we may suppose that the proba-
bility that the distance smn Will lie between sma and smn 4 dSma
is pmn ds. The average value of the intensity for all possible
distances smn is then,

[sm ¢/ 2

P wSin \
Ry
1 Sin ¢/ 2

s 41!'5,,,"

A

47"\; m n—l

I, = = Pon dSpne (3.15)

- [‘/N

This expression is perfectly general, as long as the forces of
constraint upon the electrons are negligible.
The interesting point regardmg this expression is that ¢

¢/~ W

and Menter only in the form > ——)\—

1,)I. = F <sin i’/x.) (3.16)

31. A Method of Comparing I} ave-lengths

¢ may accordingly write

Two applications of this result may be made. In the first
place it will be seen that it affords us a means of comparing
different wave-lengths. For if the value (/,/1.): is determined
for some particular angle and wave-length ¢; and \;, and if for
some unknown wave-length X the angle of scattering ¢ is deter-
mined for which (Z,/1.) = (I,1.)1, then according to equation

(3-16),
F<sin g/)\>= F<sin %/h),

sin 9/)\ sin ¢ A1,
2 2

LIf F(x) is a multiple valued function, it is of course possible that F(x) might equal
F(x') when x is not equal to +’. In the physical problem, however, uncertainties from
this source can be avoided.

whence 1
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or
x=sm ¢/2x (3.17)
sin ¢1/?
Thus by measuring angles ¢ and ¢; and the wave-length \,, the
unknown wave-length may be determined.

This result has been applied in the determination of the
effective wave-length of the hard y-rays from radium C.!
measurement of the scattering of these rays by lead and copper
showed that at ¢ = 10 degrees the ratio of the intensity from
lead to that from copper was about 11 per cent greater than it

was at largc angles. Barkla and Dunlop, in the experiments
shown in Fig. 39, measured the ratio of these intensities for
certain known wave-lengths scattered at go degrees. At o0.3A
their value of the ratio Ji.,a/Zcoppe: per electron is about 1.75, and
it is clear that we should have to go to a yet shorter wave-
length to obtain the rate 1.11 observed in the y-ray experiments.
We can thus say, from equation (3-26), that

sin (} 10 )
sin (3 go°)
< .037A.

Merays < .34

From an extrapolation of Barkla and Dunlop’s data, the effect-
ive wave-length of the hard y-rays from radium C was esti-
mated by this method as about .025A.2

At the time that this result was published, the only other
method of measuring the wave-length of these y-rays, that of
crystal reflection,? had given a value of A\ = 0.07A for the short-
est wave-lengths emitted by radium C; but absorption meas-
urements showed that these rays could not be identical with the
penetrating v-rays used in the scattering experiments. By a

1 A. H. Compton, Phil. Mag. 41, 770 (1921).

2 In the author’s original paper (loc. cit.) the value from 0.025 to 0.030 was given as
the effective wave-length from these experiments. More mature consideration of the
experiments led the writer to choose the lower limit thus assigned, 0.02¢ A, as the more
probable value of the effective wave-length (Bulletin National Research Council No.

20. p. 31, (1922).
3 E. Rutherford and E. N. C. Andrade, Phil. Mag. 28, 263 (1914).
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variety of different methods, the effective wave-length of these
rays is now estimated as about .o17A (Appendix II). This
method of estimating the wave-length from the amount of
excess scattering 1s thus seen to lead to results as accurate as
could be expected from the data used.

32. A Failure of the IVave Theory of Interference

The second application of the result expressed by equation
(3.16) is a test of the electromagnetic wave theory of inter-
ference. Let us choose two wave-lengths X and N and two
angles ¢ and ¢’ such that

’
sin ?/x = sin ?—/)\'.
2 2

‘Then by equation (3.25),

1,1, =1,/1/. (3.18)
10 S

o Sk o

L 1 1 1
0 2 4+ é g 10 2 /0.,4771 —

A/singp
Fi6. 4o.

L)

A test of this expression,! for the wave-lengths 0.46A and
o.12A scattered at different angles by paraffin, is shown in Fig.
40. In this figure, the ratio 7,/I. is plotted against N/sin }¢,

1 A. H. Compton, Bull. Nat. Res. Council, No. 20, p. 10 (1922).
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and should by (3.18) be the same for all wave-lengths, that
1s, the lines I and I7 should be coincident. For I, only that
part of the secondary X-rays which is of the same wave-length
as the primary is used, since this is the only part which, accord-
ing to the classical theory, can be truly scattered. The wide
difference between curves I and /1 shows the failure of equation
(3.18). Unless we postulate the existence of strong damping
or constraining forces effective at high frequencies which are
negligible for ordinary NX-rays, such a result is inconsistent with
the classical electron theory.!

Of course this failure of equation (3.18) throws doubt on
the validity of equation (3.17) and its use for determining
wave-lengths. In view of the fact, however, that equation

. . . ¢ . .
(3.17) is applied to cases where sin 2/)\ 1s comparatively

small, it is possible that this dificulty may not be as serious as
would at first sight appear.

33. Attempts to Account for the Small Scattering of IHard X-rays

Several attempts, on the basis of the classical electrody-
namics, have been made to account for the fact that for X-rays
of very short wave-length the intensity of the scattered X-rays
is considerably less than is predicted by equations (3.05) and
(3.06). We see from Ifig. 37 that though at certain angles the
intensity of the ray scattered by a pair of electrons may be less
than the sum of the rays scattered by two independent elec-
trons, on the average the effect of interference is to increase the
intensity of the scattered rays. Similarly the more general
equation (3.13) leads to a scattering coefficient greater than
that given by equation (3.06), and hence greater than the
experimental values for hard X-rays. It is therefore impos-
sible to account for this reduced scattering from considerations
of interference.

!This is perhaps the most definite departure from the laws of diffraction which has
so far appeared.
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34. Constraining and Damping of Electrons’ Motions

Perhaps the most valiant attempt to reconcile these experi-
ments with the classical electron theory has been made by
Schott.! He has investigated the effect on the scattering of
X-rays of various types of constraining and damping forces on
the electrons. If one supposes that the constraining force is
proportional to the displacement, and that the damping force
is progportional to the velocity, the equation of motion of the
forced oscillation of the electron due to the primary wave is:

+ rmé— + ¢?mx = Ae cos pt, (3.19)

where A cos pt = E, is the electric field due to the incident
wave. The solution of this equation after the system has
reached a steady state of oscillation, is

x = — A cos (pt + 9), (3.20)

/e
6= tan—l{;/(l —-;;)}

The acceleration of the electron is thus

where

A

and

2x

‘i— = p2d, cos (pt + 5)

Ae cos (pt + ) /{( 92>2 7.2115
= I —2:) 4+l
" / o p
But if the electron were free its acceleration would have been

A
a, = ;e cos (pt. + 6).

1G. A. Schott, Proc. Roy. Soc. A. 96, 395 (1920).
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In view of the fact that the electric vector of the scattered wave
is proportional to the acceleration of the scattering electron,
and since the intensity of the ray is proportional to the square
of the amplitude of the electric vector, we can say at once that
the ratio of the intensity of the ray scattered by the electron
under consideration to that scattered by a free electron is

%=%@. /%_mf+ﬁh (3.21)

8/max” P‘ZJ

An examination of this equation shows that if the frequency
of the X-ray is greater than the natural frequency of the elec-
tron (p > ¢) the intensity of the scattered ray will always be
greater for a bound electron than for a free electron. The in-
tensity of the scattered ray becomes smaller than that for a free
electron only if 2 p* < ¢?, that is for frequencies considerably
smaller than the natural frequency of the electron. Thus the
cffect on the scattered NX-rays of constraining forces on the
scattering electrons should be greatest at comparatively low fre-
quencies, and should become negligible at very high frequencies.
Experiment, on the other hand, shows that at moderate fre-
quencies the scattering by light elements is about that antici-
pated from free electrons, while the great departure is at the
highest frequencies. Constraining forces on the electrons are
thus inadequate to account for the reduced scattering at high
frequencies.

An increase in the damping constant » would, as is evident
from equation (3.21), reduce the intensity of the scattered ray.
But in order that this effect should not approach zero at high
frequencies » must increase rapidly as p increases.

Let us suppose that this damping is due to the energy
radiated by the scattering electron. We have noticed that the
mean rate of energy loss from an oscillating electron due to its
own radiation is (equation 2.17)

v 1e
@ = el
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where A4, is the amplitude of the electron’s displacement. But
from equations (3.19) the rate of energy loss at any instant
due to damping is
(!;_V_, = r”l(_l._x:.ix_ =rm (_{_x ?
e Tdrdt <dt)’

which, according to (3.20) is

aw, = 2 4,2 sin2
—{F =rm-p 4)2 sin (Pt + 5).
When averaged over a complete cycle, this becomes
v, _ 1,
i —Ermp‘ll. (3.22)

If then we suppose that the damping is due to the radiation,
we have at once that

Yy . Te
rmptili? = - - APpy,
3¢
or
2 ¢2p?
ro=- '”53 (} . 23)
3
Thus
r? 4 etpl- (3.24)
P ogmis 334

For the highest frequencies at which scattering experiments
have been made, i.e., for y-rays of wave-length o0.024, the
value of this ratio is 0.000035. It follows from equation (3.21)
that the effect of this damping on the intensity of the scattered
X-rays is wholly negligible.

We have seen that for hard X-rays traversing light elements
the absorption coeflicient falls below the value calculated from
the classical theory for the absorption due to scattering alone.
When we examine the absorption of X-rays on the classical
theory we shall see (equation (6.24)) that the absorption co-
efficient is proportional to the damping constant 7, the factor of
proportionality being such that if we use the value of r given by
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(3.23) the absorption coefficient is just equal to the scattering
coefficient. Thus the observation that the absorption co-
efficient is less than the theoretical scattering coefficient would
mean that the damping constant must be even less than the
value given by (3.23), so that the effect of the damping in
equation (3.21) will be wholly negligible. Thus we are forced
to the conclusion at which Schott arrived, that neither by forces
of constraint nor by damping forces can we account for the fact
that at very high frequencies the scattering by an electron is
less than that calculated for a free clectron.

38. The Complex Electron

I't would seem that the only escape from our difficulty, con-
sistent with classical electrodynamics, is to suppose either that
the force on an electron at rest is for high frequencies less than
the value Fe, as assigned by Lorentz’s force equation, or that
the electric field due to an accelerated clectron is less than is
calculated from the usual electron theory. The possibilities in
this direction resulting from assuming a new force equation
have been investigated by Maizlish.! Taking the special case
of an electron composed of two parts having equal charges but
different masses, which are held together by certain pseudo-
elastic and frictional forces, he finds an intensity of scattering
which for high frequencies falls below that calculated from the
usual theory.

One might criticize the particular model employed by Maiz-
lish in that energy seems to be absorbed (and retained in-
definitely) by the electron, but probably some other method of
altering the force equation might be postulated which would be
free from this objection. We should thus be afforded, however,
with a solution of only half of our problem. We have seen that
as the frequency of the X-rays increases, the rays scattered at
large angles decrease in intensity more rapidly than those at
small angles, with the result that an asymmetry appears, similar
to that due to interference when soft X-rays are used. This

1 I. Maizlish, Jour. Franklin Inst., May, 1924.
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asymmetry is shown clearly in Fig. .33, which represents the
scattering of hard y-rays by iron. It is clear that a mere modi-
fication of the force equation will only modify the absolute
intensity of the scattered beam, but can have no effect on its
angular distribution.

36. The Large Electron

A suggestion that at one time seemed to be very promising
was that the electron, instead of being sensibly a point charge,
has instead dimensions comparable with the wave-length of
hard gamma rays.! The effect of this hypothesis is to make
possible interference between the rays scattered from different
parts of the electron. For wave-lengths considerably greater
than the diameter of the electron, this interference would be
negligible, and the electrons would act as described by the usual
electron theory. If the wave-length is shorter, since the phase
differences from different parts of the electron are larger for
rays scattered backward than for those scattered at small
angles, the intensity in the reverse direction should fall off the
more rapidly. Qualitatively, therefore, this hypothesis is
adequate to account for both the reduced intensity and the
asymmetry of the scattered X-rays of very short wave-length.

In order to avoid conflict with a view that an electron’s mass
1s due to its electromagnetic inertia, we may suppose that the
electron has the form of a thin circular ring of electricity. For
such an electron, with certain reasonable auxiliary assumptions,
it can be shown 2 that the intensity of the ray scattered by a
single ring electron of radius 4 should be

Ir = Ic';%j2n+1(2x)) (325)

where 7, is given by equation (3.08), ¥ = 4%“ sin »2—5, and /. is

Bessel’s J function of the #th order. This expression for the

1A. H. Compton, Jour. Washington Acad. Sci., 8, 1 (1918); Phys. Rev. 14, 20
(1919).

2 A. H. Compton, Phys. Rev. 14, 20 (1919); Washington U. Studies, 8 ,104 (1921);
G. A. Schott, Proc. Roy. Soc. 96, 695 (1920).
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intensity of the rays scattered at different angles from a ring
electron is found to be in surprisingly good accord with the
experimental values, if the radius of the ring is assumed to be
about 3 X 10710 ¢m.1

This theory fails, however, as any theory based upon the
classical electrodynamics must fail, to account for the change in
the wave-length of the scattered X-rays. In view of the fact
that the quantum theory which leads to a correct expression for
the change of wave-length suggests also an adequate explana-
tion of the reduced intensity of scattered X-rays of very high
frequency, such arbitrary assumptions regarding the nature of
the electron are unnecessary. It seems futile, therefore, to
carry the discussion of the scattering of hard X-rays further
from the standpoint of the classical electrodynamics.

37. Summary

The classical electromagnetic theory of scattering in its
simplest form is quantitatively applicable to the scattering of
comparatively soft X-rays by elements of low atomic weight.
But when heavier elements are employed as radiators, the inter-
ference between the rays scattered by the different electrons
becomes appreciable, giving rise to what is known as “ excess
scattering.” We find that it is possible to choose electron distri-
butions within the atom which will give closely the observed
intensity of scattering of ordinary X-rays, thus affording a
means of studying these electronic arrangements. For very
short waves, however, we find that the intensity of the scattered
X-rays is less than can be accounted for on the theory of electro-
magnetic waves, the difference being greater when the scattered
ray makes a large angle with the primary ray. This fact,
coupled with the observation that the wave-length of the
scattered rays is always greater than that of the primary beam,
indicates that there is some fundamental fault in the classical
explanation of X-ray scattering.

1Cf. e.g., A. H. Compton, Bulletin Nat. Research Coun. No. 29, p. 10 (1922).



CHAPTER 1V
X-Ray RerLECTION AND CRYSTAL STRUCTURE'!

38. Laue’s Discovery and its Consequences

“If,” as Henri Poincare has said, *“ the value of a discovery
is to be measurced by the fruitfulness of its consequences, the
work of Laue and his collaborators should be considered as per-
haps the most important of modern physics.”” 1 In the diffrac-
tion of X-rays by crystals we have a tool which has enabled us
to show at once the identity in character of X-rays and light,
and to determine with a definiteness previously almost un-
thinkable the manner in which crystals are constructed of their
elementary components. By its help we have studied the spec-
tra of X-rays, we have learned to count one by one the electrons
in the different atoms, and we have found out something with
regard to arrangement and the motion of these electrons.
The measurement of X-ray wave-lengths which is thus made
possible has supplicd us with our most precise method of deter-
mining Planck’s radiation constant 4, and in showing the
change of wave-length when these rays are scattered has demon-
strated the existence of quanta of momentum of radiation
which had hitherto been only vaguely suspected. Thus in the
two great fields of modern physical inquiry, the nature of mat-
ter and the nature of radiation, Laue’s discovery of the diffrac-
tion of X-rays by crystals has opened the gateway to many
new and fruitful paths of investigation. '

It is not the purpose of the present chapter to present in
detail an analysis of all the crystals whose structure has been

1T am indebted to Mr. J. K. Morse for many helpful suggestions in writing this

chapter.
2 M. de Broglie, “Les Rayons X" (1922).
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determined by X-ray methods. We shall rather confine our-
selves to a description of the most important methods by which
such investigations are carried out, and to the study of the
structure of some of the simpler crystals as examples of the
various methods. Before entering this discussion it will be
advisable to review some of the nomenclature used in crystal-
lography. For a more detailed discussion of the analysis of
crystal structure, the reader may be referred to that remarkable
book, “X-rays and Crystal Structure,” by W. H. Bragg and
W. L. Bragg, on which much of the following chapter is based.

39. The Space Lattice

The feature which distinguishes a crystalline from an amor-
phous substance is the fact that the fundamental units of the
crystalline substance are arranged in a systematic pattern.
Before X-ray methods were employed, measurements with a
goniometer of the angles between the external faces had led to
the classification of all kinds of crystals into six systems of
symmetry, and these systems were further divided into thirty-
two classes under which any particular crystal could be
assigned.! The geometrical theory of crystal structure worked
out by Bravais, Schoenke, Schoenflies, von Federoff and Barlow
showed that these thirty-two classes could be still further ex-
tended into two hundred and thirty space groups, which repre-
sent all the possible ways of systematically arranging the
fundamental crystallographic units in space.

Before the application of X-rays to the study of crystals, it
was not possible, in the case on any particular crystal, to deter-
mine the nature of the fundamental units underlying its struc-
ture, the distances separating these units, or the space group to
which it belonged. By X-ray analysis we can earn whether the
crystallographic units are atoms, ions, molecules or groups of
molecules. We can determine, with a few minor exceptions,
the space group to which a particular crystal belongs. And

1 An excellent account of the modern methods of crystal measurement is to be found
in Crystallography and Practical Crystal Measurement, A. E. H. Tutton, Macmillan,
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what is yet more remarkable, we can measure with precision
the actual distances between the atoms, ions or molecules.!

The units of which a crystal is composed may be either
simple or complex, a single atom, or ion or a complicated mol-
ecule or even a group of complicated molecules. There must,
however, exist some unit which occurs in the crystal in a regular
repeating order, such that the situation of one of these units
with regard to its neighbors is precisely similar to that of any
other unit. We may take some point in this unit, for example
the center of some atom, to represent the position of the unit.
The group of such points is known as the space lattice of the
crystal. It is found that any such space lattice of points may
be connected by a three-dimensional network of lines which
form the edges of a group of parallelopipeds. Fig. 41 shows the
space lattices to which all crystals may be referred.?

40. Cubic Lattices

If, for example, we desire to examine a cubic crystal, we
know at the start that it must be built up from a simple cubic,
a body centered cubic, or a face centered cubic lattice. The first
question is to determine by means of X-rays which one. To do
this we must be able to specify and identify in the actual crystal

! Inasmuch as this new analysis forms an extension of our previous knowledge of
crystals and requires use of the results of the older goniometric measurements, the com-
pilation by P. Groth of the external measurements of crystals in ‘“Chemische Crys-
tallographie,” Leipzig, 1906, five volumes, forms an invaluable starting point for
crystal analysis.

2 Space does not permit the explanation of the detailed relations between these
lattices and the 32 crystal classes and the space groups mentioned above. It will be
noted, however, that all crystals can be divided into two main divisions which differ
radically in their structure, namely, atomic or ionic lattices such as diamond and the
alkali halides, and molecular lattices to which the majority of the organic compounds
belong.

All the possible space groups have been worked out analytically for {onic and atomic
lattices by Wyckoff in his monograph, “The Analytical Expression of the Results of
the Theory of Space Groups,” Washington, 1922. For molecular lattices, on the
other hand, W. T. Astbury and Kathleen Yardley, “Tabulated Data for the Exam-
ination of the 230 Space Groups by Homogenous X-rays,” Phil. Trans. 2244, 221-2§9,
1924, have presented a more satisfactory discussion.
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certain planes which include certain points in the space lattice.
This may be done in the following manner.

Let a, 4, ¢, of Fig. 42 represent the edges of the unit parallel-
opiped along its three axes, and let 4, B, C, be the plane to be
described. This plane intersects the axes at distances O4 = pa,
OB = ¢b and OC = rc respectively, where p, ¢ and r are
integers. The reciprocals of these numbers are in the ratio

Dr\ ©

Fia. 42.

gr :rp : pgq, respectively. If these products are each divided
by their greatest common divisor #, we obtain the integers

h=gr'n, k=rp/n, |=pqg/n. (4.01)

These are kno che (Miller) indices of the plane in question,
and are written in brackets, thus (4, &, /). The plane 4BC is
thus known as the (4, &, /) plane, and the ratios 2 : 4 : ¢ are
known as the axial ratios.

For the plane 4/BC, p = 2,9 = 3,7 = 1,and » = 1, whence
h=3,k=2and /= 6. The plane ABC is thus the (3, 2, 6)
plane of the lattice. Similarly for the plane AFGE, p = 2,
g=o, r=ow, whence A =1, k=o0and /= o, so this
is the (1,0, 0) plane. In the same manner the points /HDE
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are in the (1, 1, 0) plane and the points /H J are in the (1, 1, 1)
plane.

In the three fundamental cubic lattices, as shown in Fig. 43,
if we call the distance between the layers of points in the (100)

k— 0 —y
o

! d

FIG. 43.

planes a, the distances between the successive layers of points
in the other planes are those given in the following table:

TABLE 1V-1
Distance BErWEEN Pranes or A Cunic Cryviar
Type of Crystal (100) (110) (111)

Ype of Lrysta Planes Planes Planes
Simple cubic................0 L a 1/Via 1/\/3‘- a
Body centered. ...l L a 2,’\/2: a 1/\/3 a
Face centered.. ...l a 1/\/2 a 2/\/3 ‘a
It is clear that if we can by any means measu: e relative dis-

tance between these different planes we shall have a key to the
distribution of the points on the space lattice.

41. Crystal Structure by X-ray Reflection from Crystal Faces

The most straightforward method of determining the arrange-
ment of the atoms in crystals is that which was first employed
by W. L. Bragg in studying the structure of rock-salt (NaCl)
and sylvine (KCl). These are both cubic crystals which, in
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view of their similar chemical constitution and crystal form,
are presumably alike in structure. The information regarding
their structure is obtained by reflecting a beam of X-rays from
certain characteristic planes, and by measuring the intensity of
this reflection at different angles. The spectra shown in Fig. 44
give the result of such an experiment, when X-rays from a tube
with a palladium target are reflected by these crystals.

In Chapter I we showed that if X-rays of wave-length A are
reflected from a crystal composed of layers of particles spaced a

’:‘y'wnc o 7 T B ]
KQ
(100) '
| \<J —— AL A A
(o
J T I AT AN — - e ——
)
I SR FORS § S ~
Rock it |
NaCl
- — = I ,\ : R S
(100)
RIS V00 N N S B
(noy A l
L — —A N - ; i -
|
[{ID)
Doy —_— A—aA : —_— ]
o 5 10 15 20 &5 30 35 40
FiG. 44.

distance D apart, the reflection will occur when the glancing
angle is given by the relation

n\ = 2Dsin 9, (1.03)

where # is the order of reflection.
The distance between the successive layers is thus,

D = n\/2sin 6. (4.02)

Thus in the case of sylvine, experiment shows the grating
spaces for the (100), (110) and (111) planes to be in the ratio
1/sin §.22°: 1/sin 7.30° : 1/sin 9.05°, which is very nearly the



CRYSTAL STRUCTURE BY X-RAY REFLECTION g7

ratio I:1/4/2:1/4/3. A comparison of these results with
the calculated ratios of Table IV-1 shows that we are dealing
here with particles arranged according to a simple cubic lattice.
We have as yet, however, no information as to whether the
particles so arranged are atoms, molecules or groups of atoms.

In the case of rock-salt, however, Fig. 44 shows a weak
first order reflection from the (111) plane at half the angle at
which the reflection should occur if this crystal acted precisely
as does sylvine. If we were to ignore this feeble reflection, we
should have, considering the strong reflections only, the same
ratios for the grating spaces for the different planes as was found
for sylvine. But taking this weak first order reflection into
account, the ratio of these distances is

Dioo : Divo: D1y = 1¢ I/\/E:Q/'\/j.

According to Table IV-1, these are the distances characteristic
of a face-centered cubic lattice. This crystal therefore acts very
much as if it were a simple cubic lat-

tice superposed upon a face-centered 9
cubic lattice. T

The following solution of this i 4
problem was sugges :d by Bragg:
Let us imagine both NaCl and KCI >
to be represented by Kig. 45, where
the solid circles represent atoms of
chlorine and the open circles atoms
of sodium or potassium as the case may be. There i thus an
atom at each corner of each of the small cubes into which the
figure 1s divided.

In view of the considerations brought forward in the last
chapter, we may suppose that it is the electrons within the atoms
which are responsible for the scattering of the X-rays. Taking
the number of electrons as equal to the atomic number, we
should then have 11 electrons in the sodium atom, 17 in chlorine
and 19 in potassium. But since NaCl and KClI are polar com-
pounds, we may suppose that the valence electron has left the

FicG. 45.
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sodium or potassium atom and has joined the chlorine atom.
Thus we should have in the crystal 10 electrons in sodium, and
18 in both chlorine and potassium. It is thus natural to sup-
pose that chlorine and potassium atoms scatter about the same
amount, but that the sodium atom scatters less than the other

Thus a KCl crystal represented by Fig. 45 should scatter
as would a simple cubic lattice of similar particles. In NaCl,
on the other hand, we can think of the arrangement as consist-
ing of 10 electrons at each point of a cubic lattice of edge 4, and
superposed on this 8 electrons at each point of a face-centered
lattice of cube edge 2a. This would give 18 electrons at each of
the chlorine atoms and 10 at each of the sodium atoms, and
would also give rise to exactly the type of superposed spectrum
which is found from the (111) planes of rock-salt.

It will be worth while to consider the matter from a slightly
different standpoint. Referring again to Fig. 45, it will be seen
that the successive layers of atoms in the (100) and (110) planes
are identical with each other, each layer containing equal num-
bers of sodium and chlorine atoms. In the (111) planes, how-
ever, layers of sodium and chlorine atoms alternate with each
other. If we were to consider the heavier chlorine atoms by
themselves, they would give rise to a reflection as from a grating
space of 2/4/3a. But if there is 1 wave-length difference in path
between the rays scattered by the successive layers of chlorine
atoms, there will be just half a wave-length difference between
the rays scattered by a layer of chlorine atoms and the adjacent
layer of sodium atoms. These two rays will therefore be oppo-
site in phase, but will not completely interfere, since the ray
scattered by the chlorine atoms is the stronger. There is thus
produced a weak first order line from the (111) planes, which is
observed at about 5.1 degfees. In the second order reflection
from the chlorine layers, the difference in path between rays
from g$uccessive layers of chlorine atoms will be two wave-
lengths and that between adjacent layers of sodium and chlorine
atoms one complete wave-length. In this case all the atoms will
cooperate in their scattering, and the intensity will be much
greater than in the first order. Thus we may expect from the
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(111) planes of rock-salt that the odd orders will be relatively
weak and the even orders of reflection relatively strong.

The complete accord between the predictions based on this
grouping of the atoms and the experimental spectra from rock-
salt and sylvine, together with the simplicity of the arrange-
ment, makes this structure appear very plausible. It cannot be
said that the proposed arrangement is the only one which will
work. We might, for example, place 2 atoms instead of 1 at
each point of the space lattice. Chemically, however, such a
distribution would present grave difficulties, whereas the one
pictured in Fig. 45 1s quite acceptable.

42. Confirmation by Measurement of X-ray IV ave-lengths

Perhaps the best verification of this structure is the fact
that the wave-length of the X-rays calculated on the basis of
the arrangement of the atoms, shown in Fig. 45 is in agree-
ment with that determined by other methods. Assuming this
structure, we showed in Chapter I that the grating space for the
(100) planes of rock-salt is D = (J}’/2Np)”, = 2.81 X 10-8
cm., where /7 is the molecular weight, p the density of sodium
chloride, and N 1s the number of molecules per gram molecule.
Using this grating s sace, the wave-length of the palladium X-
rays used may be calculated from the formula # = 2D sin 6 to
be 0.576A. There are, however, several other methods by
which the wave-length of X-rays can be determined. The most
direct of these is that based upon the diffraction of X-rays by
ruled gratings. This work, as we have seen (supra, p. 17),
gives a wave-length identical within an experimental error of
about 0.3 per cent, with that determined by crystal methods.
It follows that the grating space which we have assigned to
rock-salt and sylvine is correct. But if this grating space is
right, there can be only one atom placed in each unit cube of
side 4, and it would seem that the distribution of the atoms
shown in Fig. 45 is the only one possible.
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43. Reflection Method Using Known Wave-length

Having thus determined the wave-length of the X-rays
which we are using, the analysis of the structure of other crystals
is considerably simplified. Let us consider, for example, the
case of diamond. This crystal is also of the cubic system. The
spectra from the three characteristic faces are shown diagram-
matically in Fig. 46. The palladium K« line (A = 0.576) is re-
flected from the (100) face at 19.0° in the first order, indicating
a grating space of 0.885 X 10-8 cm. The volume of a cube of
this edgeis0.691 X 10-2¢ cm.3. But since the number of atoms

Diamond

(100)

(110)

()
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of carbon per unit volume is Np//#”, N being the number per
gram atom, // the atomic weight and p the density of dia-
mond, the volume associated with each atom is /#/Np =
12/6.06 X 10% X 3.51 = 5.6 X 10~ cm.® This is 5.6/0.69 =
8.1 times the volume of our unit cube. In order to have 1 atom
associated with each unit cube, we must therefore have the
side of our unit cube equal to 2 Djgo.

The spacings for the three characteristic planes will be seen
from Fig. 46 to be in the ratios

Digo : Dio: Dy = 3: I/‘\/2 : 2/\/3

Of the ratios corresponding to the three simple cubic arrange-
ments given in Table I1I, these agree most closely with those
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for the face-centered cube. We may therefore take this lattice
as our starting point to build up the crystal structure (Fig. 47,
the solid circles). Let us consider, in Fig. 47, that the cube
associated with any particular atom is the one which has the
atom at its lower, front, left-hand corner. It will then be seen
that only half of the cubes are associated with the atoms repre-
sented by the solid circles. Inorder to have one atom associated
with each unit cube we must therefore locate an equal number
of additional atoms. Since the grating space Digo is } that of
the “black” atoms, the additional “white” atoms must all be
placed midway between the (100) planes of the black atoms.

3 Sipe ¥
N
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This can only be done by placing the white atoms at the centers
of the cubes drawn in Fig. 47. But only half of the cubes require
atoms in order to make up the full number of 1 atom per cube.
If therefore we place the white atoms in the centers of the cubes
with which black atoms are not already associated, we obtain
the required distribution. '

The spacings of the atomic layers in the different planes
according to this structure are shown diagrammatically in Fig.
48. In the (100) and the (110) planes the successive layers are
equal and are equally spaced. In the (111) plane, however, we
have equal layers of atoms arranged in pairs, such that the dis-
tance between the two layers of a pair is } the distance be
tween two successive pairs. We should therefore expect the
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intensities of the higher orders from the (100) and the (110)
planes to fall off in the normal manner. But at the angle for
the second order reflection from the (111) plane the ray scat-
tered from the two layers of the same pair will be opposite in
phase and should just neutralize each other. We should there-
fore expect the second order reflection to be absent from the
reflection by the (111) faces of diamond. A glance at the spec-
tra shown in Fig. 46 shows that this is indeed the case. The
information given by the absence of this second order reflection

!

has not been used in determining the crystal structure shown in
Fig. 47. The fact that this structure predicts its absence is
therefore an independent verification of the structure that has
been assigned.

(100) (g (111)
Fi16. 48.

44. Powdered Crystal Method of X-ray Crystal Analysis

In order to employ the method of reflection which has just
been described it is necessary to use crystals with faces large
enough to be set with the desired orientation on the crystal
table of the spectrometer. Many substances, including most of
the chemical elements, are not available in the form of such
crystals. These materials can have their structure examined
by the powdered crystal method, developed by Debye and
Sherrer ! and Hull.2

Instead of observing the reflections from different crystal
faces one at a time, one may use a very large number of finely
pulverized .crystals, among which some will always be oriented

1 Debye and Sherrer, Phys. Zeits. 17, 277 (1916); 18, 291 (1917).

2 A. W. Hull, Phys. Rev. 10, 661 (1917); 17, §71 (1921); Frank, Inst. Jour. 193,
189 (1922). A.W.Hull and W. P. Davey, Phys. Rev. 17, 549 (1921).
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at every possible angle, and record the reflections on a photo-
graphic plate from all the faces simultaneously. The photo-
graph thus obtained will have upon it all the reflected lines
which can possibly be obtained from the crystal. The apparatus
used in taking such photographs is essentially very simple, and
is shown diagrammatically in Fig. 49. The rays from the tar-
get § of the X-ray tube pass through a filter ' which renders
the rays nearly homogeneous, and then traverse the sample C
under investigation. The record is obtained either on a plate
placed at P or on a cylindrical film with the sample C at the

L-Filter ’ : 2
(ﬁls. .
[l :
> N
Fi1G. 49.

center. Figs. 50 and 51 show respectively photographs thus ob-
tained when X-rays from a tube with a molybdenum target,
after being filtered through an absorption screen of zirconium
oxide, traverse fine crystals of silicon and magnesium.! The
distinctly different pattern of lines obtained in the two cases
correspond to the different distribution of the atoms in the two
types of crystals.

It is clear that there is nd way of telling directly which line

1 These photographs are taken from Hull’s paper, Phys. Rev. 10, 662 (1917).
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on these photographs is due to the reflection from any particular
face. This makes the analysis of the crystal structure somewhat
more complex than when Bragg’s large crystal method is used.
For simple substances, however, the problem is not difficult. If
the crystallographic data are known, there is a very limited
number of possible arrangements for the points on the space

Fi6. 51.

lattice, and the pattern of lines to be expected from each ......
lattice may be calculated. The procedure then consists merely
in finding to which pattern the observed lines belong. The fit
must be exact, both in position and intensity, so that there is
little chance for an error to occur.

Let us calculate the positions and intensities for certain
z simple lattices. The reflections will occur
Piyz  at all angles for which the condition

nA = ZDMJ Siﬂ ]

i1s satisfied, where Dy, is the distance be-
tween the successive layers of atoms in the
(hkl) plane. This distance may be cal-
culated in the following manner. The
distance of any point P(x,y,2) from a
plane through O parallel to the plane XYZ
(Fig. 52) is

L = R cos P/O7V, (4.03)
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where R =V/x2 + y? + 22, and PON is the angle between the

line OP and the normal ON to the plane XYZ. If «, 8, are

the direction cosines of ON, and o', g, v' those of OP, then
cos PON = ad’ + 88" + v

But o« =x/R, 8 =y/R, v =2/R Also, in the figure,
a = ON/OX, g = ON/OY, v = ON/OZ, whence

L

OX " 0Y " 07

hek:l (4.034)

by equations (4.01). Since o® 4+ 82 + 4* = 1, we have,
a=h/VEFEFI

Il

a:f:y

8=k/VEF R+,
v =UVE ¥k F I (4.04)
It follows that
I ke Yy B
~ et et Ve it Vit e
1
= Vi g g g O by ) (5.09

If the atoms which act as diffracting centers are all alike, and
are arranged on a simple cubic lattice of side 4, then each time
x increases by a/h, y by a/k or 2 by a// we shall have moved
from one layer of atoms to another. Thus the grating constant
will be,

i = a/ VB + kE+ 12, (4.06)

For the cube centered lattice, the calculation is complicated
by the fact that, if 24 is the edge of the unit cube (Fig. 434),
for certain planes the numerator of equation (4.05) must be
increased by only 2 and for others by 22 in order to reach the

1 The general expression for L for any set of axes and axial ratios is derived by Hull
in the Physical Review, 10, 677 (1917).
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next layer of atoms. Thus for the (100) or the (111) planes an
increase of x by the distance @ means a change from one atomic
layer to the next; but for the (110) plane, ¥ must change by
24 to reach the next atomic layer. In general, for this lattice, it
can be shown thatif 2 + & 4+ /is an odd number, the numerator
of equation (4-05) must change by & to reach the next atomic
layer, whereas if 2 + k + /is even, it must change by 24. Thus
the grating constant for the centered cubic lattice is

thl = (ﬂ or 2(1)/ V h2 + k2 + 12, (407)

where the choice of @ or 24 is made according to the cond’+ion
just stated.

Using this value of the grating space, we find that the wave-
length X will be reflected at the angles given by

sin ¢/2 = sin § = n\/2Dyy, (4.08)

where ¢ is the angle between the primary and the reflected
beam. There will of course be a separate line for each different
order of reflection #.

There will be a gradual decrease of intensity of the lines as
the angle becomes greater, just as in the case of reflection from
a single crystal. There will also be variations in the relative
intensities of the different lines due to the fact that different
numbers of the different types of planes are present. Thus, sup-
pose we have calculated the distance between the planes of a
cubic crystal for which 2 = g1, ¥ = g2 and / = g3, i.e., for the
(g1g2g3) plane. It is clear that the spacing of the planes will be
the same whatever the order of the g’s or whatever their signs.
It would be the same, for example, for the (321) plane as for the’
(231) plane, where T indicates that the Z intercept is negative.
If all the g’s are different and differ from zero, this makes 48
different planes whose spacing is identical. There are 6 planes
with the same spacing as the (100) plane, corresponding to the
6 faces of a cube, 12 (110) planes, one for each cube edge, and 8
(111) planes, each for each cube corner.

The number and relative spacings of the different planes for
the special case of the body centered cube are tabulated below.
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As an example of the calculation, consider the (211) plane. 2+ 1
+ 1 = 4, which is even, whence, by equation (4-07),

Doy = 2-61/\/4 + 1+ 1 = 0.408 X 2a.

There are 24 possible permutations of the indices, considering
both positive and negative values, corresponding to 24 possible
orientations of the crystal at which this grating space will be
effective. This number thus measures the relative intensity of
the lines.

TABLE IV-2*

SraciNG oF PLaNEs FOrR CeNTERED Cusic'Latrice (Distances iN Terms or Epce
24 of Unir Cuske = 1)

. Plane Families
Indices of Form Belonging to Form Spacing of Planes
110 12 .707
100 6 . 500
211 24 .408
310 24 .316
111 8 .2885
321 48 .2672
411 24 .2358
210 24 L2234
332 24 .2132
431 48 .1960
§10 24 .1960
521 48 .1826

* More complete tables for this and other lattices are given by A. W. Hull, Phys. Rev. 10,
674 (1917). '

45. Structure of Molybdenum Crystals

We can now plot the positions of the lines to be expected
from such a lattice in terms of sin ¢/2, as in Fig. 53. In this
diagram the height represents the est mated intensity, and the
spacing is on an arbitrary scale. Fig. 54 shows the pattern ob-
tained ! when the line A = .710A traverses powdered crystals

1A W Hull Phve Rov 7 a1 (1091)
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of molybdenum. It will be seen that the lines occur in positions
corresponding exactly to the face-centered lattice, whereas the
patterns obtained with silicon and magnesium (Figs. 50 and 51)
do not agree with this diagram. From the angles at which the
lines occur, we can calculate the value of 2 as 1.57A, whence
the side of the unit-centered cubeis 2¢ = 3.14A. The structure
of the molybdenum crystal is thus completely determined.
Proceeding along similar lines it is found that the line pat-
tern shown in Fig. 5o for silicon agrees exactly with that calcu-

RS
“-E= -7
| |
| \ !
! 1

e |
| . \
1 //’ \ AN
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|
| | 1
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| 1

’,)\ [
{ pad ~11
el — o

Fic. 55.

lated for a lattice like that of diamond, as shown in Fig. 47. The
distance between the atoms is, however, greater, the grating
space between the (111) planes being 3.14 X 108 cm. instead
of 2.0§ X 10~8 ¢cm. as in the case of diamond. Magnesium is a
hexagonal crystal, and the line pattern shown in Fig. 51 corre-
sponds to the hexagonal close packed arrangement, such as
shown in Fig. 55. The angles at which the lines appear indicate
that the minimum distance between the magnesium atoms is
3.22A.

While theoretically this powdered crystal method is not as
powerful as the single crystal method, since the orientation of

tha Arwratale fav tha Aiffaront linac 10 inttiallyr rinlbnawn ;O-Q cerant
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convenience has made it used perhaps more than any other
method of X-ray crystal analysis.

46. Method of the Laue Spots

Laue’s method of permitting a beam of X-rays containing a
large number of wave-lengths to pass through a thin section of a
crystal i1s the simplest X-ray method of obtaining crystallo-
graphic information. As usually used, it does not give direct
measurements of the spacings for the different planes. It does,
however, exhibit the symmetry of the crystal, and thus forms an
independent check on the goniometric measurements, or when
these are not available it may partly replace them. In the hands
of Ewald ! and Wyckoff,? this method has supplied all the nec-
essary information to assign particular crystals to the correct
space groups.

47. Gnomonic Projection

The first step in the interpretation of the large number of
spots obtained in a Laue photograph is to identify the indices of

N

Fi1G. 56.

the planes producing them. This may be simply done by the
method of gnomonic projection. Imagine a beam of X-rays
traversing a section of a crystal placed at Z (Fig. 56), and being
partially reflected along ZS, producing a spot on the photo-
graphic plate at §. If ZC represents the plane in the crystal re-

1P, P. Ewald, Ann. der Phys. 44, 257 (1914).
2 R. W. G. Wyckoff, Ann. of Sci. 50, 317 (1920).
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sponsible for this partial reflection, its angle of inclination 6 to
the incident X-rays is given by the relation,

—O S_s_ tan 20. (4.09)

0Z  z 499
Now draw a line from Z, perpendicular to ZC, intersecting the
photographic plate at 4. The point 4 is then the gnomonic pro-
jection of the observed spot §. It is on the line joining § and
the central image O, and is at a distance from the center,

a = z coté. (4.10)

The different points £ can be rapidly plotted for each of the ob-
served spots § by the help of a double ruler, such as shown in
Fig. 57, in which the distances 2 corresponding to the distances
s are calculated from equations (4.09) and (4.10).

If the direction ZO of the incident X-rays coincides with one
of the axes of a cubic crystal, the coordinates of the point £ de-
termine at once the index of the plane responsible for the spot §.
In Fig. 58, which is a 3-dimensional diagram of a Laue spot §
and its gnomonic projection 4, the reflecting plane in the crystal
is seen to intersect the X, Y and Z axes at distances ¥, y, and z
respectively. Th= Miller indices of the plane are thus in the
ratio,

;l:k;[_[-/-,l.zf E E:.
x'y'z x'y'z
But by the construction of the figure it is evident that
2% and 2=
x 0z y =z
Thus
k=t LR
h.k.l—z.z. (4.11)
=x"1y 2 -

Since 2, the distance from the crystal to the plane, is known,!
the coordinates #’, y’ of the point A thus give at once the Miller

indices.
11n practice, the distance Z is usually taken as § cm.
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48. Structure of Magnesium Oxide

We may take as an example of the application of this method,
the cubic crystal of magnesium oxide (MgO). A photograph of
its spot pattern, with the X-rays incident along the Z axis, taken
by R. W. G. Wyckoff, is shown in Fig. 59. Fig. 60 shows these

spots as an inset, and their corresponding gnomonic projections.

Fia. 60.

If we assume that magnesium oxide has the same type of
structure as rock-salt, and if the ions are Mg++ and O, with
10 clectrons to each ion, it will be approximately a simple cubic
crystal. By equation (4.06), the grating constant for the
(h, k, /) plane is

Dy = a/(B* + &k + 12)%, (4-06)

where a is the edge of the unit cube. The wave-length of
the rays producing an observed spot may now be calculated
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from the relation
n\ = 2D,y sin 6. (4.12)
It will be seen from Fig. 58, however, that
sin g = z/ V. m 22,
or by equations (4.11),

sin 4

UNVE + &+ (4.13)

Substituting this value for sin 4 and the value given by
equation (4.06) for Dy, in equation (4.12), we get

n\ = 2al/(h* + k2 + [2). (4.14)

In Fig. 60 we notice that the reflection from the (211)
plane is intense. To calculate the corresponding wave-length
from equation (4.14) we must know the value of 2. If we take
the molecular weight of MgO as 40.3, its density as 4.02 g. cm.%,
and Avogadro’s number as N = 6.06 X 10% per gram molecule,
we have, assuming that the crystal has the rock-salt structure,
a = (W/2Np)¥ = 2.104. For the (211) plane, 2 =2, k =
1, and / = 1. The wave-length of the first order reflection is
thus given by equation (4.14) as X = 2 X 2.10/6 = o.70A.
Since the X-rays used in these experiments are usually intense
over a wave-length range from about 0.3 to 0.9A, this result is
satisfactory. A similar test for the other spots gives equally
acceptable results,! whereas if other lattices had been assumed,
some of the calculated wave-lengths would not have been within
the range employed. Thus we infer that the crystal has the
sodium chloride structure.

The chief disadvantage of this method is evidently that it
affords no direct measurement of the grating space correspond-
ing to each plane, so that a complete analysis can be effected
only for the simplest crystals. This difficulty may be overcome

1 Certain faint spots appear on Wyckoff’s photographs, due to the first order reflec.
tions from planes such as (3, 2, 1) as calculated for a face-centered lattice, in which,

according to the “rock-salt” structure, the layers of Mg and O atoms interferc. This
is probably due to a different electronic distribution in the Mg and the O atoms.
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by the method devised by Duane,! in which the potential
applied to the X-ray tube is gradually reduced until the spot
disappears. Having determined this critical potential 775, the
wave-length is calculated from the quantum relation,

he
A= 1 (4.15)

and the grating space is then given by equation (4.12). In
Duane’s experiments the spots are detected by an ionization
method, so that the potential at which each spot appears can
readily be determined. When the wave-length is known from
such measurements, the study of the Laue spots presents as
much useful information as does the method of reflection from
crystal faces. In fact the two methods become identical in
principle.

The chief advantage of the Laue photographs in the study of
crystal structure lies in the fact that from the many reflections
from planes with complicated indices one can conveniently
make intensity comparisons between the different planes.
Using the reflection from crystal faces, such comparisons can be
made only with considerable labor.

49. Crystal Structures of the Solid Elements

It will be useful to present as a conclusion to this discussion a
table of the structure of crystals of the elements that have been
examined by the X-ray method. Most of the data included in
these tables have been taken from a paper by A. W. Hull.2 The
remaining data have been gathered from miscellaneous sources.
The number of crystalline compounds whose structure has been
investigated by these methods is now so large that a complete
table of them would be too long to include here. A summary of
this work is given (to 1924) in the appendix of W. H. Bragg and
W. L. Bragg’s fourth edition of ““ X-rays and Crystal Structure,”
and in the second part of R. W. G. Wyckoff’s ““ The Structure
of Crystals.”

1 W. Duane, Phys. Rev. 1922.
2 A. W. Hull, J. Franklin Inst. 193, 200 (1922).
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CrystaL STRUCTURES OF ELEMENTS

Latticg _Sllon-f Cl
z stant, Side o osest
Substance C’}ysmlofsgu&t:"c' ﬁxi"‘l Elementary pproach Aultthor-
ype attice at10 | Cube or Hex- toms. Y
agon, A
Lithium.. . Body-centered cube | ...... 3.50 3.03 1
Carbon:
Diamond.. Tetragonal cube | ...... 3.56 2.06 2
Graphite. . Hexagonal 2 75 2.47 1 50 3 I
Sodium...... Body-centered cube 4 30 3.72 1
Magnesium Hexagonal close gack 1.624 3.22 3 22 I
Aluminium.. Face-centered cube 4 05 2 86 1,4
Silicon. .......... Tetrahedral cube 5.43 2 35 5. I
Sulphur Orthorhombic e . e 20
Potassium Body-centered cube 5.20 4 50 21
Calcium . . .| Face-centered cube . 5 56 3 93 6
Titanium........ Hexagon close pack 1 59 2.97 2 9o 7
Vanadium. . .. Body-centered cube . 3 0% 2 64 8
Clhromium Body-centered cube . 2.895 2 508 9
Iron { Body-centered cube .. 2 86 2 48 1
""""""" Face-centered cube .. 3.60 2.54 10, 10
Cobalt Face-centered cube . 3.554 2 514 9
AR Hexagon close pack 1 633 2.514 2 514 9
Nickel.......... Face-centered cube | ...... 3.540 2 505 1,9, I
Copper.. .. Face-centered cube | ...... 3.60 2 54 12
Zinc. ... Hexagon close pack 1 860 2.670 { :'g;g} 9
Germanium ...... Tetrahedral cube 5 61 2 43 22
Zirconium. ...... Hexagon close packed 1 59 3 23 { g ;i } 7
Molybdenum.. ... Body-centered cube | ...... 3.143 2 720 9
Ruthenium....... Hexagonal close pack 1.59 2.686 { : 2‘;2 } [
Rhodium......... Face-centered cube | ...... 3 820 2.700 9
Palladium. . .| Face-centered cube | ...... 3 950 2 70§ 9
Silver. .. Face-centered cube .. 4.060 2 876 13
Cadmium......... Hexagonal close pack 1.89 2.960 ; ;g 9
Indium........... Face-centered tetragonal | 1.06 4.58 g ‘:g []
Tin (gray)........ Tetrahedral cube | ...... 6.46 2.80 1L
Antimony........ Rhombohedral hexagonal| 2.647 4.28 { ; . 2’; } 15
Hexagonal close pack | ...... 3.65 364 7
Cenum........... {Face-centered cube 1 62 5.12 3 64 7
Tantalum........ Body-centered cube | ..., 3.272 2.833 9
Tungsten......... Body-centered cube | ...... 3.150 2 720 16, 9
Osmium.......... Hexagonal close pack 1.59 2 714 { g?g } 7
Iridium.......... Face-centered cube | ...... 3 8os 2.690 [
Platinum......... Face-centered cube | ...... 3.930 2.780 9
Gold............. Face-centered cube .. 4.08 2.88 17
Mercury......... Tetrahedral hexagonal 1.88 38 | ... 23
ad............. Face-centered cube | ...... 4.92 3.48 17
Bismuth.......... Rhombohedral hexagonal 4 54 { i;; } 18
Thorium......... Face-centered cube | ...... 5.04 3.54 11, 7

2. W.H.and W. L. B

A. 89,

277,
3. Debye x;nd Sherrer, Physik.” Z. 18, 291

1917).

(1916.
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11. Bohlin, Ann. d. Phys
12. W. L. Bragg, Phil.
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CHAPTER V
InTENSITY OF THE REFLECTION OF X-Ravs From CRYSTALS

I. INTRODUCTION

50. Reflecting Power as a Function of Electron Distribution

We have seen in the last chapter that the higher orders of a
given spectrum line diminish rapidly in intensity. An investiga-
tion by W. L. Bragg! and W. H. Bragg,? in connection with
their early work on the reflection of X-rays, revealed the fact
that the intensity of the lines varies in much the same manner
for the different faces of a crystal, when the successive layers of
atoms are similar to each other. A summary of the work of this
character on crystals of rock-salt is shown in Fig. 61. This
shows the intensities of the reflected lines observed at different
angles when the rhodium Ka line is reflected from the various
faces of a rock-salt crystal, as measured by W. L. Bragg, James
and Bosanque..3 The positions of the reflections from the dif-
ferent faces are plotted in the terms of sin 6/sin 6;00, where 6100
is the angle at which the first order reflection from the (100) face
occurs. In labeling the different lines, the indices (222) have
been used to indicate the second order reflection from the (111)
plane, and similarly for the other lines. The height of each line
is proportional to the area under a curve representing the line
plotted as in Fig. 44, and may be called the * integrated re-
flection.” When measured in this way, the relative intensity of
any two lines is independent of the width of the slits used and
of the accuracy of setting on the center of the line.

It will be noticed that for the faces with even indices, in
which cases all the atoms co-operate in their scattering, the tops

1'W. L. Bragg, Proc. Roy. Soc. A 89, 468 (1914).
2 W. H. Bragg, Phil. Mag. 27, 881 (1914).
3 W. L. Bragg, James and Bosanquet, Phil. Mag. 41, 309 (1921).
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of the lines fall upon a smooth curve. A similar curve connects
also the lines reflected from the planes with odd indices, in
which case the rays scattered by the sodium atoms interfere

with those scattered by the chlorine atoms. It has been shown
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by W. H. Bragg ! that the smooth curve joining the tops of
these lines is represented approximately by the expression,

CL%?G_ZQ ~Bsin? g (5.01)
In this expression the constant C depends upon the energy in
the incident beam, the wave-length of the X-rays and the nature
of the crystal. The factor (1 + cos? 26) is the polarization factor
which appears in expression (3.04), and the factor e=2%"*? is in
1 W. H. Bragg, Phil. Mag. 27, 881 (1914).
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cluded to take account of the thermal agitation of the atoms, as
will be discussed below. The factor sin20 in the denominator is
an arbitrary one, chosen to make the calculated reflection fit the
experimental data.

It is well known that if the width of the lines ruled on a dif-
fraction grating is comparable with the distance between the
successive lines, the intensity of the higher orders of the spec-
trum rapidly diminishes. Similarly, in the case of the reflection
of X-rays from a crystal, if the thickness of a layer of atoms as
determined by the distribution of the electrons is comparable
with the distance between the successive atomic layers, the
higher orders of reflection should fall off rapidly in intensity.
The intensity of the reflection of X-rays from crystals as a func-
tion of the distribution of the electrons was first examined
theoretically by C. G. Darwin,! who showed that if all the elec-
trons were in the mid-planes of their atomic layers the integrated
reflection should be inversely proportional to sin 8 cos 6 instead
of to sin?6 as indicated by equation (§.01). There thus remains
a factor in the experimental reflection formula of about 1/tan 6,
which is presumably due to the fact that the scattering electrons
are not in the mid-planes of their atomic layers, in other words,
that the size of an atom is comparable with the distance from
one atom to t.e next. In the present chapter we shall review
the progress which has been made in determining from a study
of X-ray reflection the distribution of the electrons within the
atoms.

2. THEORY OF THE INTENSITY OF CRYSTALLINE REFLECTION

51. Perfect and Irregular Crystals

The investigation from the theoretical standpoint of the in-
tensity of the X-rays reflected from crystals has occupied the
attention of a number of writers.! Comparison of these theories

1P, Debye, Ann. d. Physik, 43, 49 (1914). C. G. Darwin, Phil. Mag. 27, 315 and
675 (1914); 43, 800 (1922). W. H. Bragg, Phil. Trans. 215,253 (1915). A.H. Comp-
ton, Phys. Rev. 9, 29 (1917). W. L. Bragg, James and Bosanquet, Phil. Mag. 41,

309 (1921). H. A. Wilson, Phys. Rev. 18, 396 (1921). P.P. Ewald, Phys. Zeitshr. 22,
29 (1925). W. Duane, Proc. Nat. Ac. Sci. 11, 489 (1925).
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with experiment has shown that the crystals which we ordi-
narily use are by no means perfect. On the other hand, there is
enough regularity in the crystal structure so that when turned
near the angle of maximum reflection the atoms inside the
crystals are partially shielded by the reflection of the X-rays
from the surface layers of atoms. We may distinguish between
the two limiting cases of a crystal so perfect that we can treat it
as a perfectly regular arrangement of atoms, and the case of a
crystal so irregularly formed that the components which are
sensibly perfect are so small that the upper layers of atoms do
not appreciably shield the lower layers from the incident X-rays

FiG. 62.

when the crystal is so oriented that it gives the maximum reflec-
tion. It is found that a good piece of calcite approximates a
perfect crystal, whereas rock-salt is more nearly what we may
describe as an “ irregular crystal.”

No real crystal lies strictly in either category. It is easier,
however, to prepare an approximately “irregular ” crystal than
to prepare one that is nearly perfect—it can be made irregular
by grinding to a powder if other methods are ineffective. The
most important case is therefore that of the irregular crystal.
We can examine this problem by considering first the intensity
of the diffracted beam from a very small crystal, and we can
then find the effect of groups of such components in the form of
crystalline aggregates or of powdered crystals.
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52. Diffraction by a Very Small Crystal

Let us consider the amplitude of the wave scattered by a
single electron placed at some point O in the mid-plane of a layer
of atoms (Fig. 62). For convenience we shall first take an inci-
dent wave whose electric vector E, is perpendicular to the plane
SOP. 1If this vector is represented by

E, = A,cos (pt + 9), (5.02)
then, by equation 3.10, the resulting field at P is
E, = 4, cos (pt + 4A), (5.03)
where
A4, = A‘,ez/mrcz, (5 '04)
and
A=5§—pr/e

If all the electrons in an atom were exactly in the midplane
of the atomic layer, and if the glancing angle 4 is given by the

relation
n\ = 2D sin 0,

all the rays scattered to P would be in the same phase, and the
resulting amnlitude would be the sum of the amplitudes due to
the individual electrons. But if an electron is at a distance z
from the middle of the atomic layer to which it belongs, the
path of the ray scattered to P is increased by 2z sin 6, and its
contribution to the amplitude of the ray scattered by the atom
is accordingly

A, = A, cos (—Q-)Z-rzz sin 0>.
We may express the probability that any electron will be at a
height between z and 2z + 4z above the mid-plane of the layer

of atoms to which it belongs as p(z)dz. The probable contri-
bution to the amplitude by any electron is then,

4, = /lofap(z) cos <4—:—z sin 0>dz, (5.0%)



122 X-RAYS AND ELECTRONS

where 4 is the maximum possible distance of an electron from
its atomic layer. If there are a number Z electrons in each
atom, the amplitude due to an atom is thus

—_— 2
74, = AF, = FAd.° | (5.06)
mrc*

where

F=17 j "’ (z) cos <-4;:§ sin O)dz. (5.07)

The quantity F'is called the “ structure factor ” of the atom.
Let us now imagine a volume element dx dy dz of a simple
cubic crystal composed of a single kind of atom. This crystal
element is large enough to contain a large number of atoms but
is so small that when oriented near the correct angle the
phases of the rays diffracted by all the atoms are sensibly the
same except for multiples of 2r for different atomic layers. If
there are # atoms per unit volume, the amplitude of the ray
diffracted by such a volume element is, in view of equation

(5.06),
dd = nd,Fdxdydz. (5.08)

Iet us suppose for convenience that each of the very small
crystals has the form of a rectangular parallelopiped whose
edges are ox, 5y and 6z. We have assumed that the dimensions
of this crystal are so small that the rays are not appreciably ab-
sorbed on passing through it, and it follows that the phase of the
wave diffracted by the whole crystal is the same as that from an
atom at the center of the crystal. We shall therefore take this
point as the origin of coordinates. Consider the case when the
ray is incident (as in Fig. 63) at a glancing angle 6 + «, where
sin 0 = n\/2D, and is diffracted at the angle 6 + 8, v where
the angle v is measured in a plane perpendicular to SOP. A ray
diffracted from a crystal element at a point x, y, z in the crystal
traverses a path which is longer than that from an atom at O by

x(a — B) sin 0 + yy + z{2sin § 4+ (a + B) cos 6},
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if second order terms in a, B and v are neglected. Considering
the manner in which we defined d.7 (equation §.08), it will be
seen that the diffracted rays from all parts of the crystal are in
the same phase, except for integral muitiples of 2x, when the
difference between their paths is 2z sin 6. Neglecting multiples

I~

5x

Fic. 63.

of 2, the phase of difference between the rays from «, y, z and
from O is accordingly

5 = E;I{x(a — B) sin 6 + yy + z(« + B) cos 8}.  (5.09)

The amplitude of the ray reflected by the whole little
crystal is (by eq. §.08),

52/2 )
Ay = ndF f f cos 8-dx dy dz

J—8z/2 ou/2 -6x/2
sin £ sin 7 sin
= ;1/L,F-——E =1 ‘—Séxayaz, (5.10)
£ n $
where
oX .
£ =B — a)—):- sin 6,
)
n= WT%)

¢ =m(la + B)% cos 6.

We have seen that the intensity of a wave the amplitude
of whose electric vector is 4, 1s

I, = cA:2/8r. (5.11)
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Substituting the value of 4; found above we should thus obtain
the intensity of the ray diffracted in the direction 8, v. How-
ever, we usually measure with an ionization chamber the rays
diffracted at all angles B, v at which any appreciable intensity
is observed, i.e., effectively,

P =fwrdﬂf rdvI,. (5. 12)

This is the “ power,” or energy per unit time, diffracted by the
crystal when the incident rays strike at an angle 6 4+ «. When
we determine the energy represented by the area under a spec-
trum line, we sum up the power of the diffracted ray for all
angles « at which the intensity of the diffracted ray is measur-
able. A common procedure for doing this is to rotate the crystal
with a slow uniform angular velocity o past the angle 6. The
angle a then lies between a and a + da for a time da/w, and the
total energy diffracted near the angle 6 as the crystal is rotated
s

W, = f_ i Pl—‘i—“- (5.13)

Substituting the value of P, given by equations (5.12), (5.11)
and (§.10), this expression becomes:

cr? . T
W, = n2402F26x26y26z2fff
rw J

sin? {{l(ﬂ - a)} sin? {k’y} Si_n?ﬂ{/(a + B)}
PE—aF () Plat o

a'adﬁa"y,

where
ox . ) (4
h = m=sin 9, = w%, /= m~ €0s 0.

The portion of this expression within the integral signs has the

value #3/24kl, whence
cr2n? A 2F2)\3

W= —-—

8rw2 sin @ cos 6

= £ 421 et n2F2)3

87 ' w m2c* sin 20

ox oy 62

3
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since 4, = A,e*/mrc?, where 8/ = sx3yéz. But the intensity

of the rays incident on the crystal is I, = £ 42 Thus
T

I.et n2F2)3
wm?ct sin 20

Wy =

(5.14)

This represents the total energy reflected by the crystal when
illuminated by X-rays polarized with the electric vector per-
pendicular to the plane of reflection, when the crystal is turned
past the angle of maximum reflection ¢ at a uniform angular
velocity w.

If we had considered an incident ray whose electric vector
lies in the plane of reflection, it is clear that the electric vector
of each diffracted ray would have been reduced by the factor
cos 26, so that the intensity, and hence also the total reflected
energy would have been reduced by the factor cos? (26). Thus
if 772 is the energy of this component of the reflected beam,
since the intensity of each component of the unpolarized inci-
dent beam is equal on the average to half the whole incident
intensity 7,

W, = Wi cos? 20,
and the whole reflected energy is
W=Ww+W,= W1(I + cos? 20)

et 3] + cos? 26

AN —— V. (5.15)

2w mict sin 20

We may thus write for the integrated reflection,

Waeo 1 et 1+ cos? 20

. = p2)\3[2

T =N E ’ (5.16)
= Qd/.

In this expression /7 is the total energy diffracted by a small
crystal of volume 87, as it is turned past the angle 6 with a uni-
form angular velocity w. I is the intensity of the incident (un-
polarized) beam, 7 is the number of atoms per unit volume of
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the crystal, \, ¢, 7 and ¢ have their usual values, and F is the
“ structure factor ” defined by equation (5.07).

No mention has been made of the cffect of the thermal
agitation of the atoms in the crystals. Debye and Darwin have
tried to take account of this motion by introducing into equa-
tion (5.16) a factor of the form ¢=#*"’ where B depends upon
the temperature and the nature of the crystal. As we shall sec
below (§ 55), experiment does not give great confidence in the
applicability of these calculations to our problem. The struc-
ture factor F, since it depends upon the distances of the elec-
trons from the middle of the atomic layers, will take account of
the thermal displacements of the atoms, and in view of the un-
certainties of the thermal calculations it is probably wiser to
leave our expression for the reflected energy in its present form.

53. Diffraction by an Irregular Crystal

In order that a crystal may be so small that the absorption
within the crystal is negligible, it must be too minute to reflect
an X-ray beam of measurable intensity. To compare the re-
sults of our calculation with experiment we must therefore con-
sider the effect of such tiny crystals in large aggregations. Two
cases are of importance, an imperfect crystal composed of such
little crystals oriented at random over a range of angles so
narrow as to retain many of the characteristics of a single crys-
tal, and a wholly random composite of little crystals such as
are used in experiments with powdered crystals.

54. Case of Transmission of Diffracted Rays

Let us consider first the case of the diffraction of X-rays as
they pass through an irregular crystal, as illustrated in Fig. 64.
We suppose that the phases of the rays from the component
little crystals are random, so we can calculate the energy in the
reflected beam by taking the sum of that reflected from each of
the component crystals. If uis the absorption coefficient of the
X-rays in the crystal, since the total path of the ray in the
crystal before and after reflection is 4 sec 6, all the rays are re-
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duced in intensity by the factor e™***¢? But the volume
irradiated by the X-rays is 7/ sec 8, where .7 is the area of the
slit which limits the incident Irrequtar

X-rays. ] n 1 if- Crystal or
X-rays. The encrgy in the dif Cryarl e

fracted ray is thus given by (cf. =--
equation (5.16)) -7 ~
— h—3 — ;
Ve o T
—— = (.1h sec fe~#h>ec? — ~E-
-[ _— —_—==f - =~
) ) ) A VEEE R
where [ is the intensity of the T =
rays as they pass through the FIG. 64.

slit, and @ 1s defined by equa-

tion (5.16). This quantity is a maximum when A sec 0 = 1/p,
that 1s when the crystal is thick enough to reduce the intensity
of the transmitted rays to 1/¢ of that of the incident rays.
The reflected energy is then given by

We\ QA
<._—'_I >mﬂx. - ’ (5. 17)

eu

where ¢ 1s the Napierian base.

In performing the experiment one can more conveniently
compare the energy in the diffracted beam with the energy per
unit time, or power, of the rays which traverse the crystal.
This transmitted power is

P — I{,[e-—ph see o.
Thus
W

- = Qhsect, (5.18)

gives the ratio of the energy /7 in the diffracted ray to the power
P in the transmitted ray, when the crystal is turned with an
angular velocity, w.

55. Case of Reflection of Diffracted Rays

When X-rays are “ reflected ” from the face of a crystal, as
in Fig. 65, they really enter to some depth z and are then dif-
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fracted out again. The diffracted rays from a volume 47 at this
depth are reduced in intensity, due to absorption, by the factor

e—p‘zzcsco

The energy in the diffracted ray from a thick crystal is thus
given by

—_— = Qf A csc 0dze =22 5¢0)

where again A4 is the area of the slit limiting the incident
beam. On integration this becomes,

Wo QA

_7 - 2u (5 ) 19)
On comparing this result with equation (5.17), we see that the
energy “reflected” from a

crystal face is greater than the Crostal 225
ysta
maximum energy obtained by /Kﬁ\ l
the transmission method by a )/ > .
factor of ¢/2 = 1.36.

In this case also one usually
measures the intensity I of the FIG. 65.
incident beam by determining
the power P = AI transmitted through the slit when the
crystal is removed. We then have

Wo Q

T=;/; (15.20)

ht

This represents the “integrated reflection” as plotted in
Fig. 61.

It will be noticed that this expression involves the absorp—
tion coefficient u, whereas equation (5.18) does not. If, as is
usually the case, the crystal is sufficiently regular to make the
extinction due to reflection at the angle 6 comparable with the
ordinary absorption, the appropriate value of u is difficult to
determine. Under such conditions equation (5.18) can be com-
pared with experiment more reliably than can equation (5.20).
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56. Diffraction by Powdered Crystals

A powdered crystal may be considered as an aggregation of
very small crystals whose orientation is wholly random.
Imagine that ON is the normal to a plane in the crystal of the
type which gives a reflection maximum at the angle 6. It will
be seen from Fig. 66 that the probability that this normal will

ore

da

FiG. 66.

be so oriented that the glancing angle of incidence lies between
064 aand 8 + a + da is

27 cos (0 + a)da

4T

since a is small compared with 6. If there are a number p of
planes of this type in the crystal, e.g., for the (100) planes there
are p = 6 cube faces, for (110), p = 12, for (111) p = 8, etc.
(cf. p. 107, Table IV-2), the probability that some one plane
will have this orientation is thus

I
= — cos 0de,
2

3p cos bda.
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If P, is the power diffracted by the crystal for a glancing angle
of incidence 6 4+ « (eq. 5.12), the probable power diffracted for
a random orientation is therefore

?51 =f 1)1 . }p cos 0da.

These integration limits can be used since the diffracting power
is negligible except for small values of a. Substituting from
equation (5.12) we have thus,

pl = }p Cos 0[[[7‘:[1({01({3/{7,

which, by comparison with (5.13) and (5.14), becomes

% et AN
Po=11 P TNy
V7 ah e ein g

On introducing the polarization factor }(1 4 cos® 26) as before,
we obtain !

P 1 \ et 1+ cos?2f
D = 21ONS vV
7= gP” o mict smg
= ()-3p cos §8V. (5.21)

The quantity P is the probable power diffracted in a cone of
semi-apex angle 20 (Fig. 66). If the rays are measured by an
ionization chamber at a distance r with a slit of a length /
which is short compared with 7 sin 26, and if the width of the
slit 1s great enough to take in all the angles « at which any
measurable power is diffracted, then the power entering the
chamber is P, = Pl/2x rsin 26. Also, if A is the area of ‘the
slit limiting the primary beam, the power of this beam is P =
AI. Thus the ratio of the power of the diffracted beam entering
the ionization chamber to that of the primary beam is

P, / plsvV

P = ardrsinag 93P 80 = Qg

8w Arsin 0 (5.22)

1'This is the same as Darwin’s equation (10 4), Phil. Mag. 43, 827 (1922).
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Probably the most satisfactory method of comparing the
intensity of the primary rays and the rays diffracted by pow-
dered crystals is that pictured in Fig. 64. The little crystals
are molded into a plate of thickness 4, which is turned at half
the angular rate of the ionization chamber, so that the absorp-
tion is the same for the primary and the diffracted rays. In
this case the total volume exposed to the X-rays is 44 sec 6.
But there are interstices between the little crystals, so that the
volume of the crystals traversed by the X-rays is

’

1A sec 6. P )
p

where p’ 1s the density of the crystalline mass, and p is the
density of the individual crystals. Thus the ratio of the power
of the rays scattered to the ionization chamber to the power of
the primary rays that have traversed the crystal mass 1s

P, pl o’

7= Qrdrsinay Thseco

p//zp 1
41rrp sin 26’

(5.23)

If we calculate in a similar manner the power of the rays
“reflected” from a thick plate of powdered crystals set as in
Fig. 65, we find
P / p I

P

P~ %i6r ur p sin 9

(5.24)

In these expressions, p is the number of surfaces in a crystal
of the type considered, /is the height of the slit of the ionization
chamber, 4 is the thickness of the crystal mass, 7 is the dis-
tance from the crystal mass to the ionization chamber, o’ is
the density of the crystal mass, p is the density of the in-
dividual crystals, Q is defined by equation (5.16), 6 is the
glancing angle of incidence of the X-rays on the crystal. u is
the absorption coeflicient in the crystal mass.
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3- MEASUREMENTS OF INTENSITY OF DIFFRACTED X-RAYS

57. Measurements on Powdered Crystals

In deriving these formulas for the reflected X-rays we have
supposed that each of the component crystals is so small that
the intensity of the incident rays is not appreciably reduced on
traversing the crystal. We should expect this condition to be
most nearly satisfied in the case of the diffraction by finely pow-
dered crystals. Because, however, of the low intensity of the
rays diffracted by powdered crystals, very few ionization
measurements of their energy have been made.

Bearden, working in the author’s laboratory, has neverthe-
less recently succeeded in measuring the Ka line of molyb-
denum after it has been diffracted by powdered crystals of rock-
salt.t The crystals were ground in a mortar to an impalpable
powder, and were then molded into a thin flat plate. This
plate was placed in the position of the crystal on a Bragg spec-
trometer and were traversed by the X-rays in the manner
indicated in Fig. 64. The rays incident upon the plate had
been reflected from a crystal of rock-salt in order to separate
out the molybdenum Ke line. The conditions were thus those
assumed in deriving equation (5.23). The ratio P,/P was
measured by opening the slit until all the rays diffracted near
an angle 6 were received into the ionization chamber. The
measurement then consisted in observing the ratio of the
power received by the chamber at 26 to that received by the
chamber at the angle zero.

For the first order spectrum from the 100 planes of the
powdered rock-salt crystals, the ratio P,/P was found in a
typical case to be 3.01 X 1074, and for the second order, 0.324
X 107%. When these values of P,/P are introduced into equa-
tion (5.23) they give as the corresponding values of Q, .0232
cm. ! and .0045 cm. ™! respectively. On substituting in equa-
tion (5.16), the corresponding values of the structure factor F

1]. A. Bearden, Phys. Rev. 27, 796 1926. This measurement is much more precise
than an earlier one by Freeman and the author, Nature, 110, 38 (1922).
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are found to be (for the molecule of NaCl) 20.4 for the first order
and 13.2 for the second order reflection. This means that in the
first order the power in the diffracted beam is what it should be
if there were 20.4 electrons at the centers of the sodium and
chlorine atoms. Since the sum of the atomic numbers 1s 28,
and since the contribution of each electron to the amplitude of
the diffracted beam is necessarily somewhat less than if it were
at the center of the atom, this result is in good accord with the
predictions of the theory.

58. Measurements on Single Crystals

A greater number of experiments have been performed on
the reflection of X- -rays by single crystals of rock-salt. If such
a crystal were perfect it is clear that we could not apply to it
the theory based upon the assumption that the extinction due
to reflection is negligible. But it is found by trial that the
reflection from a rock-salt crystal is spread over an angle of
about half a degree, and within this range of angles reflects only
a small fraction (about § per cent) of the incident energy in the
first order from the (100) planes.

The absolute reflecting power must be measured using
mono-chromatic X-rays incident upon the crystals. Otherwise,
when the chamber is turned to receive the direct rays, not all of
the rays which enter are of the wave-length which is reflected.
A suitable arrangement for measuring the absolute reflecting
power is that shown in Fig. 67. The measurement may be made
by observing the total ionization as the chamber and crystal are
moved at a uniform angular velocity « past the spectrum line,
and this is compared with the ionization per second at zero
angle when the crystal is removed. Thus we obtain the in-
tegrated reflection ##w/P, which is given theoretically by
formulas (5.18) and (5.20).

By this method the author,! using a wave-length of .710A,
has found the value of #w/P for the first order reflection from
a cleavage face of rock-salt to be 4.0 X 1074, and W. L. Bragg

1 A. H. Compton, Phys. Rev. 10, 95 (1917).
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and his collaborators ! have found 5.5 X 10* for A\ = .613A.
These values correspond to values of the structure factor,
(Fer + Fxa) equal to 16.0 and 16.5 respectively, if calculated
using the ordinary values of the absorption coefficient. The
fact that these values arc appreciably less than the value F =
20.4 found by the powder method indicates that the conditions
of the experiments with the solid crystals are not exactly those
assumed in developing the theory.

Cryst;al
‘

ITomzation
Chamlrer

Fia. 67.

When a similar experiment is tried using a crystal of calcite,?
W w/P is found in a typical case to be 8.7 X 107 for A = 0.71A,
which, using the usual absorption coefficient 23.5 cm. ', corre-
sponds to a value of the structure factor per molecule of about
11. This 1s so much smaller than the sum 5o of the atomic
numbers in the CaCO; molecule that one becomes very doubtful
of the applicability of the formulas we have developed.

59. Effects of Extinction

That this doubt is justified may be shown in at least three
different ways. 1. Experiments by Davis and Stempel 3 have
shown that at the angle of maximum reflection from a cleavage
face of calcite almost half of the incident X-rays may be re-

1 W. L. Bragg, James and Bosanquet, Phil. Mag. 41, 309 (1921), 42, 1 (1921).

2 A. H. Compton, loc. cit.
3 B. Davis and W. M. Stempel, Phys. Rev. 17, 608 (1921).
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flected. It is obvious that this cannot occur without extin-
guishing the beam entering the crystal more rapidly than would
be the case if the usual 1bsorpt10n alone were effective. 2.
That such an additional extinction does occur in some cases
has been shown by W. H. Bragg ! by studying the intensity of
the X-rays transmitted by a thin diamond crystal as it is
rotated through an angle at which strong reflection occurs. He
finds that when the crystal is at the angle for maximum reflec-
tion, the intensity of the transmitted beam is considerably less
than for other angles. And 3, the fact that the reflecting power
of a crystal depends upon its degree of perfection is obvious
from the fact that a freshly cleaved crystal surface does not
give as great integrated reflection /7w/P as does the same sur-
face when ground.? The obvious interpretation of this fact is
that during the process of grinding the portion of the crystal
near the surface is broken into small parts which may be
oriented at slightly different angles and which may be slightly
offset, destroying the regular phase relations that hold for a
perfect crystal. The effect of introducing these faults into the
crystal is to reduce the extinction of the rays as they enter, so
that a larger volume of the crystal is effective in reflecting the
X-rays. Thus the poorer crystal gives the greater integrated
reflection.

6o. Determination of the Extinction Coefficient

Though these extinction effects are much more prominent
in the case of calcite than for rock-salt, it is obvious that they
must occur also to some extent with the latter crystal. In order
to determine the importance of this effect in the case of rock-
salt, W. L. Bragg, James and Bosanquet have measured the
integrated reflection by the transmission method (Iig. 64) of
rock-salt crystals of different thicknesses. It will be seen from

! W. H. Bragg, Phil. Mag. 27, 881 (1914).

? E.g., A. H. Compton, loc. cit., and Bragg and Bragg, X-Rays and Crystal Struc-
ture (1924), p. 219, who record a rock-salt crystal whose cleavage surface reflected
only 12.9 per cent as much as did a ground surface.
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the discussion on page 7 that if the length of the path of the
X-rays in the crystal is 7,

Wo
B Qte™", (5.25)

where P, = AI is the power of the rays incident upon the
crystal. An alternative form of this expression is

W
log '—P:t— = log Q — ul. (5 . 26)
Thus if log Ve is plotted as a functionof £, we should get straight

Py
lines whose slope is — u and which intersect the axis # = o at
log Q.
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In Fig. 68 is shown such a graph, with points representing
reflections by crystals varying in thickness from .25 mm. to
2.s mm. The curves represent data for the first, second and
third order reflections from the (100) planes (100, 200 and 300),
and the first order from the (110) plane. As will be seen from
Table V-1, the slope of the (100) curve represents an absorption
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coefficient of 16.30, whereas the normal absorption coefficient
of these rays (A = .613A) in rock-salt is 10.70.

TABLE V-1
REFLECTION AND ABSORPTION OF X-RAvs By Rock-saLt

(Bragg, James and Bosanquet)

. Effective Absorption Extinction Coefficient Reflecting Power
Reflection Coefficient A WPt
Arbitrary Units
(100) 16.30 5.60 100
(110) 13.60 2 90 5§
(200) 12 66 1.96 I 9o
(300) 10 72 .02 4.87

Normal absorption coefficient, 10.70.

Thus the value of the extinction coefficient is 5.60. For reflec-
tions of higher index than (300), these measurements indicate
that the extinction is negligible. For the lower order reflections,
it would seem that the formulas we have developed above can
be applied if instead of the usual absorption coefficient we use
instead the effective absorption coefficient, which includes the
extinction coefficient.

61. Experimental Values of the Structure Factor

Using this effective absorption coefficient in equation (§.20),
and solving for the structure factor by equation (5.16) we find,
corresponding to Bragg’s value of #w/P = 5.5 X 1074, Fyxa +
Fo = 20.4. Similarly, for the (200) reflection (second order
from 100 planes), Bragg finds, #w/P = 1.09 X 107* and pq =
12.66, whence Fy, + Fo = 11.4. The close agreement between
these values of F and the values 20.4 and 13.2 for the (100) and
the (200) reflections using the powder method, shows the
effectiveness of this method of correcting for the extinction.

In the case of rock-salt, we have seen in the last chapter that
when X-rays are reflected from the (100) and the (110) planes
or from the even orders of the (111) planes, the sodium and



138 X-RAYS AND ELECTRONS

chlorine atoms co-operate in their scattering, that is, the ampli-
tude due to a molecule of NaCl is the sum of the amplitudes due
to the individual atoms. For odd order reflection from planes
such as (111), where there are alternate layers of sodium and
chlorine atoms, however, the amplitude due to a molecule of

F1a. 69.

NaCl is the difference between the amplitudes due to the
chlorine and sodium atoms. When we calculate the structure
factor per NaCl molecule we thus get in the former case Fya +
Fo and in the latter case F;y — Fxa. These values of F), as based
on the data of Bragg, James and Bosanquet are shown as curves
I and I in Fig. 69, plotted as functions of sin 6.

The fact that the various values of F as thus determined lie
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on smooth curves, even though they are based on measurements
of reflections from planes with many different orientations, indi-
cates that the sodium and chlorine atoms have practically
spherical symmetry. This isotropic character of the atoms en-
ables us to estimate the structure factor of the individual atoms
at each angle. For taking at any particular angle the appro-
priate values of Fy + i and of Fa — Fy, from the curves I
and II, we have at once,

Fo %{(FCI + Fyxa) + (Fa — FNn.)}
Frao = Tif{(FCl + FNn) - (Fcl - FNa)}-

The structure factors thus calculated for the individual atoms
are given in curves 11T and IV.

and

4. REFLECTION BY PERFECT CRYSTALS, AND THE EFFECT OF
EXTINCTION

62. Difference between Reflection from Perfect and Imperfect
Crystals

Before we undertake to determine the electronic arrange-
ment corresponding to the structure factors determined in the
manner just described, let us consider the problem of X-ray
reflection on the assumption that the crystals which we use are
approximately perfect. In this case the extinction of the rays
due to reflection from the surface layers is of much more im-
portance than the ordinary absorption. It may be noted that
since the rays reflected from successive layers. of atoms are in
phase with each other, the *“ wave of reorganization,” proceed-
ing from the upper layers in the direction of the incident beam
and exactly opposite in phase, is much more effective in extin-
guishing the incident rays than we should suppose if we were to
consider separately the energy reflected from each layer in turn.
The result is that for a perfect crystal, the depth in the crystal
that is effective in scattering the X-rays is very small indeed.

That this must be the case was made obvious by Darwin,!
10 2 Naeurin Dhil Man aw anr frar.)



140 X-RAYS AND ELECTRONS

when he showed that a calculation such as we have carried out
above, if applied to a perfect crystal, predicts near the angle of
maximum reflection a reflection of many times as much energy
as is incident upon the crystal. The principle of the conserva-
tion of energy thus demands that the thickness of the layer
effective in reflection shall be much smaller than if it were deter-
mined by the ordinary absorption of the X-rays in the crystal.

63. Theory of Reflection from a Perfect Crystal

If near the angle of maximum reflection we neglect the
normal absorption in comparison with the extinction, Darwin 1
and independently though much later Ewald 2 have shown that
a perfect crystal should reflect all of the rays incident upon it
within a certain range of glancing angles, as is illustrated in
Fig. 70. If the incident rays are polarized in the plane of re-

]

o Reflection Coefficient—» ..

%
Fia. 7o0.

flection, and if the electrons were all in the midplanes of their
atomic layers (F = Z), the region of complete reflection should

1C. G. Darwin, Phil. Mag. 27, 675 (1914).

2 P, P. Ewald, Phys. Zeits. 26, 29 (1925). When Ewald alludes to the naive theories
of the earlier investigators he is apparently unaware that the theory he develops had
been worked out more completely eleven years before by Darwin, who recognized its
inadequacy.

3 The shift of the angle of maximum reflection from 6, to 8, + 3A6, may be con-
sidered as an effect of refraction. It is indentical with the departure from Bragg’s
law discussed in Chapter VII.
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extend from 6, (defined by #\ = 2Dsin 6,) to 8, + A6,.3 The
range of angles for complete reflection in this case is

ons, e? 1 1
T m 2 — p? sin 20

Ab, (5.27)
Here 7 is the number of atoms per unit volume, » is the fre-
quency of the X-rays and », the natural frequency of the elec-
trons. Since the crystals usually used are composed only of
light atoms, it is evident from our discussion of the scattering of
X-rays that »2 is very small compared with »? for all the elec-
trons which contribute to the scattering. This may therefore
be written, since » = ¢/},

v

(5.28)

anZeN2 1

Ab, = . -
¢ xme2  sin 20

In addition to the energy in the region A6, where the reflec-
tion is complete, there is also appreciable reflection in the neigh-
boring region where the intensity is falling gradually to zero.
Darwin shows that when the reflection in the latter region is
included the effect is the same as if there were complete reflec-
tion over an angular range of 4 Afo.

When the structure factor is less than Z, and when the in-
cident rays are unpolarized, the center of the reflected line re-
mains in the same position, but the region over which complete
reflection occurs is not so broad. When the electric vector is
perpendicular to the plane of reflection, the range of complete
reflection is A8,F/Z, whereas when the electric vector is in the
plane of reflection the range is A8.F cos (26)/Z. Thus for the
effective range of complete reflection for unpolarized rays

A = _g_np)g fiz }_w
Kis mc* 2 sin 26

2

= 4 e
srnI’)\ -5 cot 6. (5.28a)

The reflection of such unpolarized rays by a perfect crystal is
represented in Fig. 70 by the solid line.
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If the crystal is turned with angular velocity » past the
region of reflection of the wave-length A, the rays will be inci-
dent between 6 and 0 + A6 for a time A0/w. Since in effect the
reflection over this range is complete, the energy reflected during
this interval is

W = PAO/ w,
where P is the power of the beam striking the crystal. Thus
le —_ p— 4 2 6’:27 n
= A0 = 37;7117)\ et Ot . (5.29)

64. Comparison with Experiment

In the case of calcite, we have seen (p. 134) that the value of
Wa/P for a certain cleavage face, was 8.7 X 10=% for X =
0.71A. If in equation (5.29) we place F' = Z, that is, if all
the electrons were at the middle of the diffracting layers, an
assumption which gives the maximum possible reflection on
this theory, we find //w/P = 4.1 X 1073, less than half of the
experimental value. The fact that the theoretical and the ex-
perimental values are of the same order of magnitude may be
taken to indicate that calcite approaches the characteristics of
a perfect crystal. But the fact that the observed reflection is
definitely greater than is thus calculated can only mean that
calcite does not actually attain this standard.

Other experiments in this connection which may be com-
pared with Darwin’s theory for a perfect crystal are those of
Davis and Stempel,! in which they have measured the fraction
of the X-rays reflected from a crystal when the rays strike at a
definite angle near that for maximum reflection. Their appara-
tus is similar to that shown in Ifig. 67. The first crystal, cal-
cite in their experiments, served to collimate the rays, so that if
the face of the second crystal was parallel to the first the rays
struck the second at the angle for maximum reflection. The best
reflection from the second crystal was obtained when a good
calcite crystal was cleaved and the two halves were used for the

1 B. Davis and W. M. Stempel, Phys. Rev. 17, 608 (1921).
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collimating and reflecting crystals. Under these conditions they
observed a maximum reflection coefficient as great as 44 per
cent with the second crystal at the best angle. This is to be
compared with the 100 per cent, or complete reflection pre-
dicted by the theory. The angular breadth of the reflected
band, measuring to where the intensity is reduced to half of its
maximum value, is in Davis and Stempel’s experiments 18
seconds of arc when N = .68A, which may be compared with
Darwin’s prediction that A6, = 5.8 seconds, though there is no
reason to suppose that the two angles should be exactly the
same. We may draw the conclusion from these experiments
also that, although a crystal of calcite may approach perfection,
it is yet too far from perfect for us to apply to its reflection the
theory for a perfect crystal.

Since calcite is one of the most nearly perfect crystals which
we have to study, there thus seems little hope of being able to
apply the theory for a perfect crystal strictly to any real crystal.
On the other hand, we have seen that the theory for an irregular
crystal is not strictly applicable even to a crystal as imperfect
as rock-salt—much less to calcite. Ior real crystals, therefore,
we may expect to find reflection occurring in a manner which is
intermediate between that described by equation (§5.20) and

that described by (5.29).

65. Effect of Extinction in Real Crystals

It is clear from this discussion that it is hopeless to try to
find a crystal so nearly perfect that we can apply to it with
confidence the formulas for reflection from a perfect crystal. If
we are to succeed in our efforts toward determining the distri-
bution of the electrons, we must therefore look for irregular crys-
tals, to which we can apply the other set of formulas. But
what degree of imperfection must a crystal have in order that
we may consider it irregular? This question has recently been
examined in detail by Darwin.! He distinguishes two types of
extinction, “‘ primary > extinction, which occurs within each

1 C. G. Darwin, Phil. Mag. 43, 800 (1922).
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little block that acts like a perfect crystal, and secondary ex-
tinction, which represents the shielding of the blocks deep in
the crystal by the reflection of the X-rays from the blocks near
the surface. If both types of extinction can be made negligible
the crystal mass may be classed as what we have called an
irregular crystal.

Regarding the primary extinction, at the angle of maximum
reflection from the (100) face of a perfect rock-salt crystal,
under the conditions of Bragg, James and Bosanquet’s experi-
ments, this is about 140 times as effective as the ordinary
absorption coefficient. If the crystal has a thickness of 7 layers
of atoms, Darwin finds that the correction to the reflecting
power /# w/P due to the primary extinction can be made to a
close approximation by multiplying the values given by equa-
tions (5.16), (5.18) and (5.20) by the factor

tanh mgq
—-———mq ) (5.30)
62
where q= nFDkEFZ- csc 8, (5.31)

D being the distance between the atomic layers, and # the
number of atoms per unit volume. In applying this correction,
however, the difficulty arises that there is no satisfactory
method for determining m, the number of atomic layers in
each effectively perfect block.!

Estimates of the extinction coefficient by determining the
effective absorption of the X-rays in the crystal, as Bragg and
his collaborators have done for rock-salt, give only the second-
ary extinction coefficient. The primary extinction in each little
perfect block of the crystal struck by X-rays at just the right
angle might be almost complete, yet the average extinction co-

! Darwin discusses a possible method of finding this correction by a study of the
form of the reflection curve for different angles of incidence (9 + «). He considers it
doubtful, however, whether application of the method to a real crystal is practicable.
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efficient might be low because only a few of the blocks were
properly oriented. The maximum value of the primary extinc-
tion coeflicient 1is accordmg to Darwin ey, = anMZ/ mc2.
Since F decreases with increasing 6, the extinction is most im-
portant for small angles or low orders of reflection. For the
(100) reflection of X .683A from rock-salt, €y, = 1500. That
is, 1f we wish to limit the primary extinction to 1 per cent, the
linear dimensions of each perfect block must be less than .01/
1500 = 7 X 1070 cm., or only about 250 atomic layers. Thus
in order to be certain that the results are unaffected by primary
extinction, we should have to pulverize the crystals until the
individual pieces are barely visible with the high power micro-
scope.

It is probable, however, that in many cases the primary
extinction is negligible even for crystals of large size. For on
a visible scale we find that rock-salt crystals have their surfaces
twisted and bent, and if this is also true on a microscopic scale
the phase differences between successive atomic layers must be
irregular except for very small thickness of the crystal. More-
over, since we have seen that grinding and polishing makes a
crystal face less perfect for an appreciable depth below the sur-
face, it is probable that if a crystal is ground into units of a
given size the parts of each unit that are sensibly perfect are
much smaller than the units themselves.

The problem of the secondary extinction is not so difficult.
Even this, however, is not quite as simple as we have supposed
when we have attempted to correct for the mutual effect of the
different layers by adding an * extinction coefficient ” to the
normal absorption coefficient. In making this correction we
take into account the reduction in intensity at the lower layers
due to reflection of part of the X-rays by the upper layers. But
we neglect the additional effect on the upper layers of the partial
reflection of the X-rays by the lower layers. Even in the case of
rock-salt under the conditions of Bragg’s experiments about §
per cent of the X-ray intensity at the crystal surface when
oriented near the angle 6 is due to rays reflected from within the
crystal. The effect of this is to make the reflected beam slightly
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more intense that it would be if the extinction alone were
considered.!

It can be shown that this tertiary radiation effect is more
important for thick crystals than for thin ones. Experimental
curves such as those shown in Fig. 68 should for this reason
tend to be slightly concave upwards. The fact that they are
sensibly straight may be taken to indicate that in the case of
rock-salt the tertiary reflection is not important. Even had the
experimental curve been concave, it is clear that the intersection
of the curve with the axis # = o would give log Q. Thus the slope
of a straight line drawn from this intersection to meet the
experimental curve at about # = 1/4 would give an effective
absorption coefficient that would enable us to calculate Q very
closely from the observed value of /#w/P. The method used
by Bragg for estimating the effect of the secondary extinction
thus seems to be adequate.

66. Criteria for Detecting Primary Extinction

There are at least three ways of testing whether it is per-
missible to neglect the effect of primary extinction in a set of
experiments such as those of Bragg, James and Bosanquet.
1. If two samples of the crystal which differ widely in the per-
fection of their structure give the same value of Q, presumably
the primary extinction is unimportant. 2. A test of the same
kind might be made comparing the value of Q obtained using a
large conglomerate crystal with that obtained using finely pul-
verized crystals. 3. We have seen that if primary extinction is
the important factor in determining the penetration into the
crystal, the reflecting power /#’w/P should be proportional to
F, whereas if the primary extinction is negligible /#w/P should
be proportional to 2. In a crystalline compound such as
NaCl, where by comparing the reflections from different planes
it is possible to distinguish the reflections from the different
atoms, we can tell to which factor the reflection is proportional.

1 Darwin gives a somewhat detailed discussion of this matter in his 1922 paper. It

is also considered mathematically from certain aspects by K. W. Lamson, Phys. Rev.
27, 624 (1921),
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Bragg, James and Bosanquet found about the same values
of Q for a considerable number of different crystals which were
sufficiently imperfect, thus satisfying the first test.

We have seen that the value of Q measured by Bearden for
powdered crystals is identical with that of Bragg, James and
Bosanquet for the (100) reflection. Both Havighurst! and
Bearden have failed to find any difference in the intensity of the
reflection from powdered NaCl crystals according to the fineness
of grinding. This indicates that no effect of primary extinction
is present with the powdered crystals. Thus it seems also that
Bragg and his collaborators have succeeded in correcting for the
extinction with the solid crystals of rock-salt.

For the (200) and (300) reflections Bearden’s values of # ob-
tained from powdered crystals are larger than those of Bragg,
by an amount that seems to be greater than the experimental
error. This would indicate that for these reflections the correc-
tion made for the extinction coefficient with the single crystals
is somewhat too small. Havighurst, also using powdered crys-
tals, has however obtained results agreeing with those of
Bragg.

The third test supplies the answer to a riddle which has long
been a source of confusion. In the case of rock-salt we have
seen that in separating the effects of the sodium and chlorine
atoms we get consistent results if we assume that the amplitude
is proportional to F' and the intensity F2 This satisfies our
test for the absence of primary extinction. But in order to
interpret the spectra obtained from calcite, W. H. Bragg 2 has
shown that one must assume that the intensity rather than
the amplitude of the reflected ray is proportional to the
atomic number. Bragg wrote me in 1916 that some of his
results point one way and some the other. We now see that it
is the degree of perfection of the crystal which determines
whether the intensity is more nearly porportional to F or to F23

1R. J. Havighurst, Phys. Rev. (1926).

2 W. H. Bragg, Phil. Trans. Roy. Soc. A., 2185, 253 (1915).

3 A paper by B. W. James has recently appeared (Proc. Roy. Soc. A. 109, 614, 1925)
in which this criterion for distinguishing between perfect and imperfect crystals is
developed in detail.  See also W. L. Bragg, Phil. Mag. so, 306 (1925).
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We may thus rest assured that in these experiments on rock-
salt the primary extinction is of little if any importance, while
the method of allowing for secondary extinction seems to be
adequate. The values of the structure factor F calculated from
these measurements can thus be used tentatively as the basis
for calculating the distribution of the electrons within the
atoms. '

§. THE DETERMINATION OF ELECTRONIC DISTRIBUTIONS FROM
A KNOWLEDGE OF THE STRUCTURE FACTOR

67. Three Methods of Calculating the Electron Distribution?

We are now prepared to undertake the interesting and im-
portant problem of finding what arrangement of electrons will
account for the experimental values of F. Three methods of
attacking this problem have been used. These are a method
of trial, the use of an empirical reflection formula, and an
application of Fourier’s series.

68. Method of Trial
In the method of trial,2 one assumes various arbitrary
values of p(z) in the expression for the structure factor,
D/2

F=2| »@) cos <47r5 sin 0>a'z. (5.07)
D/2 A

It can readily be shown that if there is a group of electrons
arranged at random on the surface of a spherical shell of radius
r, then for each of these electrons

P = 1/2r, (5.34)

between the limits — » and . The value of F for a shell of m
electrons is thus

mf’ ! cos ( z sin 0>dz =m
- 2r 4">\

1 A. H. Compton, Phys. Rev. g, 49 (1917).

sin <47rf sin 0)
- —— (5.35)
4wy sin @
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Thus for an atom composed of a number p of such electronic
shells the structure factor is

Y e o 7o s
F = .;,,m, sin <47r)\ sin 0)/(4#)‘ sin 8). (5.36)

When this method is applied with care, it gives results which
are perhaps as reliable as those obtained by the more direct
method of Fourier series.

Bragg, James and Bosanquet have used this method in
analyzing their data for the intensity of reflection by rock-
salt. From an exhaustive study of the various possibilities,
they find the best agreement with the experimental values !
of ¥ when the distribution of electrons on shells is as follows:

Sodium, 7 electrons on a shell of radius 0.29A
3 electrons on a shell of radius 0.76A
Chlorine, 10 electrons on a shell of radius 0.25A
5 electrons on a shell of radius 086A
3 electrons on a shell of radius 1.76A

Bragg and his collaborators ——
have found, however, using a
method similar to that described
in section 70, that a better
agreement with the experimental
data can be obtained assuming
a continuous distribution of the
electrons. The most satisfactory
agreement with the experimental

1 1 | 1 1
2 4 6 ¥ Lo 12

ot leclrons per Angst-6m

data w.as obtamed with the C!CC- Angstrims from center
tron distribution shown in Figs. FrG. 71.
71 and 72.

69. Use of Empirical Reflection Formula
The second method of solution consists in finding an em-
pirical formula, such as expression (5.01), which represents the

tIn the work of Bragg, James and Bosanquet the factor F was corrected for the
effect of the thermal agitation,
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experimental data, and equating this expression to the appro-
priate formula which gives the theoretical intensity in terms of
the structure factor. Thus we may place expressions (§.01)
and (5.20) equal to each other, obtaining

8u m2ct
72N ot

F?2 = Ce~Bsin®0 cot ¢, (5.37)
The factor ¢~ 2"*? was introduced into the empirical formula
from theoretical considerations to take account of the thermal
agitation of the molecules (cf. infra, p. 159). Dropping this

T T ] 1 T 1 1 1 ,
13
)
&
']
N
<
1S
v
Q|
“
R
£
<
] L ! 1 L L I 1 !
0 .2 .4 L 14 16 1LY

6 . 10O
Angstroms frem center

Fi1G. 72.

factor is merely equivalent to correcting F2 for the temperature
agitation. In any case it differs only slightly from unity. If
we make the further approximation that cot § = csc 6, since in
the experiments 6 is never large, we may write from (5.37),

5 =-(p(z) cos <47r; sin 0>dz = Kesc¥6.  (5.38)

The only solution of this integral equation which satisfies the
physical conditions is !

p() =74 (5.39)
This corresponds to a distribution of electrons about each atom
for which the number of electrons in a spherical shell between a
distance » and » 4dr from the center of the atom is propor-
tional to 1/r'%,
1 A. H. Compton, loc. cit.
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Such a solution is of little value, since it implies an atom
with an infinite radius. It is interesting to note, however, that
the greater part of Bragg’s curve for chlorine is represented by
a curve very similar to the graph of 1/ (Fig. 72).

70. Method of Fourier Series

By far the most satisfactory method of determining the
electron distribution from the observed values of F is by an
application of a form of Fourier analysis. This method was
used first by W. H. Bragg,! though in a manner unsuited to
give accurate results. It has recently been put in a very usable
form by Duane,? and has been applied with valuable results by
Havighurst.3

Let us first write the expression for the structure factor in a
slightly different form. In most of this chapter we have
assumed that we are dealing with a crystal made of similar
atoms arranged on a simple cubic lattice. We can, if we wish,
refer any cubic crystal to a simple cubic lattice of points all of
which are identical. Thus for rock-salt, the lattice constant
would be 2 = 2D,90, where Do 1s the distance between succes-
sive layers of atoms in the 100 planes, and there would thus be
4 Na atoms and 4 Cl atoms associated with each point in the
lattice. F'may now be used to represent the structure factor
for this lattice unit. Considering for the present only reflections
from the (100) planes we then have

a/2
F=27 2(2) cos (41r; sin 0>dz,

—a/2

where Z is now the total number of electrons in the lattice unit.
Since #\ = 2a sin 6, where # is the order considering the grating

U W. H. Bragg, Phil. Trans. Roy. Soc. 2135, 253 (1915).

2 W. Duane, Proc. Nat. Acad. Sci. 11, 489 (1925). Duane’s method of treating the
problem is entirely different from that used here, being based on a quantum theory of
diffraction. He arrives, however, at identically the same result as eq. 5.48.

3R. J. Havighurst, Proc. Nat. Acad. Sci. 11, 502 (1925).
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z . z
space to be a, 4wy sin 0 = 2rn > whence,
a/2 2
Fo=7| @) cos (mrn;)dz (5.40)

—a/2

is the value of the structure factor for the nth order.

71. Electron Density at Any Height Above the Middle of an
Atomic Layer

Let us now express the number of electrons per unit
height, Zp(2), as a Fourier cosine series, thus: t

P=2Zp(z) = do+/¥1cosz1r2+dzc0341rz~+
+ A, cos 21rn2+... (5.41)
= 020:,/1, cos (27rrz>.
o a

The structure factor then becomes:

/2 ’ 2 2
F, = > A, cos (21:7‘-—) cos (21rn~~>dz.
—a/2 © a a

On integration it is found that every term vanishes except that
for which » = #, so that

a/2 P
F, = A, cos? <2m1;>a’z

—a/2
Thus
A, = =F,. (5.42)
The experimental determinations of F, carry with them there-
fore determinations of the coefficients of the terms in the

Fourier expression (§—41) for the density of distribution of
electrons.
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It is clear that the same procedure may be followed for
planes of any index. The results are especially instructive in
the case of (111) planes, since in this case for rock-salt we deal
with alternate layers of sodium and chlorine atoms. The only
necessary modification of equations (5—41) and (§—42) is to let
a represent the distance between the (111) planes of the space
lattice.

An illustration of a calculation of this type is given in
Fig. 73. Here the light lines represent the individual terms

2., 2z
—F, cos 2rn->»
a a

E Cl Cl
®

'E\ (11)) Planes
< 20- MaCl

i D=3243A. Ve

0 ]

Il .
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J. L _--1-:“"::;.’ 5

:r I l‘f z
z = Angstréms from original plane
Fia. 73.

where a1 = $<2.814A = 3.243A, and the values of F, are

those of Fiyy, Faas, .. ., per NaCl molecule as measured by
Bragg, James and Bosanquet, uncorrected for the temperature.
The heavy line represents

2 ® Z
Z32F, cos 2mn—s
a1 a

and therefore represents the value of P given by equation
(5—41) except for the constant term A,.

The value of this constant term can be evaluated from
equation (§—41) from the fact that

a/2
p(@)dz = 1.

-a/2
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But by (5—41),

a/2 1{0 © a/2 2
pR)dz = —a + z,f cos 2nr-dz,

—a/2 Z 1 —-a/2 a

or
a
I = ZAO + O,
whence,!
Ao = Z/a. (5.43)

The number of electrons in an elementary cube between the
heights z and z — 4z from the middle of an atomic lager can
thus be calculated from the expression

Z 2= pd

where 7 is the order of reflection from planes whose spacing is a.

In the case under consideration, for a molecule of NaCl Z =
28, and Ao = 28/3.243 = 8.63, if z is measured in Angstroms.
In Fig. 73, this value of A, is represented by the height from
the heavy base line to the light base line used for constructing
the component curves. The density of distribution of the elec-
trons at a distance z from the mid-plane of :a (111) layer of
chlorine atoms is thus proportional to the height P of the
heavy curve of this figure.

It will be noticed that midway between the large humps at
z/D =o, 1, ..., appear smaller humps. These of course repre-
sent the layers of sodium atoms between the layers of chlorine
atoms. In this method of analysis the existence of such alter-
nate layers of atoms is not assumed, but follows from the
observed values of F for the different orders. The fact that in
between the successive atomic layers the electron density does

LIf the Fourier series §—41 is taken from r = — o to r = 4 o instead of from
o to =, we have instead of equation §—42, Ao = Fy/a. Since forn =0, F= 2, it
follows at once that 4o = Z/a, which is equation §—43. Though this brings out more
clearly the relations between A, F and Z, the series used in the text has the practical
advantage of having only half as many terms.
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not fall to zero means that the outer parts of the sodium
and chlorine atoms overlap each other.

In order from this figure to make an estimate of the relative
number of electrons in the alternate atomic layers, it is neces-
sary to try to resolve the heavy curve representing the sum of
the electrons in both kinds of atoms into two curves, each repre-
senting the electrons in atoms of one kind. Such a resolution is
indicated by the broken lines, in which the area under the two
curves as measured by a planimeter is in the ratio of 1.80 : 1.00.
This is the ratio 18/10 = 1.8 to be expected if the valence elec-
tron of sodium has been transferred to chlorine. Though a dif-
ferent resolution might be effected, giving the ratio 17/11 =
1.54 corresponding to the complete atoms in each layer, we
may thus assume provisionally that the atoms are in the form
of ions, a conclusion reached by Bragg and his collaborators
from these data following a different line of argument.

(4] 4}

=§ (100) Planes
’%OI— Cl atoms of Hal!
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Fic. 74.

In order that the adjacent atomic layers shall not overlap as
in Fig. 73, we must consider planes in which successive layers
are farther apart. Thus if we calculate in the manner just de-
scribed the electron distribution for the (100) planes, using the
experimental values of Fq given in curve III of Fig. 69, we
find the values of P for the chlorine atoms shown in Fig. 74.
It will be seen that the planes are even in this case not far
enough apart to prevent some overlapping.

This difficulty can however be overcome by calculating the
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distribution for planes so far apart that overlapping of the
successive layers of atoms is 1mp0531ble 1 Thus Figs. 75 and
76 represent the distributions P in layers of chlorine and so-
dium atoms respectively calculated for a gratmg space of
6.134.2 Of course planes with such a grating space do not
exist in a crystal of rock-salt, but if they were present the
appropriate values of F should be given by the curves of Fig.
5-09. The values of F that have been used in calculating Figs.
75 and 76 are as follows:

TABLE V-2 4
Order Fp Fp Order Fy F,
(D = 6.13A) Cl Na (D = 6.13A) Cl Na
1 16 31 | 959 9 2 50 -91
2 12.35 8 20 10 1.86 .44
3 9 10 6.65 I 1.3§ 14
4 7 27 4.99 12 .92 .04
1 5.84 3 64 extrap. 4 13 .53 o

6 475 | 275 Py 24

7 3 8% 2 00 15 .0§

8 3.16 142 16 .00b
................. Ao 2 94 1.63

The values of F from order 2 to order 10 are read directly
from the experimental portion of curves III and IV of Fig. 69.

1 The logical extension of this method would be to calculate the distribution for an
infinite grating space. In this case the Fourier series (§.41) becomes a Fourier integral,

00
P, = a.f F; cos (272x)dx, (5.432)
o

where x = (2 sin 6)/\, and Fis the value of F taken from curves such as those of Fig.
5.09 but plotted against x instead of sin 8. The evaluation of this integral for various
values of z can be performed graphically, but the process is laborious. The result is
also probably less reliable than that obtained by evaluating a series as is done here,
both because of the inaccuracies of graphical integration and because knowledge is
assumed of the form of the extrapolated portion of the F curve, which is not used in
the series method.

? For this grating constant sin 8 = .og for the first order, which enables the values
of F to be read easily from Fig. 69.

.
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It can be shown that the manner in which the values for orders
higher than 10 are extrapolated to zero makes little difference
in the form of the electron distribution curve. For order 1 the

value of F is so chosen that the area f Pdz of the peak repre-
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senting the chlorine atom is 18 electrons, and that representing
the sodium atom is 10 electrons.!

The most striking feature of these curves is that the electron
density of the atomic layers falls definitely to zero, for chlorine

ltz
£

§‘ WNa Atoms of Nall
<k D=613A

Lol

H

S

L3

™

"

A L . " ] i

-5 0 5 7 4 Z g 3

Zz = Angstroms frem original plane

F1G. 76.

at about 2A, and for sodium at about 1.1A. It is highly im-
probable that the long straight portion between the humps at
the atomic centers, representing zero electron density, would
occur as a matter of chance. Its existence gives confidence
not only in the reliability of the method, but also in the

1 'The appropriate value of F is readily found by the help of equation (5. 52).



158 X-RAYS AND ELECTRONS

accuracy of the data used to calculate the different terms in the

Fourier series.
Duane! has called attention to the fact that from the

intensities of the X-ray spectra it is impossible to tell whether
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the coefficients of the terms in equation (5.41) are positive or

negative, and that the only reason for considering the phase

angle of each term to be zero is considerations of symmetry.

In Fig. 77 are plotted in three different ways the values of P
1 W. Duane, Proc. Nat. Acad. Sci. 11. 48q (1925).
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for chlorine using the data of Table V-1. Curve 1 is that given
in Fig. 75 as calculated from equation (5.41). In curve 2,
the coefficient of the 6th term has been taken to be negative,
the other terms having their former values. For curve 3 the

2 P4 1r . .
6th term was ;Fs cos (21-6; + 5) , showing the effect of intro-

ducing an arbitrary phase angle. The fact that curves 2 and 3
indicate impossible negative densities of distribution in some
places whereas curve 1 does not, confirms the correctness of
the assumptions that all the Fourier coefficients are positive
and that the phase angles are zero.

72. Electron Density at Any Point in the Space Lattice

The method of analysis that has just been discussed gives
the number of electrons in a sheet taken parallel to some
atomic layer. The electron density at any point, x, y, z within
the lattice can be calculated in the following manner.

Let us consider the reflection from the (4, &, /) plane in the
crystal. Writing s as the distance along the normal to this
plane, we have (equation 5. 40)

Dhki/2
Fory = Zf (s) cos zrnD —)a’.v. (5.44)
Drki/2 hkl

But by equations (4.05) and (4.06),
_hthky+k
Yy

and
D).u = a/V}Z2+k2+12.
Thus
C0S 27— = COS 21r—(hx + ky + &2). (5.4%)
thl

Let 4§ represent an element of area of an (4, , /) plane. Then
if p is the electron density at any point, pdSds is the number of
electrons in an element of volume. Accordingly,

Zp(s)ds = f f odS-ds,
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where the integral is taken over a surface of such an area that
D/2

the integral ds f fpdS will include a whole unit of
-D/2
crystal structure. That is

D/2 a/2 a/2 a/2
f dsffpdS =f f f pdxdydz, (5.45a)
D/2 —a/2 —a/2 —a/2

where 4 is the edge of the unit cube of the crystal structure.

Thus

a/2 a/2 a/2 n ’
Foomy =f f f pdxdydz cos {27r—(hx + ky + lz)}'
~a/2/ —a/2J —a/2 a
(5.46)
If we now represent the electron density p by the three dimen-

sional Fourier series,

L ]

= i Y X Ay cos 21rp cos 279",

-0 —W —0

2 cos 21r7'§, (5—464)

and integrate equation (§—46) using this value of p, all the
terms vanish except that for which
p=xnh, q=xnk, and r==xunl

We obtain thus

. Frory = Auh, nk, m* @
or writing
H=nh, K=unk, L=nl,

Aurr = %an.- (5.47)

On substituting in equation (§.454) the value of p given by
(5.46a) we obtain
Ao = Z/a8. (5.47a)

The electron density at the point x, y, z is thus

Prus = = —20}0 fi _ZwFHKL cos 21rH; cos 27rK; cos 21rL;) (5.48)
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where Fyxr, is the experimental value of the structure factor
for the nth order reflection from the (4k/) plane.

Equation (5.48) has been given by Duane (loc. cit.) on the
basis of an investigation by Epstein and Ehrenfest (cf. Chapter
X). Using the data for rock-salt supplied by Bragg, James and
Bosanquet, Havighurst ! has calculated from this expression
the electron densities at different points along various lines in a
rock-salt crystal. His results are shown in Fig. 78. The upper
curve represents the electron density at points along a line
drawn from one chlorine atom to the next, perpendicular to the
(100) planes. The hump midway between the two chlorine
atoms represents the sodium atom. Similarly, in accord with
the rock-salt structure shown in Fig. 4.05, a line drawn along
the diagonal of a cube face, as shown in curves 3 and 4, passes
successively through atoms of the same kind. In curve 3 these
are the chlorine atoms, and in curve 4 the sodium atoms.

Similar curves have also been calculated by Havighurst 2
for crystals of potassium iodide, ammonium chloride, and dia-
mond. Though the experimental values of F for these crystals
are not as precise as in the case of rock-salt, the power of this
method of analysis shows itself in the fact that though no
assumptions are made of the details of the crystalline structure,
each atom in the lattice reveals itself by the appropriate hump
in the electron density curves.

3. Radial Electron Distribution in Atoms

The number of electrons associated with one of the humps
shown in Fig. 78 is proportional to the volume of the hump
in a 4-dimensional diagram, 1 dimension representing the
density and the other 3 the distance from the center of the
atom along the X, Y, and Z axes. The difficulty of evaluating
such a volume numerically is obvious. However, if the atoms
are assumed to have spherical symmetry, as we have seen (p. 79)

1R, J. Havighurst, Proc. Nat. Acad. Sci. 11, 502 (1925). Havighurst used the value
of Aooo = o instead of that given by Eq. (5.474).
3 Ibid.
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is probably the case within experimental error, the number of
electrons in a spherical shell of radius 7 and thickness dr is

Udr = p-4nr3dr. (5.49)

Thus if U = 4772p is plotted against 7, the area under the
curve should represent the number of electrons in the atom.
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Curves of this type for sodium and chlorine, calculated by
Havighurst, are shown in Fig. 79. These curves are to be com-
pared with Bragg’s curves, Figs. 71 and 72, based on the same
data, but obtained by a different method.

It will be seen that the curves in which U is plotted against
r differ slightly according as 7 is taken along a cube axis or a
diagonal (see especially the curve for sodium). It is probable
that a more reliable average curve can be obtained using the
values of F taken from the smooth curves of Fig. 69, which
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assume spherical symmetry, than using the directly measured
values of Fukr. It is not necessary for this purpose to evaluate
a 3-dimensional Fourier series.

Let Fig. 8o be a curve, such as those shown in Figs. 75 and
76, in which the average linear density of electrons at a dis-
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tance z from the middle of an atomic layer is plotted against 2.
If there are Udr electrons between r and r + dr from the center
of the atom, the contribution to P due to these electrons is

dP = Udr-p(2),

where p(2) is the probability that each of these electrons is at a
height 2. We have seen, however, equation (5.34), that for
electrons at random on the surface of a sphere, p(2) = 3r.
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Thus
dP = L Udr,
2r

or
Udr = 2rdP. (5.50)

The contribution of these Udr electrons to the area of the hump
of Fig. 80 is thus an element of height 4P and of breadth
2z = 27, the diameter of the shell. We can accordingly imagine
the whole hump as made up of such elements of area, each

'P
_xdP
2r=2z
0 ZzZ—>
FiG. 8o.

representing a number 224P electrons on a spherical shell ot
radius 7 = z and of thickness dz.
From Fig. 80 we see that
dP dP
dP = — (—&—dz = - ;{z-—(l'r,
since r = z. Using the value of P given by equation (5.41),
and writing again » = z, we obtain,

dP ar . b4 . 22
- Z = D—[Al sin 215 + 24, sin 21r—D-— +.. }
Recalling that 4, = 2F,/D (eq. 5-42), equation (5.50) thus
becomes

r? . r
Udr = SWDE ?nF,. sin zwnﬁdr. (5.51)

The values of F, are the same as those used in evaluating P, as
in Figs. 75 and 76.
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The total number of electrons in the group may be obtained
by integrating Udr. If the grating space D is taken so large
that there is no overlapping of the atoms, the limits may be
taken from o to r = D/2. Thus

D/2 ® 8r (P2 | 2rn
Z = A Udr = ‘;’”F"BE£ 7 sin (—D—r>dr
=— 23:(— 1)"F,. (5.52)

74. Electron Distributions in Sodium, Chlorine and Aluminium

An application of formula (5.51) to the case of rock-
salt brings results of great interest. Using the experimental
values of F given in Table V-2 we obtain the curves shown in
Figs. 81 and 82, representing the radial distribution of the
electrons in sodium and chlorine respectively. These are to be
compared with Bragg’s curves, Figs. 71 and 72, and Havig-
hurst’s curves shown in Fig. 79. As compared with Bragg’s
curves, it is clear that the present straightforward method of
analysis may reveal irregularities in the electron distribution
curves which may easily be overlooked when the data are
analyzed by less direct methods. Bragg informs me that
curves 71 and 72 represent averages over the humps shown
in curves similar to those of Figs. 81 and 82, calculated by
Bosanquet using practically a Fourier method. They ironed
out the humps, doubting their reality. Havighurst’s curves,
on the other hand, limit the electron distributions to a much
smaller radius than do the distributions shown in curves 71, 72
and 81, 82. This may be due to the overlapping of the successive
atomic layers in the planes he has considered. It will be noted,
however, that Havighurst’s curve for chlorine shows humps at
.3 and .8 Angstrém, nearly coinciding with humps 4 and B in
Fig. 82, and his data suggest also humps in the curve for sodium
corresponding closely with those of Fig. 81.

The form of curves 81 and 82 depends somewhat upon the
manner in which the F curves of Fig. 69 are extrapolated to
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zero. This extrapolated portion is much more important in the
present case than in Figs. 75 and 76 because of the factor # in
the coefficient of each term of series (5. §1), which becomes large

Sodium

W=Eleclrons per Angsirim

1 oy 2
ra Angstréms from center of atom

Fic. 81.

for the extrapolated values of F. Alternative extrapolations of
the F values for large values of 7 give U curves which, while
similar to Figs. 81 and 82 in their general form, differ in the
position and prominence of the minor humps in the curves.
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The degree of uncertainty of these curves can be estimated
from the magnitude of their erratic variations. Thus in Fig. 81
a planimeter measurement shows that the total area under the
curve beyond the point C is zero, so that this marks the extreme
radius of the sodium ion. The irregularities in the curve be-
yond this point may thus be ascribed to errors of experiment
and extrapolation. Those in the chlorine curve beyond 2A
must be due to errors of a similar character. In view of the
factor 7 in series (5. 51), the amplitude of such erratic oscillations
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of the curve should be proportional to ». It will thus be seen
that errors of experiment, extrapolation, etc., may be re-
sponsible for most of the irregularities in these curves for radii
greater than 1.2A. It is improbable, however, that we can
account on this basis for any considerable part of peaks £ and B.

The two prominent peaks /£ and B of Fig. 81 can be resolved
into two components as shown by the broken lines. The areas
of these component humps are 8.08 and 1.92 electrons respect-
ively. That is, this electron distribution curve represents a
sodium ion consisting of 8 electrons all located so close to the
center that our method does not distinguish them from each
other, with two other electrons farther out, at a distance of
about .9A from the center of the atom.

It is probable that the breadth of the peaks is due chiefly to
the thermal agitation of the atom. An electron at the center of
its atom would on this account be displaced on the average at
an appreciable distance from the equilibrium center of the
atom. Thus it is clear that all the electrons, but especially those
near the center of the atom, are on the average moved by the
thermal agitation to a greater distance from the point in the
lattice at which the atom is in equilibrium. The scale of
the atom is thus somewhat distorted, the smaller radii being
magnified more than the larger radii. Of course, however, the
thermal motions cannot in any way affect the area of the humps,
so that our interpretation of the significance of the peaks
remains unaltered.

A similar examination of Fig. 82 shows that chlorine can be
considered as composed of 4 groups of electrons, 10 near the
center forming peak 4, 4 at B, 2 at C, and 2 at D. The radii of
the latter three electron groups are about .74A, 1.14A and
1.60A, uncorrected for thermal motion.

Some very recent experiments by Bearden! lead to values of
F which differ slightly but consistently from those of Bragg,
James and Bosanquet, and give a U curve for sodium in
which the peak B of Fig. 81 is absent. His curves for the elec-
tron distribution in chlorine are similar to that shown in Fig.

1]. A. Bearden, Thesis, Chicago, 1926.
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82, though the positions and areas of the peaks are somewhat
different. In view of these differences, one cannot place much
confidence in the details of the distribution curves here shown.
They need to be checked by measurements on other similar
substances.

As an example of such measurements, Bearden has deter-
mined the intensity of the lines diffracted by finely ground
metallic aluminium. For an element the experimental values of
F can be used directly in calculating the electgon distributions.
For this reason the data for aluminium are less subject to error
than are those for sodium and chlorine, since these are based on
differences and sums respectively of the /' values for rock-salt.
Bearden’s electron distribution for aluminium is similar to those
we have found for sodium and chlorine. There is an inner group
of 8 electrons, surrounded by shells of 3, 1 and 1 electrons.
The cdfisistency of these results for sodium, aluminium and
chlorine gives one considerable confidence at least in the general
form of the electron distribution curves thus obtained.

Emphasis may well be laid upon the fact that this method
of studying the distribution of electrons in atoms of a crystal
involves precisely the same assumptions as does the deter-
mination of the arrangement of atoms in crystals by X-ray
methods. Only greater carc has to be taken in the application
of the method, since we are now concerned with the ultimate
details of the crystal structure. In treating these problems,
however, we assume that the classical electrodynamics can be
applied rigidly to phenomena of X-ray diffraction. But diffrac-
tion is a special case of scattering, and we shall see in Chapter
IX that in certain large classes of phenomena of X-ray scatter-
ing the experiments depart widely from the predictions of the
classical theory. Grave doubt is thus thrown upon the funda-
mental reflection formulas upon which the discussion in this
chapter is based. The fact that the present analysis leads
definitely to atoms of finite size (Figs. 75 and 76), and the
reasonableness of the electron distributions at which we finally
arrive serve, however, to confirm one’s faith both in the
experimental data and in the reliability of the method of
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analysis of these data that has been developed. We seem at
last to be reaping the reward of the very considerable theo-
retical and experimental labor that has been spent in studying
the intensity of X-ray reflection.

75. Effect of Temperature on X-ray Reflection

Mention has several times been made of the fact that as the
temperature of the reflecting crystal rises, the integrated re-
flection diminishes. This was predicted by Debye ! soon after
the discovery of X-ray diffraction by crystals, and was experi-
mentally demonstrated by Bragg.? The theory of the effect
has been developed in detail by Debye 3 and Darwin,* and from
a widely different standpoint by Brillouin. 5 The validity of
Debye’s calculation has been examined also by Ifaxen ¢ and
Waller,” whose conclusions differ from those of Debye only in
minor details. At the present writing, the experimentalstudies
of W. H. Bragg,® Backhurst,? Jauncey,!® Collins,'t and James,'?
though showing an effect of the predicted order of magnitude,
do not support the theories quantitatively. We shall therefore
discuss the problem only briefly.

The electron distributions shown in Figs. 81 and 82 exhibit
clearly the effect of the thermal motions of the atoms in the
breadth of the peaks due to electron groups. The effect of the
random thermal diplacement of the atoms from their normal
positions will be to introduce random phase differences
between the rays scattered by the different electrons, and thus
to reduce the intensity of the reflected ray. It is found pos-

1 P. Debye, Verh. d. D. Phys. Ges. 15, pp. 678, 738, 857 (1913).
2 W. H. Bragg, Phil. Mag. 27, 881 (1914).

3 P. Debye, Ann. d. Phys. 43, 49 (1914).

4 C. G. Darwin, Phil. Mag. 27, 325 (1914).

8 L. Brillouin, Ann. de Phys. 17, 88 (1922).

¢ H. Faxen, 7. f. Physik, 17, 266 (1923).

7L. Waller, Z. f. Physik, 17, 398 (1923).

8 W. H. Bragg, Phil. Mag. 27, 881 (1914).

? I. Backhurst, Proc. Roy. Soc. 102, 340 (1922).

10 G. E. M. Jauncey, Phys. Rev. 20, 421 (1922).

1LE, H. Collins, Phys. Rev. 24, 152 (1924).
12 R. W. James, Phil. Mag. 49, 585 (1925).
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sible "2 to represent the effect of the thermal agitation by in-
troducing into the reflection formula, equation (5.16), a factor

D= e—-Bsinﬂa’ (553)
usually known as the “Debye factor.” If one uses the Maxwell-
Boltzmann form of the kinetic theory to calculate the atomic
displacements, the constant B is

1672kT
B = ”fw“if’ (5.54)

where £ is Boltzmann’s constant, T is the absolute temperature,
and f is the force on the atom per unit displacement. Using,
however, Born and Karman’s modification # of Debye’s specific
heat theory, which treats the heat motions as a series of elastic
waves, Debye finds either

_ 64 ¢(x)
= o x (5-55)
or
_ ot ﬂ@]
B = Ex?e{a, + x ) (5.56)

according as he assumes respectively the absence or the exist-
ence of a zero-point energy. In these expressions 4 is Planck’s
constant, u is the mass of an atom, © 1s a temperature character-
istic of the crystal, x = 6/T, and ¢(x) is a function of ©/T
which Debye evaluates. According to the prevalent form of the
kinetic theory, equation (5.55) should represent B the most
reliably. At high temperatures this expression makes B pro-
portional to T, as does equation (5.54); but at low tempera-
tures B becomes proportional to T2

76. X-rays Diffusely Scattered by a Crystal

In addition to the rays which are regularly reflected from a
crystal at the angle given by #\ = 2D sin 6, there are found to
1 Debye, loc. cit.

2 Darwin, loc. cit.
3 Born and Kagman, Phys. Zeits. 14, 65 (1913).
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be diffusely scattered rays in all directions. If the atoms in the
crystal were all identical and arranged with perfect regularity,
the rays at any angle other than near sin—!'#\/2D should be
completely extinguished by interference. In view of the fact
that there is a comparatively small number of electrons in each
atom, it is clear that at any particular instant the arrangement
of these electrons relative to the incident ray cannot be the
same for all the different atoms. This introduces a type of
irregularity which must make the interference incomplete even
though the atoms have no thermal motion. On this account
diffuse scattering will occur which is probably proportional to

1 — e-—A sin? B,

where A is a constant independent of the temperature. Due to
to the thermal agitation there is, as Debye shows, an additional
irregularity in the atomic positions, which results in diffusely
scattered rays whose intensity is proportional to

7 — e—B sin2 9

b
where, as we have seen, B depends upon the temperature.
The intensity of these scattered rays should thus depend upon
the temperature according to a relation of the form

I' —_ a(I — e—A sinzﬂ) + b(l — e—Bsinzd). (557

The experiments on the intensity of the rays reflected from
crystals at different temperatures, especially the recent ones of
James, show that the constant B is accurately independent of
6 and is proportional to 1/X\% in accord with the equations
(5.54), (5.55) and (5.56). The manner in which B is found to
vary with the temperature is not, however, in even approximate
agreement with the theory. Thus for the rock-salt (100) planes,
James finds that

Beror. = 1.162 X 1075T2/)\2, (5.58)
whereas he calculates from equation (5.55) that

B, = 4.89 X 1073T/)2. (5.59)
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Thus the experimental value of B is proportional to T2, whereas
its predicted value is proportional to 7.

No more satisfactory agreement has on the whole been
found by other observers, though in certain isolated cases
Debye’s formula gives nearly correct results. Perhaps a more
effective way of studying thermal motions will be to study the
electron distributions at different temperatures, and thus
observe more directly the magnitude of the average atomic
displacements.

In the theories of the diffuse scattering by crystals developed
by Debye and Faxen (loc. cit.) no account is taken of the first
term of equation (5.57), which is due to the nearly random
positions of the electrons in the individual atoms. It is thus not
surprising that Jauncey’s experiments show an intensity con-
siderably greater than the value

I, = C(1 — ¢~ Bsin"9) (5.60)

predicted by Debye’s theory. Jauncey finds also that the effect
on this scattered intensity of increasing the temperature is
much smaller than one would expect from this expression.

It is interesting to note, however, that the scattering by a
crystal is found by Jauncey to approach zero at small angles, as
equations (5.57) and (§.60) would both predict. Even when
the temperature is raised until the substance is in the liquid
form this effect remains, as is shown by Hewlett’s experiments
on liquid mesitylene ! and Duane’s 2 on water.

Regarding the intensity of the diffusely scattered rays,
Jauncey finds that if a beam of X-rays of wave-length .71A and
1° broad falls on a polished (100) face of calcite at the correct
angle for first order reflection, the energy in the reflected beam
is greater than the whole diffusely scattered radiation by the
ratio 1.4 : 1.0. The diffusely scattered rays at large angles are
of about the intensity predicted by the classical theory for non-
crystalline substances (Chapter I1I). At angles in the neighbor-
hood of 25°, excess scattering occurs, as is predicted by Debye’s

1C. W. Hewlett, Phys. Rev. 19, 265 (1922).
2 A. R. Duane and W. Duane, Phys. Rev. 20, 86 (1922).
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theory (eq. 3.21) for amorphous substances. The diffusely
scattered rays are found to be less penetrating than the prim-
ary rays.!

77. Effect of Magnetization on X-ray Reflection

Anything which alters the positions of the atoms or changes
the distribution of the electrons in a crystal must, in accord
with the theory developed in this chapter, affect the intensity of
reflection of the X-rays. According to the “ molecular” theory
of magnetism, when a ferro-magnetic substance is strongly
magnetized, the elementary “ molecular” magnets become
approximately aligned in the direction of magnetization. If
these elementary magnets are the chemical molecules, or other
groups of atoms, one might expect magnetization to alter the
atomic arrangements to such an extent that the Laue diffraction
patterns would be altered.

The experiment was tried by de Broglie,? using a crystal of
magnetite, immediately after the discovery of the diffraction
of X-rays by crystals, and later, independently, by Compton
and Trousdale.? Magnetization was found to have no effect on
the positions of the Laue spots, and no noticeable effect on their
intensities.

An experiment to detect a possible change in the intensity
of reflection of X-rays by a magnetite crystal due to magnetiza-
tion was carried out by Rognley and the authort A balance
method employing two Bragg ionization spectrometers was
adopted, which was capable of detecting a change in intensity of
I per cent, even in the fourth order. The magnetite was mag-
netized to about one-third of saturation, perpendicular to the
reflecting surface in one experiment and parallel to the surface
in another. No effect due to the magnetization was observed.

The negative result of this experiment is not easy to recon-
cile with theories of ferromagnetism. If one assumes that the

1 G. E. M. Jauncey, Phys. Rev. 20, 405 (1922).
2 M. de Broglie, L.e Radium 10, 186 (1913).

# K. T. Compton and E. A. Trousdale, Phys. Rev. s, 315 (1915).
¢ A. H. Compton and O. Rognley, Phys. Rev. 16, 464 (1920).



174 X-RAYS AND ELECTRONS

atom acts as the elementary magnet, its orientation by the
magnetic field should produce a detectable effect unless it is
surprisingly nearly isotropic. It is not inconsistent with the
experiment to imagine that the orbits of certain of the inner
electrons are turned by the magnetic field, but this is rather
difficult to reconcile with the pronounced effect on magnetiza-
tion of chemical conditions and mechanical jars. The absence
of any effect on the intensity of reflection due to magnetiza-
tion is, however, consistent with the view that the elementary
magnet is a spinning electron. This suggestion has been used
to account for a variety of magnetic properties of matter, and
has recently been revived in connection with the interpretation
of complex spectral lines.



CHAPTER VI
THE ABSORPTION OF X-Ravys

78. Total and True Absorption

We are acquainted with two distinct methods by which X-
ray energy is dissipated. FExamination of the cloud expansion
photographs obtained when X-rays traverse air reveals the
existence of high speed electrons ejected from the air molecules
by the X-rays. We also find that a part of the X-ray energy
is spent in producing scattered rays. There is at present no
evidence that the energy of the X-ray beam is spent in any
other way. It is true that fluorescent radiation is produced;
but as we have already seen (Chapter 1) this fluorescence prob-
ably occurs as the atoms from which the electrons are ejected
return to their normal condition. The primary action of the
X-rays is thus to eject the electrons, and the fluorescence is a
form in which part of the energy reappears which has been
removed from the X-ray beam. If we let r represent the
absorption due to the ejection of the photoelectrons and o that
due to the scattering, the total absorption coefficient may be
wrtte n,

p=r7+o0. (6.01)

For want of a better name, we shall designate the quantity
7 the * true ”” absorption, and ¢ the absorption due to scatter-
ing.

Because of the presence of the scattered rays, the rate at
which the intensity of a beam of X-rays decreases with the
thickness of the absorbing screen traversed depends upon the
geometrical conditions as well as upon the material and wave-
length. If the beam is narrow, nearly all of the scattered energy
will fall outside of the main beam; but if the beam is broad,
much of the scattered energy will remain within the main beam

175
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and add to its intensity. This effect of the scattered rays is
well illustrated in the curves shown in Figs. 83 and 84, repre-
senting data obtained by Bachem.! Fig. 83 shows the intensity
of the X-rays at various positions in a deep water bath when
the water is irradiated from above by hard X-rays (200 kv.,
I mm. copper filter) passing through an opening 20 ¢cm in
diameter. The curves of Fig. 84 are exactly similar except that
the diameter of the incident beam is § cm. It will be seen that
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because of the presence of a greater amount of scattered rays,
the intensity falls off less rapidly for the broader beam. This
1s accompanied also by a greater intensity outside the geo-
metrical shadow, due to the scattered rays when the broader
opening is used. Bachem finds ! that under the conditions of
Fig. 83, at the surface of the water 33 per cent of the X-rays
are secondary rays coming back from the water, while at a
depth of 20 cm. 85 per cent of the X-rays are secondary, only
15 per cent coming directly from the primary beam.

For a narrow X-ray beam it is clearly the coefficient of total
absorption x which determines the rate of energy decrease, and
for a broad beam it is a coefficient intermediate between u and
7, since only a portion of the secondary beam remains within
the direct beam.

1A. Bachem, “Principles of X-ray and Radium Dosage,” Chicago, 1923, pp. 152
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We have defined the absorption coefficient, or more spe-
cifically the “linear” absorption coefficient, as the fraction of
the incident energy which is absorbed per centimeter of matter
traversed, that is,

__dljI
B2 Ta

If we consider a beam of 1 square centimeter cross section, this
is the fraction of the energy absorbed per cubic centimeter of
matter traversed. If the density is p grams per cm.?, the frac-
tion of the energy absorbed per gram is of course um = u/p,
which 1s called the mass absorption coefficient. Similarly, if there
are a number 7 atoms per cm.?, the fraction of the energy
absorbed per atom is w, = p/m, which is called the atomic
absorption coefficient.

(6.02)

79. The Measurement of Absorption Coefficients

In order to obtain precise measurements of the absorption
coefficients it is necessary to use homogeneous X-rays. For if
more than one wave-length is present, the longer waves will be
strongly absorbed by the first portions of the absorption screen,
making the fraction of the energy removed per unit path de-
crease with the thickness traversed. 1f [ is the intensity of the
beam after traversing a thickness x, and if I, is its intensity if
the screen is removed, we found (1.01) that I = I,¢**, whence

w="log 7" (6.03)
But equation (1.01) was based upon the assumption that u as
defined in equation (6.02) is independent of x, so that equation
(6.03) can be used to calculate the coefficient strictly only in
case the wave-length is constant.

We may however speak of the “effective’ absorption co-
efficient of a heterogeneous beam of X-rays, meaning usually
the value calculated from equation (6.02) for some particular
value of x. This effective value approaches a maximum limit
for small values of », which depends upon the distribution of
wave-lengths in the incident beam.

(1
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The homogeneity required to make accurate measurements
of the absorption coefficients may be secured in either of two
ways. In his early experiments,! Barkla secured nearly homo-
geneous rays by exciting the secondary fluorescent radiation of
various elements. Thus, for example, hard X-rays were
allowed to fall successively upon chromium, manganese, iron,
etc. The absorption of the fluorescent X-rays from these ele-
ments in various substances was then examined. As we now
know (see p. 25, §7), the K radiation from these elements is
not strictly homogeneous, but consists rather of two prominent
components whose wave-lengths differ by 10 or 15 per cent.
But the rays thus obtained were practically free from the radia-
tion which forms the continuous spectrum of the primary beam,
so that this work marked a great advance.

With the advent of crystal spectrometry, it became a com-
paratively simple matter to secure nearly homogeneous X-rays.
The apparatus used by Bragg and Peirce 2 and in most of the
later absorption measurements is shown diagrammatically in
Fig. 85. From the crystal C, preferably of calcite in order to
obtain a pure spectrum, a ray is reflected to the ionization
chamber 1. Farly experiments by Moseley and Darwin3 and
recent ones by Woo * have shown that it makes no difference
whether the absorption screen is placed at A in the path of the
direct beam or at B in the path of the reflected beam, though
usually the screen has been used at B.

It will be seen that this arrangement satisfies the geometrical
conditions for measuring the total absorption, for the ray re-
flected from the crystal is necessarily narrow, and the aperture
of the lonization chamber is ordinarily small. Of course if the
absorption screen were placed against the window of the ioniza-
tion chamber, an appreciable amount of scattered radiation
might enter, but this will not occur if the screen is placed near
the crystal.

1 C. G. Barkla, Phil. Mag. 22, 396 (1911).

2 W. H. Bragg and S. E. Peirce, Phil. Mag. 28, 626 (1914).

3H. G. J. Moseley and C. G. Darwin, Phil. Mag. 26, 211 (1913).
*Y. H. Woo, Proc. Nat. Acad. 10, 145 (1924).
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If ) is the wave-length of the first order ray reflected at the
angle 0, rays may also appear whose wave-lengths are \/2, \/3,
etc. These higher orders can be eliminated by taking the pre-
caution of operating the X-ray tube at a potential too low to
excite the wave-ength \,/2. This condition is satisfied if 7.,
< 2hc/eN,, where I, is the maximum potential applied to the
tube. There is thus a sufficient margin of potential to make
possible the excitation of the desired wave-length with a con-
siderable intensity.

FiG. 8s.

The shape and purity of the absorbing screen are also of
great importance when precise absorption measurements are to
be made. Inview of the rapid increase in absorption coefficient
with atomic number, even a very small impurity of a heavy
element may increase greatly the absorption by a light element
such as carbon or aluminium. In the case of the heavy ele-
ments, especially for the greater wave-lengths, the absorbing
screen must be so thin that it is very difficult to secure uniform
thickness. The effect of non-uniformity is to give an apparent
absorption coefficient smaller than the true value.

80. Tables of Absorption Coefficients
The following tables give the absorption coefficients of X-
rays of various wave-lengths in different elements:
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TABLE
Mass ABsorprTiON COEFFICIENTS OF THE ELEMENTS FOR
WAVE-LENGTH
Element |Authority
.080 | .100 | .125 | .150 | .X175 ( .200 | .250 | .300 | .350 | .400
1 H ODS |..covifevenns P P TP DN .39 .42 .44 .45
. H N .3 .3 .3 .3 .3 .3 .2 .3
3 Li H |{......]...... PR P P R .172| .188| .208
6 C H ... .144| .154] .103] .106| .173| .187] .202| .:z210 240
0ODS PN P I A 185 .197/ .210] .z40
% .140|  .150[ 151 .153| .155| .100| 173 .190| .213| .245
7 N H |...... R L1603) L 171 177 .103] .224 251 ... .
80 H |..... L146  .103]  .174] 183 .z207] .243] .289] .330
oDs |...... PP PN 209 238 .281] .339
12 Mg % .232 311 .430] .612[ .87s
13 Al A .275 .38z .545 L7806 1 11
% .250 .370 .532 L7014 1 00
H .273  .358| .517 710 982
H L2400 .357) .s518] 718/ .95
BP N N P e ces
B .
16 S A 42 63 03| 132178
20 Fe RW |...... 39 55 77 | 106 | I g0 | 3.15
H |.....0]..... 390 585 82| 100 | 18 |30y | 477|702
ABP 232 275 404 580 79 | 1,07 | 1 98| 3.30 | 502|725
) 2 IV IR PRI AP IR IR PO A (NS N
27 Co RW . ... ...... 42 60 84 [ 1.17 | 2 12| 352 |-ven] ounnn
28 Ni RW |.....|...... 48 69 o8 | 1 36| 2464 11| .....
A 4
BP
B
29 Cu A
R
RW
D
BP
B
30 Zn A
BP
B
42 Mo R
46 Pd BP
47 Ag A
R
BP
B
50 Sn A
BP
B
74 W A
78 Pt A
BP
a2
79 Au
BP
B
82 Pb A
R
HR
83 Bi A
9o Th A
REFERENCES:

ODS = A. R. Olson, E. Dershem and H. H. Storch, Phys. Rev. 21, 30 (1923).

H =C. W, chlett Phys. Rev. 17, 284 (1921).
= Allen, Phys. Rev. 24, 1 (1924); 27, 266 (1926). The author is indebted to

S.

Prof Allen for sending him his unpublished data for wave-lengths greater than .74.
C. G. Barkla, Phil. Mag. 22, 396 (1911).
F. K. Rlchtmyer. Phys. Rev. 18 13 (1921).

H

B =
R =
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VI-1

DirrerENT WAVE-LENGTHS, ACCORDING TO DIFFERENT OBSERVERS

o
IN ANGSIR MS

181

—_ R __.—_| Element
.500 | .600
.45 .44 H b4
.5 . N
.245 ._;o() Li 3
.304|  .394 C o
.305 . 400
.329|  .472
IR PR N 7
.488] .730 (6] 8
.500 702
1560 . Mg 12
1 01| 3 25 Al 13
19213 23
I 86 | 3 o5
2 02| 3 35
.... 59 . S 16
.. . . .. .. R Fe 20
130 |220 353 (507 68 2 00 2 . . ..
.o .. 36 7 .. 70 102 131 230 270 57
15 2 (243 . 08 03 125 205 . o e
. . P I P P 121 ... 208 07 104
P O . Y . Co 27
..... C .. . .. .. Ni 28
. . 45 0 82 1y 151 250 300 70 ..
180 (307 PR I S ce. | 107 250 .. .
.. .. 118 .. 205 07 129 .
100 |32 2 49.6 |..... s 133 169 |..... 39 77 fe.... Cu 29
18 8 31 6 48.8 | .. 1 ... PR . .
él 5 32'4' 100 13-.1‘ n'((;' 273 a
.. . 150 . 55 75 143 .
220 (375 57 0 107 152 190 41 0 [ 46 4| 92 . Zn 30
22 7 30 O . . 301
. . . .. . 183 ... | 50 91 170
48 6 |80 7 88 |27 2 375 3 S PO PR . Mo 42
60 17 0 A .. R N Y PN Pd 46
105 [17.8 | 2506 53 73 097 (158 [178  [331 Ag 47
115 |190 . e .. . ..
108 (184 | oovi |eeenn. 61 76 86 152
Gel . Sn so
I
W 14
Pt 78
Au 79
Pb 82
Bi 83
Th 9o

= W. Duane, Proc. Nat. Acad., March, 1922.
HR = A W. Hull and M_Rice, Phys. Rev. 8, 836 (1916).
BP = W. H. Bragg and S. E. Pelrce Phil.

RW = F K. Richtmyer and F. W. Warburton, Phys.
For additional data, cf. Glocker, Phys. Zeits. 19, 66 (1918);

Mng 28, 626 (1914).

Rev. 22, 530 (1923).
Owen Proc. Roy. Soce 94, 510

(1918); Williams, Proc. Roy. Soc., 94, 571 (1918) and Wooten, Phys. 'Rev. 13, 71 (1919).
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TABLE VI-2

Mass anp Aromic ABsorrrioN CoOEFFICIENTS OF 1HE ELEMENTS FOR A = 0.710A
(MoLyBpENUM Aa LINE)

Flement Authority Hm Ha
1 H T .28 .047
6 C A .68 1 34
w .667 1.32
T . 569 I 13
7N w 1 072 2 48
80 w 1 00 2 64
T 1.15 3 o4
11 Na w 339 12.9
12 Mg w 4 60 18 ¢
13 Al A 535 23 8
w 528 23§
15 P W 8 28 42 4
16 S A 99 52 4
W 8 83 46 7
17 Cl w 11y 68 5
19 K W 16 2 105
20 Ca w 20 2 133
24 Cr W 300 257
25 Mn w 347 315
26 Fe \il 36 9 340
27 Co w 381 371
28 Ni A\ 48 2 467
29 Cu A 537 563
W 46.3 486
30 Zn A 6o o 647
w §5 2 5()()
35 Br W 67 2 887
38 Sr W 94 3 1360
39 Y w 99 5 1470
40 7r W 19 7 295
42 Mo W 20.§ 324
47 Ag A 28.5 507
w 30.8 548
48 Cd W 303 562
50 Sn w 350 686
531 w 39.8 833
56 Ba " 41.4 938
78 Pt A 119 3830
79 Au w 101 3280
82 Pb A 140 4790
w 102 3480
REFERENCES:
T = E. G. Taylor, Phys. Rev. 20, 700 (1922).
A = 8. J.'M. Allen, Phys. Rev. 24, 1 (1924).
W = K. A. Wingardh, Zeits. f. Phys. 8, 303 (1922).
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TABLE VI-3

Mass, Aromic AND ELecTrONIC ABsORPTION COEFFICIENTS OF THE FLEMENTS For
v Rays rrom Rapium C; FiLterep 1HROUGH 1 CM. oF LEeap

(A = .o17A approx.)

m um Mm Ha Mo = ta/Z

Element N Ahmad OFF Ishino X 1028 X 10%

1 H 117 .019§ 1.95

6 C .0§99 .118 1.97

80 L0591 .156 1 95

12 Mg .0566 .22 1 88

13 Al .057§ .0559 .0b59 .256 197

16 S .0579 .318 198

26 Ie .0575 .0632 .529 2 03

28 Ni .0589 .570 2 04

29 Cu .0570 .598 2 o6

30 Zn .0569 .0567 .013 2 04

47 Ag 0557 990 2 11

50 Sn L0557 .052§ 1 06 213

78 Pt .o680 215 2 76

80 Hg .0702 2 29 2.87

82 Pb .0681 .0633 0727 2 29 2 76

83 Bi . .0708 2 39 2 89

9o Th .o810 307 3 41

92 U 0826 3 21 3-49

REFERENCES:

~ N Admad, Proc Roy Soc 105, 507 (1024); 109, 2006 (1925)

E A Owen, N Fleming, W E. Fage, Proe Phys Soc London 36, 355 (1924).

M Ishino, Phll Mag 33, 140 (1017)

The values quoted from Ishmo's work are corrected for a shight cerror in estimating the
scattering coeflicient

The vatues of p, and p, are caleulated from Ahmad’s values of ume ©xcept i the case of Mg,

or which O F IF's value 15 used,

TABLE VI-4

ABsorpriON COEFFICIENTS FOR SCATTERED 'y-RAYS

Bm Ha de = Ma/l
Ele- ‘ —T — —— -

ment 023A|041A 057A [.023A | 041A| .057A 023A [ 041A|  .057A

13 AL ..o [Nl 20 IR IR LJoXTI0TH ... 2 4X107%
26 Fe |......|...... 08 e 7 S I P 2.8
08n ...l I8 35 oo 6.1

371 71117 4.6 | 89 jar

82 Pb| .11 | .a1 .50

REFERENCE: A. H. Compton, Phil Mag. 41, 760 (1921), with wave-lengths calculated
from equation (9.04), assuming )y = .0174.
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TABLE

MeaN VaLues oF tHE Mass AssorerioN COEFFICIENTS

WAVE-LENGIH

o17| os7| .080 | .100 12§ .150 175 200 250 300 350 .400
1 8 ¥/ I PO B .3 .4 .4 .4 .39 42 .44 .45
I I R - o L172 .188 .208
.060] .. 140 . 140 . 152 . 100] 162 170 L1834 L1097 . 210] .240
. R L1603 LI71 JI77 B OX . 224 113 {
059 PN .140 L103 174 L183 .208 .240 .285 338
R LY | E R 162 175 .202 .232 311 .430 L6012 875
os8| 07 .143 L1604 178 201 L2371 . 200 - 370 .531 L7536 10§
o058 .. L152 . 190| 204 L272 333 .42 .03 03 1.32 178
.058 .08 .232 . 205 L399 .572 .79 1 07 193 318 4 94 7.17
. .. .42 .60 .84 117 212 K372 RS O,
059 .. L2601 328 475 .08 1 00 1 40 2 50 4 10 622|. .....
L0857 ... 263 323 .49 .77 110 153( 275 447{ 6ot 10t
.057|.... . 305, .38 .00 .02 128 1.77 3 15 5 I0 7 90 1T 6
................. I35 1.90 2 83 4 02 742|127 91 20 7
.056[ .. W72 113 1 67 2 63 370 575 1L 1 18 0 27 0 384
o056 .18 .78 1 106 2 00 3 0o 4 35 030 | 121
.. 2 35 3 40 S 42 8 10 2 92 3 20 5 60 8 60| 13 2 8
068/, 2 46 3 6y 5 70 4 30 3 04 4 10 732|115 17 0 245
. 2 30 3641 537 360 3on| 428 7.65(. ....]...n B .
o068 50| 2.47 3 78 4 32 2.0 2 93 4 62 8 16| 130 21 9 327
070 ....| 2.44 378 38 | 24 3 50 5 10 93 14.8 228 ...,
P42. 3 § IR DA 3 88 1 85 2 69 3 87 5 47 [ 20 A I N [
_K famit o o - o I D D
TABLE
.017| .057| .080 | .100 125 150 175 .200 250 300 .350 . 400
0200 Lo aeen | e .05 .07 .07 07 .005 070 .073 L0758
B R F T P (Y 197 .215 .238
18| L.l L277] 289 301 .317 .321 .337 .365 390 428 475
A TN R FRTTR TN 377 395 . 409) <446 518 .5800..... .
L156) .. PP PN .385 . 430 .450 483 .549 .034 .752 892
2227 o . .650 .702 811 031 I 2§ 172 2.46 3.51
256 .30| .640 730 708  .000] 103| L.20| 1O5| 230]| 337 4 08
318| .. 8o 1 01 108 143 1.75 2 22 3 33 4.92 6 98 0 42
5200 .74{ 2 14| 2.44| 3.68 | s527| 7.28| 9.77 (178 | 203 |45.5 | 661
....................... 4.00 5.84 8 17| I1.4 20.6 343 Joeen v ieiinn
570|..... 2.54 3.19 4.60 6 58 0.68 | 13 6 24 2 39.7 60 2 . .
508 2,76 | 3.38| s5.12| 8.06| 11.5 [ 160 | 28 8 | 46.9 | 72.5 | 106
L6131 .. 3.34( 4.1 6.5 9.9 13 8 19.1 | 34.0 | 55.0 | 85 2 125
....................... 21.4 | 31.0 | 448 | 63.7 [117 201 302 423
990 12.8 | 20,1 | 20.7 {468 | 66 0 |102 108 320 481 084
1.06 [ 3 5(15.0 [ 22.2 | 38.3 (575 (835 (121 232 .
.......... 71 103 165 246 88 5 97 0 |170 261 308 601
2,15 |.o.n. 79 118 184 138 97.9 |139 236 370 548 789
..... coeel|78 118 175 17 101 139 249
2.29 |17 85 129 148 68 101 158 289 475 749 1120
2.39 |..... 84 130 131 84 124 176 321 510 85 e,
3.07 loeeni]innnns 155 72 105 151 216 R L P ! EE TR
K Limit |
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V-5
of THE ELEMENTS FOR VARrIOUs WAVE-LENGrHS
IN ANGSTROMS
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In Table VI-1 I have interpolated between the values given
in the original papers to obtain the values for the wave-lengths
desired.

81. Critical Absorption Wave-lengths

The most prominent characteristics of the absorption co-
efficients as functions of the wave-length and the atomic num-
ber are shown in Figs. 86 and 87. In Iig. 86 is shown the man-
ner in which a given element, in this case platinum, absorbs
radiation of different wave-lengths. In general the absorption
coefficient increases rapidly with an increase of wave-length.
There exist, however, certain critical regions in which for a
slightly increased wave-length there is a sudden decrease in
absorption. The wave-lengths at which such sudden changes
occur are known as the critical absorption wave-lengths. Tt is
found that if the wave-length of the radiation is shorter than
the shortest of these critical wave-lengths, the complete X-ray
spectrum of the absorbing element is excited, including the
characteristic K radiation.! A slightly longer wave will excite
only the characteristic fluorescent L, M, etc., radiations, but
not that of the K type. Similarly there are three critical ab-
sorption wave-lengths associated with the L series, at each of
which a separate portion of the emission spectrum of the L
series disappears, until at wave-lengths longer than 1.07A no
fluorescent L radiation is excited. Experiment shows 2 that the
critical absorption wave-length associated with any X-ray
spectral series is very slightly shorter than the shortest emission
wave-length of the series. Thus any element is especially trans-
parent to its own characteristic radiation.

Figure 87 shows the absorption per atom of X-rays of wave-
length 1.00A in the different elements. * The rapid increase of
the absorption with the atomic number is prominent. But
here again there exist the critical points at which sudden de-
creases in the absorption occur. Thus arsenic, of atomic num-

1C. G. Barkla, Phil. Mag. 22, 396 (1911).
2 D. L. Webster, Phys. Rev. 7, 599 (1916).
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ber 33, absorbs this wave-length much more strongly than does
selenium, of number 34, corresponding to the fact that rays of
1A wave-length will excite the characteristic K radiation of
arsenic but not of selenium. Similarly there exist critical
atomic numbers for the L series in the neighborhood of plat-
inum (Z = 78).

Critical absorption wave-lengths have been observed cor-
responding not only to the K and L series of the absorber but to
its M series as well in the case of the very heavy elements.

Some discussion has arisen with regard to the existence of a
critical absorption of a shorter wave-length than the K radia-
tion, which could be ascribed to a possible J radiation. Several
experimenters, including Barkla and White,! Williams,?2 Owen 3
and Dauvillier,* have obtained evidence which they have taken
to indicate the existence of such critical wave-lengths; and
LLaub ® and Crowther ¢ have observed penetrating secondary
radiation which they have attributed to this source. This
secondary radiation, however, has no definite wave-length
characteristic of the radiating element, and is explicable as
scattered radiation whose wave-length has been changed as
described above (p. 1II, 15). Kurthermore the agreement
is not good between the values given by different observers for
their critical J wave-lengths. The careful measurements of
Richtmyer and Grant 7 and those quoted in Table VI-1 have
shown no indication whatever of these supposed critical wave-
lengths. And finally an examination of the radiation from an
X-ray tube with an aluminium target led Duane and Shimizu
to conclude 8 that * aluminium has no characteristic lines in its
emission spectrum between the wave-lengths X = .18204 and
1.259./ that amount to as much as 2 per cent of the general

! Barkla and White, Phil. Mag. 34, 270 (1917).

2 Williams, Proc. Roy. Soc. 94, 5§67 (1918).

3 E. A. Owen, Proc. Roy. Soc., 94, 339 (1918).

4 Dauvillier, Ann. de Phys. 14, 49 (1920).

& J. Laub, Ann. der Phys. 46, 785 (1915).

¢ J. A. Crowther, Phil. Mag. 42, 719 (1921).

7 Richtmyer and Grant, Phys. Rev. 15, 547 (1920).

8 Duane and Shimizu, Phys. Rev. 13, 288 (1919); 14, 389 (1919).
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radiation in the neighborhood.” The evidence is thus strongly
against the existence of a characteristic J radiation.!

82. Table of Critical Absorption Wave-lengths

The wave-lengths of the critical absorption limits for differ-
ent elements are given in the following table. The values in
italics are direct determinations from X-ray absorption spectra.
Other values are calculated, some from the wave-lengths of the
spectrum lines (see p. 330), some from critical potentials for
exciting soft X-rays, some from ultraviolet spectra, and a few
are interpolated.

83. Empirical Absorption Formulas

An empirical absorption formula which has been found to
express fairly satisfactorily the absorption by all elements of
atomic number greater than § for wave-lengths between o.1
and 1.4421s

to = KZWN + 8Z¢0. " (6—04)

11n recent papers (Phil. Mag. 1925). Barkla himself abandons the view that
there exists a fluorescent J radiation similar to the characteristic K and L radiations.
He continues, however, to find abnormalities in the absorption of soft X-rays, the
nature of which is a sudden decrease in intensity after the rays have traversed a certain
thickness of the absorhing screen. This effect is especially prominent when scattered
X-rays are used, but is not always found to be present. Barkla ascribes it to a trans-
formation of the X-rays as they traverse the matter, calling the phenomenon a “J
transformation.” His results scem to find no explanation on the basis of present
theories of radiation, and an extended discussion of them would be premature.

2 This is equivalent to a similar formula used by Richtmyer. (F. K. Richtmyer,
Phys. Rev. 18, 13 (1921); F. K. Richtmyer and E. W. Warburton, Phys. Rev. 22,
539 (1923).) The first use of the factors Z*and M that I find are by Bragg and Peirce
(Phil. Mag. 28, 626, 1914) and by Duane and Hunt (Phys. Rev. 6, 166, 1915) respec-
tively. The term Zoo, representing the scattering, was employed by Barkla and
Collier (Phil. Mag. 29, 995, 1912); but Hull and Rice (A. W. Hull and M. Rice, Phys.
Rev. 8,836 (1916)). Hewlett, (C. W. Hewlett, Phys. Rev. 17, 284 (1921)), and Richt-
myer, loc cit., have found a term equivalent to .8 Zo, to be more satisfactory, espe-
cially at very short wave-lengths with the lighter elements. For the heavier elements
a term proportional to Z? seems to represent the scattering better than one propor-
tional to Z, due doubtless to the cooperation in scattering by the electrons grouped
in the atom as described in Chapter II. Glocker (Phys. Zeit. 19, 66, 1918) and
Allen (Phys. Rev.: 27, 266, 1926) find that somewhat better agreement may be
obtained if slightly different values of the exponents of Z and \ are used.
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Here ) is the wave-length of the X-rays employed, Z is the
atomic number of the absorber, K is a universal constant having
the value 2.24 X102 for wave-lengths shorter than the critical
K absorption wave-length, if X is expressed in centimeters, and
a value .33X10~2 when X is between the critical K and L
absorption wave-lengths. The quantity ¢, is given by the
expression (¢f. eq. 2.16),

_ 8r et

Og — — e
° 3 mict

(6.05)

and has the value 6.63 X 10725 cm.? It represents the total
energy scattered by a single electron, when struck by a beam
of unit intensity, as calculated on the classical electron theory.

The extent of the agreement of this expression (6.04) with
the experimental values for the representative elements, carbon,
aluminium, iron, silver and lead, is exhibited for wave-lengths
between 0.1 and 1.0A in Fig. 88. The logarithms of the atomic
absorption coefficients are plotted against the logarithms of the
wave-lengths. It is remarkable that a formula with but 4
arbitrary constants is able to express so accurately the absorp-
tion by some 80 elements of radiation over so wide a range of
wave-lengths. It would suggest that the relation is of some
physical significance. Nevertheless, the formula is unsatisfac-
tory for extrapolation to shorter wave-lengths, since the mini-
mum absorption that it can give, 0.8 Zs,, corresponds to a
mass absorption coefficient of about .16. This is not in agree-
ment with the mass absorption coefficient about .06 observed
for all elements when hard vy-rays are employed.

84. Owen’s Law

It is natural to associate the quantities 7 and o of equation
(6.01) with the quantities KZ*\* and .8Z¢, respectively of
equation (6.04).! In view of the manner in which the constant

1 This identification is not quite justified. For as we have seen in Chapter I, the
scattering is not strictly independent of the wave-length, and we shall see later (Chap-
ter IX), that a part of the term proportional tn Z represents a form of true absorption
associated with the scattering process.
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K has been defined, it will be seen that a more complete expres-
sion of the first identity would be

1a = (KxZN)\ < ae + (KLZ8W3) <+ ... (6.06)

&

log pta —

.o T2 T4 11 log A (AU) 7.8 0

F1c. 88.

The first term of this series is to be counted, as the subscript
indicates, only for wave-lengths less than the critical K absorp-
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tion wave-length of the element whose atomic number is Z, and
similarly for the other terms. The constant Kx has the value,
according to Richtmyer and Warburton, of (2.24 — .33) X
1072 = 1.91 X 1072 An expression equivalent to this was first
given by E. A. Owen in 1918,! and it represents a more accurate
statement of the absorption law which he first proposed in
1912.2 I shall accordingly refer to it hereafter as Owen’s law.
The first term of equation (6.06) seems to represent the
absorption by the electrons in the K shell of the atom, the
second term by those in the L shell, etc. If this is the case, we
may write for the absorption by the K electrons in the atom,

Tk = 'KZ4X3, (6 . 07)

remembering that Kix = 1.91 X 1072 for wave-lengths less
than \x, and o for wave-lengths greater than A¢. Also

TL = VLZAI)‘:‘, (6.08)

where K, = .25 X 10" 2, and similarly for the absorption by
the outer shells.

85. Absorption Due to Scattering
The empirical expression,
o, = .8Zo',,, (6.09)

corresponding to the second of these identities, is not in agree-

ment with the value
g, = Zao, (6.10)

which would be anticipated from equation (2-16) for a chance
distribution of the electrons within the atom. If we should
calculate the atomic scattering coefficient from some such
formula as (2.31), taking into account the cooperation of the
electrons within the atom, we should get a result even greater
than that given in equation (6.10), and therefore differing still
more from the experimental value. This difficulty is obviously
the same as that described above (p. 56, e seq.), where we

LE. A. Owen, Proc. Roy. Soc. 94, 522 (1918).
2 E. A. Owen, Proc. Roy. Soc. 86, 434 (1912).
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noticed that for short wave-lengths the experimental values of
the scattering coefficient fell distinctly below those predicted by
the theory. For it is only for the very short wave-lengths that
the scattering accounts for any considerable part of the tota]
absorption, so it is for these wave-lengths that the term .8Zq,
of equation (6.04) is experimentally found. It is very probable
that for the heavier elements and for longer waves the scattering
coefficient becomes much greater than Z o, as formula (2.31)
would suggest.! The true absorption is so great under these
conditions, however, that the scattered energy is very difficult
to estimate.

The absorption experiments thus support the conclusion at
which we had previously arrived, that the electromagnetic
theory predicts too great a scattering coeflicient for short wave-
lengths. They supply us, however, with little information con-
cerning the scattering coefficient for wave-lengths greater than
0.3A.

ELECTROMAGNETIC THEORY OF TRUE ABSORPTION
86. Pulse Theory

An equation identical in form with expression (6.06) has
been derived theoretically by the author,> making use of J. J.
Thomson’s old hypothesis of X-ray pulses.? Such a solution of
the problem is unsatisfactory, since the basic hypothesis of X-
rays consisting of short pulses is inconsistent with the fact that
X-ray spectrum lines are very sharp (¢f. supra, p. 11, 14). But
the fact that the Owen’s empirical formula can thus be derived
suggests strongly that the law may be of real physical signifi-
cance. It will therefore be valuable to consider this view of the
mechanism of absorption.

Thomson postulates a pulse co sisting of an electric intens-
ity E through a distance d, followed by an intensity — E for a
distance d, after which the field due to the pulse vanishes. If

1Cf. e.g.,S. J. M. Allen, Phys. Rev. 241, (1924) .
2 A. H. Compton, Phys. Rev. 14, 249 (1919).
3J. J. Thomson, “Conduction of Electricity through Gases,” 2d Ed., pp. 326-8.
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the time required for the pulse to pass is short compared with
the natural period of an electron which it traverses, the acceler-
ation of the electron during the first half of the pulse is Ee/m,

its velocity at the end of the first half is 5—: X (—j, where ¢ is the

velocity of light, and the distance through which the particle
2

is displaced 1s é %(t—j) . During the second half of the pulse

the acceleration is — Ee¢/m, and when the pulse has passed the

velocity of the electron is again reduced from Eed/mc to zero,

though it has continued to move until its displacement is

x = Eed?/mc2. 6.11)

If F is the restoring force on the electron when displaced a
distance x from its equilibrium position, the work done in dis-
placing the electron a distance x is

w =fx——Fdx. 6.12)

But if », is the frequency of the free vibrations of the electron
about its equilibrium position, the restoring force is

F =— 4n°mpy?-x,
or in terms of natural wave-length instead of natural frequency,
F = — 4m®mcx /N2 (6.13)

Substituting in equation (6.12) this value of ' and the value
of x from expression (6.11), we obtain for the work done on the
electron,

2x2e2d4

W=

meANg®

E2, (6. 14)

The energy per unit area of the pulse is, however,
E?  H? E2d
(5 * 5r) 2 = 50 (6.19)

where E is the electric and H the magnetic intensity of the
pulse, since E = H. Dividing (6.14) by (6.15) we find for the
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fraction of the energy per unit area of such a pulse which is
absorbed by a single electron,

_ gmderd?

Te = MENE (6.16)

The absorption by the Ng electrons in the K shell should ac-
cordingly be

_ 4,7!'3621{3NK

T omenE ’

TK (6 . 17)
the natural wave-length of the electrons being Ax. This expres-
sion is equivalent to that obtained by Thomson.

In order to associate this result with Owen’s experimental
law, we note that the thickness 24 of the pulse corresponds
closely to a complete wave-length X of the incident rays.
Moreover, according to Moseley's law (eq. 1.04), if we identify
the natural frequency of the absorbing electrons with their
critical absorption frequency, we have for the corresponding
wave-lengths, 1/A\x = CxZ? approximately. According to the
simplest form of Bohr’s theory, Cx = 2n%etm/ni*ch®, where 4
is Planck’s constant and 7, is the quantum number of the K
shell. Substituting these values for & and A in equation (6. 17)
we obtain,

Tk — KK,Z‘!X?, (6. 18)
where
(o = TN meld
Ky = nitcthd (6.19)

Making the usual assumptions that the number of electrons in
the K level is Nx = 2, and that the quantum number is
ng = 1, we get Ky’ = 10.4 X 1072 This differs only by a
factor of 5.4 from the experimental value Kx = 1.91 X 1072,
It we attempt in a similar manner to calculate the absorp-
tion of a long train of waves, the result is an expression of an
entirely different form and in much less satisfactory agreement
with experiment. Equation (6.19) is thus dependent upon the
assumption that the X-rays consist of pulses which are short
compared with the natural wave-length of the absorbing elec-



198 X-RAYS AND ELECTRONS

trons. Since Owen’s law holds for the absorption of X-ray
spectrum lines, which are known to come in long trains of
waves, the present theory is unsatisfactory. Nevertheless, the
fact that the theoretical equation (6.19) is of just the right
form, and the fact that the constant of proportionality Kx is of
right order of magnitude, cannot be mere accident. Though
this agreement does not justify the theory which we have de-
veloped, it gives some confidence that Owen’s law is of real
physical significance.

87. Absorption of Long Trains of Waves

We noted above that there is no difference in the fraction
of the energy absorbed from an X-ray by a given screen before
and after reflection from a crystal. After reflection from a
crystal, however, even a short pulse is spread out into a long
train of waves, and similarly the length of any X-ray wave
train will be increased by the reflection process. This experi-
ment therefore indicates that the length of the train of waves
has little if any effect upon the fraction of the energy of the
train which is absorbed on passage through matter. To simplify
the problem, we shall therefore suppose that the wave trains
are of infinite length, that is, that they are undamped. In
order that the energy shall be removed from such a wave-
train, we must suppose that it excites forced oscillations of the
electrons which it traverses, and that these oscillations are in
some manner damped. The work done in moving the electrons
against the damping forces will then constitute the energy
absorbed from the wave train.

The amount of energy thus absorbed can be estimated in
the following manner. Let us suppose that at any particular
absorbing electron the electric vector of the primary wave
train is in the direction of the X-axis, and is expressed by
A cos (pt + 3), where p = arc/\ and & is the phase at the
time £ = o. We shall suppose that the damping is produced
by a viscous force whose magnitude is — rm(—if-, m being the

dt
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mass of the electron and r being an arbitrary constant. We
shall assume also that the electron is subject to a restoring
force — ¢?mx. Its equation of motion is then,

a’

mos + rm + ¢*mx = Aecos (pt + 8). (6.21)

The solution of this equation for the case where the wave
started at a time / = —oo, so that the system is in a steady
state of oscillation, is:

x =— s cos (pt + &). (6.22)
Here
e ,1.>- rzl,s
A _mﬁ/[(I 7 17
and

=8+ mn—l{;/<1 —;’;)]

The energy dissipated in the time d¢ against the frictional
force — rm is
orce — rm—- is
dx dx

rm Zt— . d't'*(l't,

and the total work done on the electron as one wave traverses

it is,
2n/p dx
fo < dt> dt.

The energy of this one wave per square centimeter per second
of the wave front is, however,

2x/ 2
f p<E >dt———f Ez2d:,

where E is the electric intensity of the wave at any instant,
which is equal to the magnetic iatensity H. The fraction of the



200 X-RAYS AND ELECTRONS

energy which is incident on unit area that is absorbed by the

electron is hence,
27/P [ dx\ 2
rm f <—> dt
. \a

T = - 7P . (623)
— Ez2d:
47J o

Using for x the value given in equation (6.22) we find,

2%/P [ dx\ 2
LG e

and using for E its value A cos (p¢ + 8) we obtain

2x/p
Edt = n42/p.

o

Thus by (6.23) the absorption coefficient per electron becomes

_ 4mrmp® A%
=T g

Te

or substituting the value of 4, given in expression (6.22),

_ 4mre’ f( Ji)z ﬁ}. .
O ol (I = T

In order to put this result in a more useful form, let us
evaluate the quantity

® 1 dp
. 3 ¢ r2

3 2
P(r-5) t7

To do this, we assume that the damping constant 7 is small
compared with the frequency terms ¢ and p. This will be true
unless the damping approaches its critical value. The term

2\ 2
r2/p? is then small compared with (1 — -9—> except when p

2
is nearly equal to ¢. Thus for the narrow region of frequencies

for which the term 72/p? is significant, it may be replaced by
the constant term 72/¢% Making this substitution, the expres-
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sion may be integrated, giving the value 1r/2r\/q2 — r2/4.
From equation (6.24), therefore,

wz_, __:__47#‘82 wl dp
L=l Pyl
?* ?*
_ 2n2e2
¢ — /4

But V/g? — r2/4 = 2xc/\,, Where ), is the wave-length of the
radiation emitted by the natural vibration of the electron.
In terms of the wave-length our expression therefore becomes,

since dp/p = — d\/),

f Ty = T,

A mc

In virtue of our assumption that 7 is small, the absorption is
practically confined to a narrow range of wave-lengths é\. So
without introducing any appreciable error we may replace the
limits of integration o and o by X — 38\ and X\, + 38\,
respectively, where \, is the wave-length of maximum reso-

nance. But over this narrow range, A, is nearly equal to A, so
to a close approximation we may write,

Mot don re?
“dxn= —. 6.2
j;o—m A2 mc? ( 5)

We shall now introduce the hypothesis that the K absorp-
tion band is due to the presence of electrons whose resonance
wave-lengths may lie anywhere between o and A, where \g is
the critical K absorption wave-length. If there is a number
Nk such electrons per atom responsible for the K absorption
band, it follows from equation (6.25) that

Ak +AEN me?
j dx = — Nk, (6.26)

mz

where as before 7 is the atomic absorption coefficient due to the
K electrons. Experiment shows that the critical absorption
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limit is very sharp, which means that é\ is very small com-
pared with Az According to the present view of absorption,
this means that the damping coefficient r is very small com-
pared with the angular frequency p, as we have assumed.
Thus equation (6.26) becomes

AKTK ‘II’C’2
1z A= ““‘"ZNK-
o N mc

The number of electrons per atom responsible for the K absorp-
tion band is consequently

2 [AK
N =7 f YN (6.27)

we? A2

A result equivalent to this has been obtained by R. A.
Houstoun,! who finds on evaluating the integral from experi-
mental data that Nk is of the order of unity. Using the data
collected in Tables VI-6 and VI-7 I find by graphical integra-
tion that this equation gives in the case of Zn, Nx = 1.4 elec-
trons per atom, and for Pt, N, = 4.3 electrons per atom. These
results, though of the correct order of magnitude, are not in
sufficiently good accord with the accepted numbers 2 and 8 to
inspire confidence in the reliability of this expression.

If we assume as an experimental datum that the absorption
is proportional to the cube of the wave-length, that is, 7x =
CxN, we may substitute this value of 7« in equation (6.27),
and on integrating obtain,

_ meENg? ,
NK - 21r€2 CK, (6 "7”)
whence
_ 21T'NK6’2 "
Cx = Nme (6.28)

Thus the part of the true atomic absorption coefficient due to

the K electrons is,
27re?

Tk = o \ 5 (6 . 29)

mce AK")'

1R. A. Houstoun, Proc. Roy. Soc. Edinburgh, 40, 35 (1920).
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Introducing similar terms representing the L, M, etc., absorp-
tion, we obtain the absorption law:

27[' [ <N]\> <NL> }
= 3 + -3 +
Ta £~ x 1 )h N < Ak XLZ X< A o ofe (6 . 30)

In view of Moseley’s approximate relation, Z2 ac 1/\, this
is approximately equivalent to Owen’s law, but now the formula
involves only 1 arbitrary constant, the exponent of . If in
equation (6.17) 43 is replaced by A3/8, it will be seen that
equation (6.29) differs from the corresponding expression
based on Thomson’s pulse theory only by the numerical factor
4/7%

88. Experimental Tests

A numerical calculation from equation (6.29) in the case of
copper, using Nk = 2 and A\x = 1.38 X 1078 ¢, gives 7x =
2.3 X 102! for X = .5.7, whereas the experimental value is
1.7 X 1021, For the same wave-length absorbed in platinum,
using N, = 8 and A\, = 1.0 X 107% cm., this equation gives
1.8 X 10720 for 71, whereas the experimental value is 1.1 X
10720, Though these differences are too great to ascribe to
experimental error, one cannot believe that the approximate
agreement is wholly accidental.

According to both expressions (6. 30) and (6.17), the absorp-
tion of a definite wave-length in different elements should vary
inversely as A2, which is only approximately proportional to
1/Z% 1t is therefore important to see which of these two rela-
tions is experimentally the more precise. In Table VI-8 I have
collected typical data from Tables VI-6 and VI-7 to make the
test for the two wave-lengths 0.2 and 0.64. It will be seen that
the values of 7./Z* remain more nearly constant than does
oMk, and are perhaps constant within experimental error. Thus
Owen’s empirical form of the absorption law, as expressed by
equation (6.06), is more precise than an equation of the form
(6.30) which results from the electromagnetic theory.

We shall see later (Chapter XII) that on the basis of the
quantum theory Kramers has derived an approximate expres-
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sion for the true absorption, according to which 7, is proportional
to Z* rather than to 1/\s2.

Thus here again, though the electron theory as based upon
the usual electrodynamics helps us in interpreting the absorp-
tion of X-rays, it fails to give a strictly accurate account of the
phenomenon. From the fact that the absorbed energy is spent
in exciting B rays, which so far as we are aware is a strictly
quantum phenomenon, the surprising thing is not that the
classical theory fails to describe the process accurately. The
wonder is that the calculations on this basis agree at all with
the experiments.

TABLE VI-8
For\ = 0.24 For\ = 0.64

Ele- Mg T
ment () Ta Ta/2Z* TaK? Ta Ta/2Z* TaAK?
(X10%) | (X10%) | (X10%) | (X10%) | (X10%) [ (X10%)
6 C 49 3 o o1y 1 31 413 o 419 3.23 1 02
13 Al 7.95 o §1 1.78 3 22 13 3 4 65 .84
26 Fe 1.738] 8 39 1 83 2 §3 213 4.65 .65
30 7Zn 1296 17§ 2.16 2 9§ 399 4.93 .67
42 Mo .618| 61.5 1 97 2 35 | 1287 413 .49
50 Sn .424| 120. 1.92 208 [oiiiiiiiifiiiiinn. TaAL?
PV AT % | F R Y 420 .67 3 67
74 W 1.119| 93 3 .31 11.7 1975 .65 2 47
82 Pb .865| 154. .34 11.§ 3015 .68 2 32




CHAPTER VII

THE REerractioNn orF X-Ravys

89. Introduction

According to the usual electron theory of dispersion, as de-
veloped originally by Drude ! and Lorentz,? if the frequency»
of the radiation transmitted by a substance is high compared
with the natural frequency of the electrons in the substance, its
index of refraction p is approximately

p=1— ne/2mm?, (7.01)

where # is the number of electrons per unit volume, and ¢ and
m have their usual significance. This represents an idex of re-
fraction /less than unity. Calculating # for glass of density 2.52,
and using a wave-length of 1.279A, equation (7.o1) predicts
an index of refraction of 1 — (5.2 X 10-%), which agrees within
experimental error with the experimental value 1 — (4.2 X
10-%), described in Chapter I.

This agreement between the calculated and the experimental
values presents several points of interest. In the first place, it
shows that in the region of X-ray frequencies we are able to get
a quantitative test of the usual electron theory of dispersion,
which is very difficult in the region of optical frequencies be-
cause of the unknown natural frequencies of the electrons com-
posing the refracting medium. In the second place, by a com-
parison between the experimental and the theoretical values of
the refractive index, equation (7.01) affords a means of measur-
ing the number # of the mobile electrons per unit volume, and
hence also the number per atom. This calculation is more

1 Drude, “Theory of Optics,” translated by Mann and Millikan, p. 388.
2 H. A. Lorentz, “The Theory of Electrons,” 2d Ed., p. 149.
205
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reliable than that from the scattering of X-rays, since it is
independent of the grouping of the electrons. And third, the
existence of an index of refraction less than unity, implying as
it does a wave motion with a velocity greater than that of light,
presents an interesting problem. Of course refractive indices
less than unity are found also in the optical region, as for
example in the case of metals. But the calculation for the X-
ray frequencies is more significant, because our knowledge of
the number and relative natural frequency of the electrons
effective in the refracting medium is more complete. It will
therefore be of value to consider in some detail the theory of
X-ray refraction.

go. Calculation of the Refractive Index

We shall base our calculation upon the fact that the
index of refraction is equal to the ratio of the velocity of the
wave in a vacuum to its velocity in the refracting medium, i.e.,
that,

= c‘/v. (7.02)

It is well known that Maxwell’s equations of the electromag-
netic field, when applied to a medium of permeability p and
dielectric constant £, lead to a velocity of wave propagation,

v =c¢/Vpk. (7.03)

Here ¢, the ratio of the electromagnetic to the electrostatic
unit of charge, is also the velocity of light in a vacuum, since
in a vacuum p and k are by definition unity. When this value
of v is substituted in equation (7.02), we obtain for the refrac-
tive index,

w= Vot

For the media with which we shall deal, however, especially at
the very high frequencies considered, p is very nearly unity, so
we may write,

p = Vk (7.04)
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By the dielectric constant of a substance we mean the factor
by which the capacity of a condenser is increased when the
space between its conducting surfaces is filled with the sub-
stance. Thus, if the capacity of a parallel plate condenser with
nothing between the plates is ///4xd, where A is the area of
either plate and 4 is the distance between them, its capacity
when the space is filled with a dielectric is k4/4rd, k being the
dielectric constant. When a potential / is applied across the
condenser, the electric intensity between the platesis E = //d,
and the charge per unit area is

_V kd _kE
a—dqxd_ 4r (7.05)
and
E = 41ra/k. (7.06)

Now let us suppose that the electric intensity E produces an
electric polarization in the dielectric such that it possesses an
electric moment P per unit volume. Thus a unit cube of the
dielectric would act electrically as if it possessed a charge of
+ P on one face and a charge of — P on the opposite face, and
there will be fictitious charges of this magnitude on the surfaces
of the dielectric next to the conducting plates. If we suppose
that these fictitious charges are respon31ble for the dielectric
properties of the medium, the electric intensity between the
plates of the condenser is by Coulomb’s law,

E = 47(c — P),

since the total charge at either surface is (¢ — P). Combining
this with equation (5.12) we get

P=a—%

and on substituting the value of ¢ given in equation (7.05)

P=§M—0- (ﬁw)
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A polarization of the medium of this magnitude will therefore
account for its properties as a dielectric. In terms of the polari-
zation the dielectric constant is thus given by

k=1+ 411'%- (7.08)

The polarization of the medium described by equation
(7.07) may result from the displacement of the electrons of
which the medium is composed by the action of the electric
field. Suppose there exists a group of # positive and 7 negative
electrons in a unit volume which are so distributed that the
external effect of their charges is zero. If under the action of
the electric field the negative electrons are displaced a distance
%, the system becomes equivalent to charges + #ne and — ne a
distance x apart. The resulting polarization of the medium is
hence

P = nex. (7.09)

In the case under consideration, the displacements x of the
electrons are the forced oscillations of electrons due to the
electromagnetic wave which traverses the medium. We showed
in the last chapter (eq. 6.22), that if the natural frequency
of oscillation of an electron is », = g/2m, and if the damping
is negligible, the electron’s displacement is

_ Aecos pt

mlg =)
Here A cos pt = E, E being the electric intensity of the wave
traversing the electron, and having the frequency » = p/2r.

Thus,

(7.10)

.= Ee )
- 4.7r2m(V02 - V2)

It will be seen that the displacement of the electron may be in
either the same direction or the opposite direction to the applied
field, according as the natural frequency of the electron is
greater than or less than the frequency of the impressed field.

If there are #, electrons per unit volume whose natural fre-

(7.11)
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quency is », the polarization to which they give rise is P, =
nsexs; and if there are electrons of N different natural frequen-
cies, the Htal polarization is

N N

Ql

P=XP = Ynex,
1 1
Ee* ¥ n,

=N _. (7.12)

4mim’y (v — )

The dielectric constant for the frequency » is thus, by equation

(7.08)

, & \‘i ",
k=1+ m T (v — ) 7.13)

and from equation (7.04) the refractive index is given by

N e X n,

S 7.14)
This expression is the equivalent of Sellmeier’s dispersion for-
mula, which has been found tc  count in a fairly satisfactory
manner for the optical dispersion of many substances.

We have assumed in our derivation of equation (7.14) that
the force on any electron in the dielectric is equal to Ee, where
E is externally applied field. It is clear that the force on an
electric charge within a dielectric is not the came as if the di-
electric were not present, because of the displacement of the
electrons of which the dielectric 1s composed. The forces due
to the dielectric have been considered carefully by Lorentz.!
Since in the case of frequencies corresponding to X-rays the di-
electric constant differs from unity only by about 10-9, the
correction due to these forces 1s however negligible for our
present purpose.

In view of the fact that u is very nearly equal to unity in the
case of X-rays, equation (7.14) may be written to a very close

approximation,
P N n,
=14 — __—;g)" (7.1%)

27I'm 1 (V

1H. A. Lorentz, “The Theory of Electrons,” p. 137 (1916).
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This expression, when summed for the different types of elec-
trons in the refracting material, should describe to a very close
approximation the index of refraction of the medium for X-
rays. For many of the ordinary refracting media, such as glass,
rock-salt, etc., there presumably exist no electrons whose
natural frequencies are comparable with the frequency of
ordinary X-rays, i.e., for all the refracting electrons, »?< <
In this case (7.15) may be written

pm=1— 7162/27rmvz, (7 16)

s =

where n = Xn, is the total number of mobile electrons per unit

—

volume. This is identical with our equation (7.01), which we
saw was in close agreement with experiment. If it is supposed
that the natural frequency of the K electrons in the atom is
equal to the critical K frequency, and similarly for the electrons
in the other energy levels, calculation shows that the values
predicted by equation (7.15) do not differ much from those
calculated from (7.16) except in the immediate neighborhood
of a critical frequency.

91. Significance of a Refractive Index Less than Unity

It is a well-known corollary of the special theory of relativity
that no signgl can be transmitted with a velocity greater than
that of light in a vacuum. We have seen, however, that the
index of refraction of most substances (probably every sub-
stance) for X-rays is less than unity, which according to our
fundamental equation (7.02) means a velocity in the medium
greater than ¢. This result follows directly from equation
(7.13), according to which the dielectr_i; constant is less than
unity for frequencies greater than the natural frequencies of the
electrons in the medium. It is the fact thatin this case the dis-
placements of the electrons composing the medium are opposite
in direction to the displacing force (eq. 7.11) which makes £ < 1
and hencev > ¢.

That the displacements of the electrons should be opposite
in direction to the force producing the displacement is at first
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thought surprising. A mechanical analogy would be the appli-
cation to a pendulum of a periodic force of frequency greater
than the natural frequency of the pendulum. If this is done,
applying the force for example with the fingers, one readily
verifies the prediction that the displacement is opposite to the
applied force when » > ».. One notices, however, that the
first impulse imparted to the pendulum displaces it in the
direction of the applied force; it is only for later impulses that
the displacement is in the opposite direction.

Similarly 1f we solve the differential equation (6.21) for an
applied force e cos pt beginning at the time ¢ = o instead of
t = — oo asassumed in equation (6.22), we find that the initial
displacement of the electron is in the direction of the electric
force.

This result means that for the first wave in the train, & is
always greater than 1, and hence v < ¢; but for the subsequent
waves £ < 1 if » > v, It follows that the wave front neces-
sarily 1s propagated through the medium with a velocity less
than that of light in free space. If the following waves travel
faster, they must vanish when they reach the front of the wave
train. Thus while the individual waves may have a velocity
greater than ¢, the group of waves, being limited by the front
of the train, always goes with velocity = ¢. Our result is there-
fore consistent with the statement that a signal cannot be
transmitted with a velocity greater than c.

A familiar example of the distinction between wave velocity
and group velocity is that of the waves produced at the bow
of a boat moving through the water. In this case one can see
the individual waves, which move faster than the train, form at
the rear of the train, move gradually to the head of the train,
and then disappear.

92. Deviations from Bragg’s Law

Since the index of refraction differs from unity, when X-rays
enter a crystal the wave front is altered in direction and the
wave-length is changed. If within the crystal N is the wave-
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length and ¢’ is the glancing angle of incidence on the atomic
layers, we have, as in equation (1.03), that

n\ = 2Dsin @', (7.17)
But by definition,

u = cos 6/cos ¢,

. I . I —u
sin §' = -- sin 9<I - ., >,
M sin-=6

whence

to the first power of 1 — u. Noting also that N/N = u, equa-
tion (7.17) becomes !
. I —u

n\ = 2D sin 9([ - > .18

sin® 0 (7.18)

The wave-lengths calculated from this expression differ from

those given by Bragg’s law (1.03) by about 1 part in 10,000.

If the crystal is composed only of electrons whose natural

frequencies are considerably less than that of the incident

X-rays, as is the case for rock-salt and calcite if X < 1.5A, we
may use from cquation (7.16),

. se? se2N?

. Y
2wmv- 2wmc*
writing 5 Mmstead of # as the number of electrons per unit
volume to avoid confusion. But to a close approximation
sin 8 = »\/2D, whence

as5e?D?* b
L= - (7.19)

sin? 0 wntmcd T u
Thus for a given crystal the correction to Bragg’s law indicated

by equation (7.18) can be effected by merely multiplying the
grating space by the factor (1 — 4/n?), that is

n\ = 2D sin 0<1 - —&—> (7.20)

n?

For rock-salt 4 = 9.6 X 1075, and for calcite & = 1.46 X 104,

! An expression equivalent to this was first given by C. G. Darwin, Phil. Mag. 27,
318 (1914). See also P. Ewald, Phys. Zeits. 21, 617 (1920).



DEVIATIONS FROM BRAGG’S LAW 213

In order to determine the refractive index from such mea-
sarements, it is necessary to determine the apparent wave-
length in two different orders. It then follows from equation

(7.18) that
AN o— N 12 .
I1—p=— --————=sin’g 21
Nt — oy ’ (7.20)
where 7\ = 2D sin 0, etc., 6; being the observed glancing
angle for order #.

We have already noticed (p. 35) how Stenstrom, using a
vacuum spectrometer, first discovered the refraction of soft
X-rays by observing differences in the apparent wave-length
as measured in different orders, and how his results were con-
firmed in the region of ordinary X-rays by Duane and Patter-
son and by Siegbahn. Thus as an example, Duane and Patter-
son ! found for the 7., line of tungsten,

A — A = .00015.7, mo=1, 0, = 14° ¢,
A = 1.473.1, Hy = 2,
from which, by (7.21), 1 — u = 8 X 1026, Similarly for the
g1 and v lines the index of refraction resulting from their ob-

servations is compared in Table VII-1 with that calculated
from equation (7.16).

TABLE VIl

Rerracrive INpeEx BY DEeviaiions rrom Brace’s Law v Carcite

Line A 1 — p (expt.) I — u (theory)
W lLay 1 4734 8§ X 1070 8§ X 107®
W L 1279 10 6
W Ly, 1 096 3 4.5

Results of a similar character, but of higher precision have
been secured by Hjalmar.2

tW. Duane and R. A. Patterson, Phys. Rev. 16, 132 (1920).
2 Hjalmar, The Spectroscopy of X-rays, Siegbahn (1925), p. 22.
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93. Use of the Crystal Wedge

A modification of this method, which has given precise
measurements of X-ray refractive indices, has been introduced
by Davis.! This method consists in grinding and polishing the
crystal under examination at such an angle that the ray which
is reflected in the first order enters the crystal surface at a very
small grazing angle. The result is that when the X-rays strike
the crystal at the acute angle the beam is considerably de-
flected, through almost 3 minutes of arc in one experiment.

Molecular Planes S~ ~C

F16. 89.

The determinations of the refractive index made by von
Nardroff 2 and Hatley ? using this method are included in
Table VII--2. The values in the third column of this table are
calculated from equation (7.15), which in the case of iron py-
rites and the copper K lines differs measurably from equation
(7.16). Von Nardroff finds the most satisfactory agreement
with his experimental values when the calculation i1s made for
2 electrons in the K group, assuming that their natural fre-
quency is that of the K absorption limit.

Strong evidence that the effective natural frequencies of
the electrons are identical with the critical absorption frequen-
cies is afforded by Hjalmar and Siegbahn’s recent observation *
of anomalous dispersion of X-rays. They made a careful com-
parison of the apparent lattice constants of calcite and gypsum
for different wave-lengths. The measurements are shown

1B. Davis and C. C. Hatley, Phys. Rev. 23, 290 (1924). B. Davis and R. von
Nardroff, Phys. Rev. 23, 291 (1924).

2 R. von Nardroff, Phys. Rev. 24, 149 (1924).

3 C. C. Hatley, Phys. Rev. 24, 486 (1924).

4 E. Hjalmar and M. Sieghahn, Nature, 115, 85 (1925).
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graphically in Fig. go, where values of Dy/D. = sin 62/sin 6,
are plotted against the wave-lengths. It will be seen that
there are in the curve two marked discontinuities, which coin-
cide at least very nearly with the wave-lengths of the absorption
edges of calcium and sulphur.
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The form of the curve is similar to that anticipated from
equation (7.15), showing, as the theory predicts, an abrupt
variation as a natural frequency is passed.

94. Total Reflection of X-rays'

Since the index of refraction is less than unity, if the X-rays
strike a polished surface at a sufficiently large angle of incidence
they should be totally reflected. A description of this phenom-
enon has been given in Chapter I (p. I, 40). A series of photo-
graphs showing this total reflection and the critical angle of
various substances for xo0.808A, very kindly made by Dr. R. L.
Doan for this illustration, is shown in Fig. g1. From the sharp-
ness of the critical angles shown in this figure, it is evident that

1 A. H. Compton, Bulletin Nat. Res. Council No. 20, p. 48 (1922); Phil. Mag. 4s,
1121 (1923). B. Davis and H. M. Terrill, Nat. Acad. Sci. 8, 357 (1922). M. Siegbahn,

Tysisk. Tidskr. 21, 170 (1923). P. Kirkpatrick, Nature, 113, 98 (1924). H. E.
Stauss, Nature, 114, 88 (1924). N. Carrara, N. Cimento, 1, 107 (1924).
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a precise determination of refractive index can thus be made.
From this photograph, 6., the critical glancing angle, is 10’ 38"
for \.708A reflected from speculum metal and since from equa-
tion (1.12),

I —p= %eczs (7~22)
we have

I —p=4.77 X 1075

with an error which is probably less than 1 per cent.

A .708 from glass
A .70% from speculum

A 1537 from glass

A 1.537 from speculum

L

Fic. 91.

Combining equations (7.22) and (7.16), we find that

-

0, = ¢ o (7.23)

r—;—m} %

That is, since s is nearly proportional to the density, the critical
angle is approximately proportional to the wave-length, and to
the square root of the density of the reflecting material.

The specular character of the reflection is illustrated by the
sharp line due to the reflected ray in Fig. 93, which is totally
reflected from a glass surface. In some total reflection measure-
ments using a piece of plate glass, however, the reflected beam
was found to be diffuse. Apparently both the sharpness and
the intensity of the reflected image depends upon having a well
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polished surface. When such a surface is used, 80 or go per cent
of the rays incident within the critical angle are reflected.

95. Refraction by Means of a Prism

The earliest attempts to measure the index of refraction of
X-rays were by passing the rays through prisms. Not only
Roentgen, but many later experimenters ! have failed by this

:: sllqlr
]
Direct ray 1 Xrey
i /’r:sm
ool
v FIG. 92.

method to detect any deviation of the rays traversing the
crystal. Recently, however, Larsson, Siegbahn and Waller 2
have succeeded not only in deviat-
ing an X-ray beam, but also in ob-
taining a dispersion spectrum of X-
rays. The details of their arrange-
ment are shown diagrammatically
in Fig. 92, and one of the result-
ing photographs is shown in Fig.
93. Their success was due to the
fact that their X-rays struck the
face of the prism at a fine glanc-
ing angle, just greater than the
critical angle for the rays which
are refracted, whereas most of
the former experiments had been
done with the crystal set for mini-
mum deviation.

F16. 93.—Prism spectrum of X-rays.
(Siegbahn, Larsson and Walker.)

1W. C. Roentgen, Ann. d. Phys. 64, 1 (1898). B. Walter, Naturw. Rundschau,
11, 332 (1896). G. Gouy, Comptes Rendus. 122, 1196 (1896); 123, 43 (1896). J.C.
Chapman, Proc. Camb. Phil. Soc. 16, 574 (1912). C. G. Barkla, Phil. Mag. 31, 257
(1916). D. L. Webster and H. Clark, Phys. Rev. 8, 528 (1916).

2 A, Larsson, M. Siegbahn and I. Waller, Naturious. 52, 1212 (1924).
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96. Table of Refractive Indices for X-rays

A summary of the determinations of the index of refraction
for X-rays which have been made by various methods is given
in the following table:

TABLE VIl
Inpices oF ReFracTION FOrR X-RAYS
*

A Substance | ;“I(;l) ! _; (f;pt) Observer Method
.52A | Glass .9 .9 Compton Total reflection
.631 | Glass I 43 1.22+ .15 [ L.S.& W.t | Prism
.631 | Iron pyrites 2 64 2 87 £ .20 | von Nardroff | Crystal wedge
.708 | Glass 173 1 64+ .10 L.S.&W. | Prism
.708 | Calcite 1 84 2 03 & o9 | Hatley Crystal wedge
.708 | Iron pyrites 3 31 3 35 &+ 20 | von Nardroff | Crystal wedge
.708 | Speculummetal| 4 go 4 77 = o4 | Doan Total reflection

1.279 | Glass 5.2 42 Compton Total reflection
1.279 | Silver 19 8 21 § Compton Total reflection
1 389 |{Glass 6 65 6.65 4+ o5 | L.S.&W. Prism
1 389 | Iron pyrites 13 53 13 2 + 4 | von Nardroff| Crystal wedge
1.538 |Glass 8 14 8124 o5 | L.S.&W, Prism
1 538 |Iron pyrites 17 60 176 £ 5 | von Nardroff| Crystal wedge
1.750 | Glass o § 100 + 4 |L.S.&W. Prism
1 933 |Glass 12 8 124 .4 |L.S.&W. Prism

* The calculation is by eg. (7 16) 1n every case except for silver and iron pyrites, for which
eq. 7 15 is used.
The density of the glass is 2.55.
t L. S. & W.=Larsson, Siegbahn and Waller.

97. Significance of the Values of the Refractive Index

It is interesting that in no case does the experimental value
of the index of refraction differ from the theorectical value by
more than may well be experimental error. This quantitative
confirmation of the dispersion formula carries with it important
consequences. In the first place, whatever faults the classical
wave theory of radiation may have as applied to other problems
which we have considered, it appears to give reliable results
when applied to the problem of refraction. In view of its partial
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failure in the closely related problems of scattering and absorp-
tion of X-rays, this result is significant, and must serve as a
valuable guide in the development of a complete theory of
radiation.

In the second place, we find evidence that there is a definite
natural frequency associated with the electrons in the inner
electronic rings, and that this frequency is that of the critical
absorption limit. It was not at all obvious that this natural fre-
quency should not be that of, for example, the Ka line. The
result is, however, in accord with the fact that the absorption has
a sharp discontinuity at this wave-length. There is, however,
this difference: Measurements such as the recent ones of Richt-
myer ! show that the absorption limit is exceedingly sharp.
But experiments by Davis and Slack,? using Siegbahn’s prism
method, show that the refractive index changes by no means
so abruptly at this wave-length. For incident frequencies so
near the critical absorption frequency that equation (7.15)
would indicate u > 1, experiment shows (CuK 8 line traversing
a copper prism) u < I as usual. Thus the indications are that
the branches of the dispersion curve are rounded off and do not
approach infinity.

Finally, these measurements afford us with our most direct
and accurate method of counting the number of mobile elec-
trons in atoms. In calculating the theoretical value of the index
of refraction we have assumed that the number of electrons per
atom is equal to the atomic number. From the precision with
which the index as thus calculated agrees with the experiments,
it follows that this assumption is probably correct to within less
than 1 per cent.

The other two most direct methods of counting the number
of electrons in the outer part of the atom are the study of the
scattering of alpha particles by atomic nuclei and the measure-
ment of the intensity of scattered X-rays. It is not obvious
from first principles that the alpha particle method will measure
a charge identical with that of the mobile electrons; this will

1F. K. Richtmyer, Phys. Rev. 26, 724 (1925).
2 B. Davis and C. M. Slack, Phys. Rev. 25, 881 (1925).
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depend upon how far into the atom the alpha particle pene-
trates. The intensity of the scattered X-rays, on the other
hand, though determined by the electrons exterior to the
nucleus, is a function not only of their number but also of their
arrangement. The index of refraction is theoretically indepen-
dent of the grouping of the electrons, and depends upon their
resonance only to the same extent as does the scattering. It
is accordingly gratifying that the estimate from refraction
measurements also indicates that the number of electrons per
atom which are affected by high frequency radiations is equal
to the atomic number.

Not only can we thus count the total number of electrons,
we are also afforded a means of determining the number of elec-
trons associated with the various electron shells. For the mag-
nitude of the resonance effects observed, when the incident
frequency is near the natural frequency of some electrons in the
mirror, depends upon the number of electrons per atom with
this natural frequency. On this basis, as we have seen, von
Nardroff has obtained good evidence that there are 2 electrons
in the K shell of iron. It seems reasonable to hope the further
studies of this character will give us direct information also
regarding the number of electrons in the various L and M levels.



X-RAYS AND QUANTUM THEORY
CHAPTER VIII
THE PHortoeLEcTRIC EFFect witH X-Rays

98. The Origin of the Quantum Theory

The quantum theory had its origin in an effort to account
for the radiation by black bodies. At the beginning of the
present century it was recognized that great difficulties stood in
the way of any satisfactory explanation of the radiation from
hot bodies according to the usual electromagnetic theory. Lord
Kelvin spoke of this problem as being one of the dense clouds
on the horizon of the Physics of that day. It was at about this
time that Planck proposed the bold view that electromagnetic
radiation is not emitted or absorbed continuously, but rather
in units. He succeeded in showing that, if this unit was taken
to have an energy proportional to the frequency of the radia-
tion, an expression could be obtained which represented very
accurately the experimental value of the intensity of hot body
radiation. On the other hand, more extended investigations of
the matter from the standpoint of the classical electrodynamics
by Lord Rayleigh, Poincare and J. H. Jeans served to show
only more clearly that the older theory was inadequate to
account for the phenomenon.

99. Planck’s Quantum Hypothesis

In the hands of Planck the quantum hypothesis has taken
various forms. At first he assumed that radiant energy was
both absorbed and emitted in integral multiples of 4», where vis
the frequency of the radiation and 4 is a universal constant now
known as Planck’s constant. He later showed that the same
radiation formula could be derived if it was supposed that radia-

221



222 X-RAYS AND ELECTRONS

tion was absorbed continuously, if only the radiated energy oc-
curred in quanta magnitude 4». Other writers have postulated
mechanisms of one form or another which permit absorption in
a continuous manner by means of oscillators until the energy
of the oscillator is A», when radiation may begin. In this way a
formal reconciliation between the requirements of heat radiation
and classical electrodynamics seems to be possible. Recognizing,
however, that some form of discontinuity must be present,
there has been a strong feeling, stimulated by Einstein, that a
simpler and more satisfactory form of the quantum postulate
is that energy must always occur in bundles or quanta of
magnitude A».!

As a consequence of this view, Einstein suggested that the
atoms in a solid, oscillating as they do with definite natural
frequencies about their equilibrium positions, should have
thermal energy which is an integral multiple of 4 times their
natural frequency. He showed from this assumption that the
specific heat of solids at low temperatures should approach
zero—a conclusion contrary to that of the classical kinetic
theory, which predicts unchanged specific heat as the tempera-
ture falls. This conclusion was in good accord with experi-
ments by Nernst and others, which showed that as the absolute
zero of temperature is approached the specific heat of all solids
rapidly approaches zero.

The complexity of the problems of hot body radiation and of
specific heat is such that it was difficult to prove through them
the necessity for introducing the quantum concept. For this
reason, though no adequate solutions of these problems were
forthcoming on the basis of the older dynamics, many physicists
remained unconvinced as to the necessity of the quantum

hypothesis.

100. Einstein’s Suggestion of Radiation Quanta

The physical existence of quanta of energy may be said to
have been established by studies of the photoelectric effect. In

1 A more general formulation of the quantum postulate is given in Chapter X.



EINSTEIN’S SUGGESTION OF RADIATION QUANTA 223

accord with his view that energy must always exhibit itself in
quanta, Einstein suggested the possibility that radiation may
consist of discrete bundles of energy of amount A», and that
photoelectrons are produced when such radiation quanta, or
“light darts ” are absorbed by matter. From this hypothesis
he predicted! that the kinetic energy with which photo-
electrons are ejected from a metal by light, when corrected for
the energy required to remove the electron from the metal,
should be given by the expression,

Imv? = hy — w,, (8.01)

where w, 1s the energy necessary to remove the electron, and 4
is again Planck’s constant. It was seven years before experi-
ments by Richardson and Compton 2 and by Hughes 3 showed
that the energy of the emitted electrons was indeed propor-
tional to the frequency less a constant, and that the factor of
proportionality was close to the value of 4 calculated from
Planck’s radiation formula. Following this work came in rapid
succession Bohr’s remarkably successful quantum theory *
of the spectrum of hydrogen, the discovery by Duane and
Hunt 5 and others (p. 27) that the continuous X-ray spectrum
has a sharp upper limit given accurately by

}l VXH(LX = eV’ (8 * 02)

where 7 is the potential applied to the X-ray tube, and Milli-
kan’s precise determination of 4 from photoelectric experiments
with the alkali metals.® That the constant 4 has a definite
physical significance could no longer be denied.

The question confronting us 1s no longer the justification of
the quantum postulate, but rather what is the relation of the
quantum to the usual concepts of dynamics and electrody-
namics. This question we are as yet unable to answer com-

! A. Finstein, Ann. d. Phys. 17, 145 (1909).

2 0. W. Richardson and K. T. Compton, Phil. Mag. 24, 575 (1912).
3 A, L. Hughes, Phil. Trans. A. 212, 205 (1912).

4N. Bohr, 1913 (cf. p. I 30).

& W. Duane and F. L. Hunt, Phys. Rev. 6, 166 (1915) (cf. p. 27).

¢ R. A. Millikan, Phys. Rev. 7, 18 and 355 (1916).
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pletely; but progress towards its solution may be made by
studying the application of the quantum point of view to
specific problems. Before reconsidering from this standpoint
the problems which have been treated in earlier chapters on
the basis of the classical theory, let us look into the properties
of the photoelectrons ejected by X-rays, whose very existence
is an anomaly when we consider X-rays as electromagnetic
waves.

101. Beta Rays Excited by X-rays

It was observed by Perrin ! and by Curie and Sagnac,? early
in the history of X-rays, that when these rays fall on solid
screens a type of secondary radiation is emitted which is nearly
completely absorbed in 1 mm. of air. Dorn 3 showed that this
radiation consisted of negatively charged corpuscles which
could be deflected by a magnetic field; and assuming the same
ratio of ¢/m as that of the cathode rays, he found that the
velocities of these secondary particles were of the order of /,th
the velocity of light. We shall call these high speed clectrons
“ beta rays ” or * beta particles.”

102. Methods of Experimental Investigation

The presence of beta rays can be detected by allowing X-
rays to fall on a plate insulated in a good vacuum. The plate
is then found to acquire a positive charge, due to the emission of
the secondary electrons. The effect is thus strictly analogous to
the photoelectric effect observed with light.

A second method of investigation is to make use of the
ionization produced by the beta rays. Thus, it is found that
if X-rays strike a solid substance placed in a gas, the ion-
ization in the neighborhood of the solid is much more in-
tense than that elsewhere in the gas. The region of intense
lonization, being determined by the range of the beta rays, may

1 Perrin, Ann. de Chim. et Phys. (7), vol. 2, p. 496 (1897).

2 Curie and Sagnac, Jour. de Phys. (3), vol. 1, p. 13 (1g02).
3 Dorn, “ Lorentz Jubilee Volume,” p. 595 (1900).
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be varied by changing the pressure of the gas. Thus, since the
ionization due to the absorption of the X-rays in the gas is
proportional to the pressure P, the total ionization I, if the
second electrons are completely absorbed, is given by

I=CP+1,

where the constant of proportionality € can be determined by
experiment, and /, represents the ionization due to the photo-
electrons from the solid. Thus

I, =1—CP. (8.03)

Theoretically this method is open to the objection that it does
not distinguish between photoelectrons and secondary X-
radiation of very soft type. Under ordinary conditions, how-
ever, the lonization due to the electrons is so much greater than
that due to the very soft secondary X-rays that no confusion is
apt to arise. This method is a convenient one, and has been
much used.

In many respects the most satisfactory method of studying
these secondary beta rays is the beautiful one devised by
C. T. R. Wilson,! in which the tracks of the individual particles
are rendered visible by condensing water droplets on the ions
formed along their paths. By this means it is possible to count
accurately the number of secondary electrons emitted, study
their distribution, and make measurements of their range in
air. If two simultaneous photographs are taken at right angles
with each other, by the method described by Shimizu,? the
exact shape and total length of the paths may also be deter-
mined.

A very useful method of counting the number of beta rays
has been developed by Geiger ® and others.* This device con-
sists of a needle point which is surrounded by a conducting

1 C. T. R. Wilson, Proc. Roy. Soc. 87, 277 (1912).

*T. Shimizu, Proc. Roy. Soc. 99, 425 (1921).
3 H. Geiger, Verh. d. D. Phys. Ges. 15, 534 (1913).
4 A. F. Kovarik and L. W. McKcehan, Phys. Zeitschr. 15, 434 (1914); Phys. Rev.

6, 426, 1915; 8, 574 (1916). A. K. Kovarik, Phys. Rev. 13, 272 (1919). W. Bothe
and H. Geiger, Zeits f. Phys. 32, 639 (1925) ¢ al.
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envelope at about + 1800 volts or — 2400 volts (in air). When
a beta particle traverses the enclosed air, producing ions, a
sudden surge of current passes through the chamber, which is
large enough to detect directly with a string electrometer, or
to amplify by means of three electrode tubes.

For investigating the velocities of the beta rays excited by
X-rays, the method of photographing their magnetic spectrum
has given the best results. Lior this purpose, the arrangement
employed first by Robinson and Rawlinson ! is very satisfac-
tory. This arrangement is illustrated in Fig. 94.

L J
L ]

FiG. 94.

A flat, air-tight, brass box having a window § for the admission
of the primary X-rays, is evacuated and placed between the
poles of a large electromagnet. Sccondary electrons from the
radiator R go out in all directions, and those passing through
the slit # have their paths bent around by the magnetic field to
some point P on a photographic plate. The geometrical
arrangement is such that all electrons emitted with the same
speed from a certain point on R, and passing through the slit #
will fall on the same line at . Irom the position of this line
the radius of curvature can be determined, and the velocity »
of the electrons responsible for the line may be calculated from’
the formula,

b= RH—T—; , (8.04)

1 Robinson and Rawlinson, Phil. Mag. 28, 277 (1914).
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where R is the radius of curvature, H is the effective strength
of the magnetic field, and ¢ and m have their usual signifi-
cance.

103. Photoelectrons and Recoil Electrons

When a study of the beta particles is made by the cloud
expansion method, it is found that X-rays of a given frequency
eject particles of two types, easily distinguishable from each
other by the fact that the range of one type is much greater
than that of the other.! Examples of these two types of beta
rays are shown in Iigs. 95, 96, and g7.  In Iig. 95 there appear
4 long tracks of the first type, and also, originating in the
path of the primary beam, 3 tracks of the second type which
are so short that they appear as spheres. In obtaining Fig. 96,
X-rays of somewhat shorter wave-length were used, so that
both types of tracks arc longer, some of those of the shorter
type now being of measurable length. When X-rays of yet
shorter wave-length are used, asin Fig. g7, the tracks of the
second type rapidly increasc in length, and greatly outnumber
the longer ones.

Measurements of the range in air show 2 that the tracks of
the longer type are produced by electrons cjected with an
energy only slightly less than the quantum /4y, as is to be
expected according to Kinstein’s photoelectric equation (8.01).
It is thus highly probable that their mode of origin is identical
with that of the photoelectrons ejected from alkali metals by
light. These long range particles are accordingly called photo-
electrons, whether ejected by light, X-rays or y-rays.

The lengths of the shorter tracks produced by X-rays
correspond to electrons having encrgies usually less than 10 per
cent of a whole quantum 4, so that they must originate in a
different manner from the photoelectrons. It is found 3 that
the number of these short beta rays is approximately equal to

1C. T. R. Wilson, Proc. Roy. Soc. 104, 1 (1923). W. Bothe, Zeits. f. Physik, 16,
319 (1923); 20, 237 (1923).

* C. T. R. Wilson, loc. cit.

3 A. H. Compton and A. W. Simon, Phys. Rev. 25, 306 (1925).
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the number of quanta of X-ray energy scattered by the air
in the expansion chamber, which means that they must be
somehow associated with the scattering of X-rays. In the next
chapter we shall show that we can accurately describe their
properties on the assumption that when a quantum of X-rays
is scattered it is deflected by a single electron. The change in
momentum of the X-ray quantum due to its change in direction
1s balanced by a recoil of the electron which deflects the quan-
tum, and which is itself ejected from the atom, forming a beta
ray. We may therefore call beta particles of the shorter type,
recoil electrons.

In this chapter we shall confine ourselves to a discussion of
the properties of the beta rays of the photoelectron type.

104. Speed of the Photoelectrons

We have mentioned above (pp. 223 and 226) the experi-
ments which have shown that Einstein’s equation (8.01) gives
accurately the maximum speed of the photoelectrons ejected
from metals by light. In the X-ray region the studies of Innes!
Sadler,® Beatty, Whiddington,* and Moseley * taken together
showed ¢ that the maximum energy of electrons ejected by X-
rays of frequency » is very nearly equal to Zv. This is evidently
in accord with the photoelectric equation, since the fastest elec-
trons will come from near the surface of the atom where w, 1s
negligible compared with /4» for X-rays.

From measurements of the ionization of gases by X-rays,
Barkla and‘Shearer 7 were led to the conclusion that all X-ray
photoelectrons, from whatever part of the atom they are
ejected, have on leaving the atom a speed corresponding to a
whole quantum of the incident radiation. Richardson 8 called

1P, D. Innes, Proc. Roy. Soc. 79, 432 (1907).

2 C. A. Sadler, Phil. Mag. 19, 337 (1910).

3 R. T. Beatty, Phil. Mag. 20, 320 (1910).

4 R. Whiddington, Proc. Roy. Soc. 86, 360 and 370 (1912).

8 H. G. J. Moseley, Phil. Mag. 27, 703 (1914).

¢ 0. W. Richardson, *“ The Electron Theory of Matter,” (1914) Chap. XIX.
7 C. G. Barkla and G. Shearer, Phil. Mag. 30, 745 (1915).

8 0. W. Richardson, Proc. Roy. Soc. 94, 269 (1918).
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attention to the surprising nature of this conclusion, since if
each photoclectron represents the absorption of energy Av, we
should expect the kinetic energy of the photoelectron to be less
than this by the very considerable amount of energy required
to remove the electron from its parent atom. Some experi-
ments by Simons ! on the range of the X-ray photoclectrons in
thin screens suggested that different groups of velocities were
present, corresponding to different cnergy losses by the elec-
trons ejected from different parts of the atom. The existence
of beta rays of these energy groups was finally established in a
series of beautiful e\perlmenrs by de Broglie? in the X-ray
region and by Ellis® in the region of y-rays, both using the
magnetic spectrometer.

12 3 4 5
Fia. 98,

F16. 99.

Two of de Broglic’s photographs, showing the beta ray
spectra trom a silver screen traversed by X-rays from a tung-
sten target, are reproduced in Figs. 98 and g9. The two figures
differ in that the magnetic field was stronger for IFig. 99. Fach
of the lines appearing in these photographs can be ascribed to
electrons from some definite energy level of silver excited by
some definite spectrum line. Thus the prominent double line

1].. Simons, Phil. Mag. 4, 120 (1921).

2 M. de Broglie, C. R. 172, pp. 274, 527, 746 and 806 (1921); Jour. de Phys. ct
Radium 2, 265 (1921).

3 C. D. Ellis, Proc. Roy. Soc. 99, 261 (1y21).
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4 is due to electrons ejected from the K level of silver by the
Ka doublet of tungsten. De Broglie calculates the velocities to
be expected in this case from Finstein’s photoelectric equation
written in the form

mc2<—\—/1 T__ i;—’ - I> = hv — hvp, (805)

where 8. is the velocity of the particle, » the frequency of the
incident X-rays and v» the critical frequency of the energy level
from which the photoelectron is ejected. He finds that the
relativity expression for the kinetic energy (see eq. (21),
Appendix 1) must be used for these high speed electrons in-
stead of the approximate expression imy? which is satisfac-
tory for the low speed electrons cjected by light. Combining
equations (8.04) and (8.05) and solving for RH in terms of the
known values of » and »r, de Broglie finds that for the line pro-
duced by electrons from the silver K level excited by the tung-
sten Koy rays, le., for the Kai//— KAg line, RH is 630,
where as the experimentally determined value of RH is 631.
In a similar manner, line 1 of Fig. 98 is identified with the
KaAg — LAg line, produced by electrons from the silver L
level excited by the fluorescent Ka rays from silver.

105. Determination of Energy Levels

Having thus established the validity of equation (8.05),
measurements of the electron speeds gc can be applied to
determine the critical frequencies », of the energy levels if » is
known, or to determine the unknown frequency » of the incident
radiation if », is known. Robinson ! has thus found the energy
or critical frequency of the outer shells of many atoms. He
uses the K line of copper to excite the photoelectrons from thin
films of the substance under investigation, and obtains a large,
comparatively uniform magnetic field by means of a pair of
Helmbholtz coils. The accuracy of his results probably exceeds

1H. R. Robinson, Proc. Roy. Soc. 104, 455 (1923); Phil. Mag. 50, 241 (1925).
Cf. also R. Whiddington, Phil. Mag. 43, 1116 (1922).
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in many cases that of the values calculated from the observed
wave-lengths by help of the combination principle.

106. W ave-lengths of v-rays

In the hands of Ellis,! Thibaud 2 and others3 the magnetic
beta ray spectrometer has given important knowledge of wave-
lengths of y-rays, which can be measured only with difficulty
if at all by the crystal spectrometer. The energy level from
which the electrons are ejected can be determined by comparing
the spectra of the photoelectrons from two different elements
such aslead and tungsten. It is found that the difference of the
beta ray energies in the two cases is equal to the difference in
the energies of the corresponding K shells. Thus the frequency
of the y-rays is calculable from equation (8.05) if », is taken as
the critical K frequency of the element from which the electrons
are ejected. In Table VIII-1 are given some of the y-ray wave-
lengths which have thus been determined.

By comparing the velocities of the photoelectrons ejected
by y-rays from different elements, Thibaud (loc. cit.) has shown
that the photoelectric equation (8.05) holds with precision even
for electrons of the highest speed. This constitutes also an
important test of the relativity expression for the kinetic energy
of a rapidly moving particle.

107. Compound Photoelectric Effect

Wilson 4 and Auger ® have recently shown by the cloud ex-
pansion method that very often not only one but a group of as
many as four photoelectrons may be ejected simultaneously
from a single atom. A photograph showing this remarkable
phenomenon is reproduced in Fig. 100. It would seem that the
initial action of the X-ray quantum is to eject an electron from

1 C. D. Ellis, Proc. Roy. Soc. 100, 1 (1922); Proc. Camb. Phil. Soc. 22, 369 (1924).

2 J. Thibaud, C. R. 178, 1706 (1924); 179, pp. 165, 1053 and 1322 (1924).

3 Ellis and Skinner, Proc. Roy. Soc. ros, 165 and 185 (1924); L. Meitner, Zeits.
f. Phys. 11, 35 (1922); Black, Proc. Roy. Soc. 106, 632 (1924).

4 C. T. R. Wilson, Proc. Roy. Soc. 104, 192 (1923).
5 P. Auger, C. R. 180, 65 (1925); J. de Phys. et Radium, 6, 205 (1925).
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perhaps the K level of a krypton atom. The vacancy in the K
level may be filled by an electron falling from an Z level, and
the resulting Ko ray may eject from the same atom another
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#C. D. Ellis and W. A. Wooster, Proc. Camb. Phil. Soc. 22, 853 (1925).

41.. Meitner, Zeits. f. Phys. 11
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b J. Thibaud, Thesis, Paris (1425).

¢ 1. Mcitner, Zeits. f. Phys. 34, 8135 (1925).

electron from an L level.

Two L rays may now be produced by
electrons falling into the two vacancies in the L shell, and these
may in turn eject two electrons from the M or outer levels of
the same atom. Thus the single initial quantum produces 4
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photoelectrons of varying velocities. From a study of their
ranges, Auger has shown experimentally that the energy of all
these beta rays taken together is no greater than that of the
original quantum,

This compound photoelectric effect is perhaps the explana-
tion of the small change observed in the ionization current of a
Bragg spectrometer on the two sides of the absorption limit of
iodine when the ionization chamber is filled with methyl iodide.
It had been supposed that when the characteristic K rays of
iodine are excited, they would carry with them into the walls of
the chamber much of the energy of the primary beam. The

Fia. 100.

fact that experiment shows only a very small reduction in the
ionization as the wave-length becomes shorter than the iodine
K limit must mean that a large part of the resulting K radiation
never escapes from the atom from which the photoelectron is
ejected. A similar phenomenon occurs in the case of the beta
rays from radioactive substances, where it is found that vy-ray
starting from the nucleus of the atom very often spends itself
in ejecting a photoelectron from the same atom.!

108. Spatial Distribution of the Photoelectrons

Experiments by the cloud expansion method have shown 2
that the most probable direction in which the photoelectron is
! M. de Broglie and J. Thibaud, C. R. 180, 179 (1925).
2 A. H. Compton, Bulletin National Res. Coun. No. 20, p. 25 (1922). C.T.R. Wil-
son, Proc. Roy. Soc. 104, 1 (1923). F. W. Bubb, Phys. Rev. 23, 137 (1924). P.
Auger, C. R. 178, 1535 (1924).
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ejected from an atom is nearly the direction of the electric
vector of the incident wave, but with an appreciable forward
component to its motion. There is, however, a very consider-
able variation in the direction of emission. If, for example, we
plot the number of photoelectrons ejected at different angles
with the primary beam we find, according to Auger,' the dis-
tribution shown in IYig. 101. Each of these three curves, taken
at a different potential, represents the distribution of about 200
photoelectron tracks. It will be seen that as the potential on
the X-ray tube or as the frequency of the X-rays is increased,

N

Fic. 101,

the average forward component of an electron’s motion in-
creases. Iig. 95 shows in a striking manner the fact that most
of the photoelectrons initially have a forward component to
their motion.

When polarized X-rays are used, there is a strong preponder-
ance of the photoelectrons in or near the plane including the
electric vector of the incident rays. Thus Fig. 102 shows the
distribution found by Bubb ? of the direction of the photo-
electrons ejected from moist air when traversed by X-rays that
have been polarized by scattering at right angles from a block of
paraffin. Due to multiple scattering in the paraffin we have

1J. de Phys. et Rad. 6, 205 (1925). 2 F. W. Bubb, loc. cit.
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seen (p. 68) that the scattered rays are not completely
polarized, and this is probably sufficient to account for the fact
that some photoelectrons appear to start at right angles to the
plane of the electric vector. This effect is doubtless similar
in character to the * selective photoelectric effect,” in which
the number of electrons ejected by light from the liquid surface
of sodium-potassium alloy is greater when the electric vector
is in a plane perpendicular to the surface than
when parallel to the surface.!

It was at one time supposed also that when
light traverses thin films of metal the photo-
electrons are given a motion with a forward
component similar to that shown in Iig. 1or
for the X-ray photoelectrons.  Thus Stuhlman,?
Kleeman # and others have found that if a thin N
metallic film is deposited on quartz more photo-
electrons are ejected if the light passes from
the quartz into the metal than if it passes from
the metal into the quartz. It has been shown
however by Partzsch and Hallwachs ! that
this effect is due largely and perhaps wholly
to the fact that a greater part of the energy
of the light is absorbed by the metal film
when the light enters from the quartz side
than when it enters from the free surface. The result is that the
total number of electrons produced is greater when the light
enters from the quartz into the metal. There is thus no con-
vincing evidence that when ordinary light is absorbed by an
atom the resulting photoelectron has any greater tendency to
move forward than backward.

An effect analogous to this has long been known with the
beta rays produced when matter is traversed by gamma rays.

FiaG. 102,

1R. Pohl and P. Pringsheim, Verh. d. Deutsch. Phys. Ges. 13, 474 (1911). H. E.
Ives, Astrophys. J. 60, 209 (1924).

20. Stuhlman, Phil. Mag. 20, 331 (1910); 22, 854 (1911).

3R. D. Kleeman, Nature, May 19, 1910.

4 A. Partzsch and W. Hallwachs, Ann. der Phys. 41, 247 (1913).
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Most of these beta rays are undoubt