S. 1500 C.

23.
Inhaltsanzeige.

Bericht über die Fortschritte der mikroskopischen Anatomie im Jahre 1855. Von K. B. Reichert in Breslau 1
Beiträge zur Entwicklungsgeschichte der Spongillen. Von N. Lieberkühn .. 1
Beiträge zur Anatomie der Infusorien. Von N. Lieberkühn. 20
Weitere Beiträge zur Lehre vom Stoffwechsel. Von Fr. Th. Fre- richs und G. Städelier .. 37
Ueber die Umwandlung der Gallensäuren in Farbestoff. Von Fr. Th. Frerichs und G. Städelier 55
Die sensitiven Zweige des Zungenfleischnerven des Menschen. Von Prof. H. Luschka in Tübingen. (Hierzu Tafel I.) 62
Ueber die Micropyle der Fischeier und über einen bisher unbe- kannten, eigen tümlichen Bau des Nahrungsdotters reifer und befruchteter Fischeier (Hecht). Von K. B. Reichert in Breslau. (Hierzu Tafel II. III. u. IV. Fig. 1—4.) 83
Ueber die Müller-Wolff'schen Körper bei Fischembryonen und über die sogenannnten Rotationen des Dotters im befruchteten Hechtie. Von K. B. Reichert. (Hierzu Taf. IV. Fig. 5—9.) 125
Ueber fütalas Drüsengewebe in Schilddrüsegewächslichen. Von Dr. Theodor Billroth. (Hierzu Taf. V. A.) 144
Ueber Tastkörperchen und Muskelstruktur. Von Franz Leydig. (Hierzu Taf. V. B.) .. 150
Eine kleine Zugabe zu A. Schneider's Beiträgen zur Naturgeschichte der Infusorien. Von Dr. J. F. Weisse zu St. Petersburg. (Hierzu Taf. VI. A.) .. 160
Beobachtungen über die Fortpflanzung der Polythalamien. Von Prof. Max Schultz de Halle. (Hierzu Taf. VI. B.) 165
Ueber das numerische Verhältniss zwischen den weissen und rothen Blutzellen. Von Dr. Ernst Hirt in Zittau. (Hierzu Taf. VII.) 174
Historisches und Experimentelles über Muskeltomus. Von Dr. Rudolf Heidenhain. (Hierzu Taf. VIII.) 200
Bemerkungen über die Randkörper der Medusen. Von Prof. C. Ge- genbaur. (Hierzu Taf. IX.) 230
Uebersetzung der Arbeit de Filippis: „Sull' origine delle Perle, del dottore F. de Filippi, professore di Zoologia nella Regia Università di Torino. — Estratto dal Cimento, Fascicolo IV, Torino 1852", nebst auf eigene Untersuchungen gegründeten Anmerkungen. Von Dr. Friedrich Küchenmeister 251
Ueber eine der häufigsten Ursachen der Elsterperlen und das Ver- fahren, welches zur künstlichen Vermehrung der Perlen dem hohen Königl. Sächsischen Ministerium der Finanzen vorge- schlagen wurde. Von Dr. Küchenmeister. 269
Ein Musculus supraclavicularis beim Menschen. Von Prof. H. Luschka in Tübingen. (Hierzu Taf. X.) 282
Über Eiweiss-Diffusion (vollständige Mittheilungen). Von Prof. v. Wittich in Königsberg 286
Über den Bau der Gallertsehne der Medusen. Von Dr. Max Schultze, Professor in Halle. (Hierzu Taf. XI. XII.) 311
Über spontane Bewegung der Muskelfibrille. Erwiderung von Prof. Mayer 321
Über die Entwicklung der Neunagen. Ein vorläufiger Bericht von August Müller 323
Über die Organisation der Infusorien, besonders der Vorticellen. Von Dr. C. F. J. Lachmann. (Hierzu Taf. XIII. XIV.) 340
Zur Entwickelungsgeschichte der Spongillen, (Nachtrag) Von N. Lieberkühn. (Hierzu Taf. XV.) 339
Phänomene aus dem Leben der Pigmentzellen. Von Dr. W. Busch. (Hierzu Taf. XVI.) 415
Über die Anheftung der Muskelfasern an die Sehnen. Von Dr. Adolf Fick, Prosector in Zürich. (Hierzu Taf. XVII. B.) 425
Kritische und experimentelle Beiträge zur Hämodynamik. Von F. C. Donders 433
Über die Enden der Nerven im elektrischen Organ des Zitterrochen. Von R. Remak 467
Über das vas deferens. Von Ludwig Fick in Marburg. (Hierzu Taf. XVII. A.) 473
Encore un mot sur la formation des perles. Par le Dr. Ph. de Filippi, Prof. à Turin 490
Über parasitische Schläuche auf einigen Insektenlarven. Von N. Lieberkühn. (Aus dem Monatsbericht der Königl. Akademie der Wissenschaften zu Berlin. 1856. April.) (Hierzu Taf. XVIII. Fig. 1—7.) 494
Zusätze zur Entwickelungsgeschichte der Spongillen. Von N. Lieberkühn. (Vorgetragen in der Gesellschaft naturforschender Freunde zu Berlin in der Sitzung vom 20. Mai 1856. (Hierzu Taf. XVIII. Fig. 8. 9.) 496
Beobachtungen aus der Entwickelungsgeschichte der Pteropoden, Heteropoden und Echinodermen. Von Dr. A. Krohn. Briefliche Mittheilung an den Herausgeber 515
Erörterungen zur Hämodynamik mit Beziehung auf die neuesten Untersuchungen von Donders. Von A. W. Volkmann 523
Conceremente aus dem Bojanusssehen Organ. Von Schlossberger in Tübingen 540
Bericht über die Fortschritte der mikroskopischen Anatomie im Jahre 1855.

Von

K. B. REICHERT

in Breslau.

Allgemeiner Theil.

Die Morphologie auf dem Standpunkt der systematischen Naturauflussung.

Der letzte Jahresbericht gab dem Ref. Gelegenheit, die atomistische und die sogenannte systematische Naturauflussung auf dem organischen Gebiete mit Rücksicht auf ihre wesentlich verschiedenen Grundlagen, auf die gänzlich abweichende Methode der wissenschaftlichen Behandlung und Bearbeitung des vorliegenden Stoffes, und endlich auch auf ihre Berechtigung im Allgemeinen und mit besonderer Beziehung auf die Zelle näher zu besprechen. indem wir von allen weiteren, metaphysischen Betrachtungen abgaben und uns auf den empirischen Boden, der vorliegt und den der Naturforscher festzuhalten hat, stellten, liess sich der wesentliche Unterschied beider Naturauflussungen kurz dadurch charakterisiren, dass der Systematiker als eine fundamentale Eigenschaft der organischen Schöpfung im grossen Ganzen, wie in den Einzelheiten das systematische Wesen anerkennen, und dass der Atomist dieses leugne oder wenigstens gänzlich vernachlässige und dafür von willkürlich erwählten Atomen, von beselten Monaden, sogar von blossen Kraftpunkten u. s. w. als den eigentlichen fundamentalen Grundlagen ausgehe. Es wurde ferner darauf hingewiesen, dass mit diesem so wesentlich verschiedenen Standpunkte beider Naturauflussungen auch eine wesentlich verschiedene Methode in der wissenschaftlichen Auffassung, Behandlung, Bearbeitung des gegebenen Stoffes verbunden sei. Der Systematiker dringt mit Beobachtung und Experiment analysirend in die ihm vorliegende, systematisch organisirte Schöpfung ein; er will oder soll wenigstens das systematische Wesen nicht

Müller's Archiv, 1856. Jahresbericht.
aufbauen wollen; er soll das Vorliegende analytisch zergliedern und jede Erscheinung mit Rücksicht oder, wenn man will, mit der nothwendigen Induktion auf die im räumlichen Nebeneinander oder im zeitlichen Aufeinander dargebotenen regulatorischen Einheiten auffassen und wissenschaftlich be­arbeiten. Der Atomist addirt; er aggregirt und konstruirt mit Rücksicht oder mit der nothwendigen Induktion auf seine Atome, auf seine Kraftpunkte — nach künstlich erdachten und calculirten Schemen; er will mit seinen Atomen die Organismen und die gesammtte organische Schöpfung aufbauen und schaffen, wie man Häuser, Maschinen baut, oder andere Kunstprodukte, die in allen Fällen nur Aggregatsysteme sein können, zu Stande bringt; alle Beobachtungen und Versuche können bei strenger Konsequenz nur eine solche Richtung einschlagen und verfolgen. Bei beiden Natu­rauffassungen giebt sich also ein wesentlich verschiedenes, logisches Denkverfahren zu erkennen, sobald es darauf an­kommt, die vereinzelte Erscheinung, die Beobachtung, die durch Versuch ermittelte That­sache wissenschaftlich zu verwerthen; eine ganze Reihe der wichtigsten Vorstellungen und Begriffe, die in dem systematischen Grundcharakter der organischen Schöpfung wurzeln, müssen dem Atomisten entgehen und, wie die Erfahrung reichlich gelehrt hat, gänzlich unverständlich bleiben.

Um nicht misverstanden zu werden, müssen wir hervorheben, dass die Unterschiede beider Methoden nicht blos in dem analytischen und synthetischen Verfahren liegen. Bei den Bemühungen des Systematikers, das System in der organischen Schöpfung zu ermitteln, wird oft ein synthetisches Verfahren unvermeidlich, aber es dient nur zur Vorarbeit und darf nicht die Analyse mit der Induktion auf den systematischen Grundcharakter unter­graben wollen. Die organische Schöpfung ist ja auch überdies reich an wirklichen Aggregationsverhältnissen von zuweilen sehr komplizierter An­ordnung und einem scheinbar systematischen Gepräge; hier bewegt sich die Synthese sogar in einem freieren Spielraume. Auf der anderen Seite entzieht sich auch der Atomist durchaus nicht dem analytischen Verfahren; es fehlt nur ein Etwas dabei, freilich das Wichtigste: die Induktion auf den systematischen Grundcharakter; seine Analyse ist daher nur ein Vorspiel, eine Vorarbeit für eine willkürlich, obschon oft recht schlau und scharfsinnig auszuführende Synthese. Der Unterschied und wahre Gegensatz beider Methoden wurzelt also in der Induktion auf das Atom oder, wenn man will, auf die Atome, und in der Induktion auf einen anerkannten systematischen Körper von natürlicher und nicht künstlicher Form und Beschaffenheit.

Nach ihrem ursprünglichen Standpunkte, sowie in Be-

Die systematische Natürauffassung hat ihren Kampf nicht allein mit der atomistischen zu bestehen. Eine jede Natürauffassung, welche den systematischen Grundcharakter der organischen Schöpfung nicht zum Ausgangspunkt der Betrachtung erwählt, oder auch nur ein Verfahren, welches konsequent oder je nach Umständen obigen Standpunkt aus den Augen verliert, wird sich auf ähnliche Weise gegen sie verhalten müssen. Die Geschichte hat es nachzuweisen, wie sich die systematische Natürauffassung allmäß herangebildet, in welcher Form und unter welchem Gewande die ersten, noch rohen Vorstellungen hervortraten, und welche Schicksale und Irrfahrten erlebt worden sind; sie mag nicht verschweigen, dass dieselbe namentlich durch gediegener Forschungen in der Entwicklungsgeschichte, durch C. F. Wolff, C. E. von Bähr u. a. an innerem Halt gewann, dass sie auf der Grenzscheide des 18ten und 19ten Jahrhunderts durch die Naturphilosophie den empirischen Boden verliess und in falscher Richtung vordringend die meisten Naturforscher von sich abwandte, um später, namentlich durch J. Müller, wieder in die richtige Bahn einzuläuten; sie mag endlich erläutern, wie es gekommen, dass in einer Zeit, in welcher die Chemie, die Physik, die Mathematik weitgreifende Fortschritte machten, Maschinen und Fabriken den menschlichen Geist in vollen Anspruch nahmen, die systematische Natürauffassung unter dem Deckmantel der exakten, mechanischen, physikalischen, chemischen, mathematischen Methode wieder in den Hintergrund gedrängt, die Be griffe von Funktion, von Reiz, von Keim, von Zeugung und Entwicklung etc. als nichtssagend bezeichnet, die Entwicke-
lungsgeschichte, die Zengungslehre, die vergleichende Naturforschung, ja selbst die anatomicen Disziplinen als etwas dem Physiologen mehr Fernliegendes angesehen, das künstliche Experiment (doch nur ein Mittel zur Diagnose) als das eigentliche Element des Physiologen, die Experimentalphysiologie als die alleinige, wahre Physiologie betrachtet und schliesslich eine Physiologie der Atome, ebenso reich an Scharfsinn und künstlichen Schemen, wie an offenen Widersprüchen mit dem, was in der organischen Schöpfung vorliegt, uns dargeboten wurde. Wir sind hier noch eimal auf diesen Gegenstand zurückgekommen, weil wir eine Frage von principieller Wichtigkeit für die wissenschaftliche Bewegung auf dem organischen Gebiete angeregter und der allgemeinen Discussion eröffnet zu haben glauben, weil es uns ferner darauf ankam, die Aufmerksamkeit noch ganz besonders auf das Eigenthümliche der wissenschaftlichen Methode bei der systematischen Naturauffassung hinzulenken, und weil es uns endlich wünschenswerth erschien, mit Rücksicht auf die angeregte Kontroverse näher auf die Morphologie einzugehen, der wir die besten Aufschlüsse über die Beschaffenheit des systematischen Wesens in der organischen Schöpfung zu verdanken haben.

In einem natürlichen System gibt es keine heterologen Elemente; nähere oder mehr fern stehende, in allen Fällen aber wahre verwandschaftliche Beziehungen treten überall hervor und gewähren dem Beobachter bestimmte Anhaltspunkte, die Erscheinungen im Sinne der systematischen Naturationssung zu bearbeiten. Soll indess ein planloses Umberrinnen vermieden und künstlichen Zusammenstellungen vorgebeugt werden, so wird es bei jeder Untersuchung notwendig sein, die Natur und den Grad der systematischen Verwandtschaft, die natürliche Subsumtion in der Gliederung des Systems festzustellen. Es kann nicht meine Absicht sein, alle in dieses Gebiet fallenden und erkannten systematischen Verhältnisse hier zu berühren; dazu fehlen nicht allein dem Referenten die Kräfte, es wäre auch nicht am rechten Ort. Unsere Kenntnisse von der Beschaffenheit und inneren Einrichtung des systematischen Wesens in der organischen Schöpfung sind aber bereits so weit vorgeschritten, dass sowohl die Hauptaufgaben des Morphologen nach Umfang und Inhalt näher bezeichnet, als auch für die Lösung derselben bestimmt, auf die Beurtheilung der verwandtschaftlichen Verhältnisse wesentlich influirende Gesichtspunkte bervorgehoben werden können. Von diesem Standpunkte aus mögen die folgenden Zeilen angesehen werden.

Nach der bereits erkannten Beschaffenheit des organischen Schöpfungssystems lassen sich drei Hauptaufgaben der Morphologie feststellen: die Untersuchung wird sich beziehen auf das organische Schöpfungssystem in seiner

Über die Beschaffenheit des systematischen Wesens der organischen Schöpfung als Ganzen betrachtet lassen unsere Erfahrungen auf dem Gebiete der Entwicklungsgeschichte kaum irgend welche erhebliche Zweifel zu. Aus der Bildungsgeschichte eines jeden Organismus entnehmen wir, dass ein wirkliches System durch Sonderung oder, nach einem anderen wissenschaftlichen Sprachgebrauch, durch Differenzierung einer einheitlichen, indifferenten Grundlage (Zelle) sich entwickle, und dass diese Grundlage hierbei eine Entwicklungsgreihe von Zuständen durchlaufe, die in der gegebenen Aufeinanderfolge durch die Zunahme an innerer Gliederung und Differenzierung charakterisirt sind. Man durchmustere nun die in der organischen Schöpfung neben einander gestellten Species mit Rücksicht auf die Organisation der entwickelten Individuen von der einfachsten Pflanze bis zum Menschen hinauf und vergleiche damit die Entwicklungszustände eines Wirbeltieres vom befruchteten Eizustände an
 Diese regulatorischen Verhältnisse in der organischen Natur am besten übersehen. Das organische Schöpfungssystem expliziert sich dennach durch Entwicklungslinien (unterbrochene) von Haupt- und untergeordnetem Werthe; daneben figuriren häufig Gruppen von Aggregationsformen, die sich in den sogenannten Individuen- und Organ-Stockbildungen offenbaren. Die Induktionen des Systematikers von Fach möchten also dreierlei Art sein: 1) die auf die Entwicklungslinien, 2) auf die Gliederung derselben unter einander, 3) auf die Variationen der organischen Spezies, welche daneben in Grundlage von Aggregationsbildungen auftreten.

Dem Systematiker von Fach werden obige Andeutungen über das Ziel unserer Bestrebungen genügen; bei demjenigen, der den systematischen Standpunkt nicht kennt, werden die Ausdrücke, wie Entwicklungslinien, Sonderung, Differenzierung u. s. w. schon Anstoss erregt haben. Denn es ist nur zu wahr, was schon Whewell hervorgehoben: wer durch den Umgang mit der organischen Schöpfung seine Methode der wissenschaftlichen Behandlung des daselbst vorliegenden Stoffes nicht gebildet hat, oder wer vielleicht seine Ansicht über die allgemeine Natur und die Form der wissenschaftlichen Wahrheit nur durch die mathematischen und mathematisch-physikalischen Wissenschaften determiniren lässt, dem können solche Begriffe nicht zugänglich werden. Wir aber mögen uns daran erfreuen, dass unerachtet der grossen Schwierigkeiten, mit welchen das Auffinden, das Aufstellen und Anordnen des natürlichen Systems der organischen Schöpfung zu kämpfen hat, und trotz der zahlreichen Mängel, mit denen das gegenwärtig aufgestellte System behaftet ist, dasselbe dennoch, namentlich das zoologische, anerkanntenmassen als das vollkommenste Muster eines wissenschaftlichen Systems und einer wissenschaftlichen Klassifikation darstellt. Dieses erfreuliche Resultat verdanken wir nicht etwa allein dem Scharfeinn des Systematikers, in dessen Willkür es gestanden hätte, aus einer Summe von Eigenschaften der Objekte einzelne auszuwählen, danach zu trennen und zusammensetzen, und so künstliche Systeme für das Gedächtniss, für eine leichtere Uebersicht des Materials zu begründen; sondern vorzugsweise dem Umstande, dass die organische Schöpfung ein wirkliches, ein natürliches System darstellt, welches nicht zu konstruiren, dessen Gliederung vielmehr aufzusuchen ist, welches oft unwillkürlich den Gang der geistigen Operationen beherrscht und bei Irrungen nicht selten uns unbewusst auf die richtige Bahn leitet. Darin markirt sich zugleich der wesentliche Unterschied zwischen wahren, natürlichen Systemen und den künstlichen, falschen, auf den Whewell und Mill mit Recht hingewiesen; auf der einen Seite eine Summe von Gliedern, die durch ein natürliches Band, oder, wenn man will, durch ein einheitliches, jeden

Der Morphologe kann endlich einen jeweiligen Zustand im Fortpflanzungs- und Entwickelungsleben der einzelnen Spezies zum Ausgangspunkt seiner systematischen Behandlung oder als regulatorische Einheit aufnehmen. Das wichtigste Objekt für den Anatomen von Fach ist hier das Individuum im Zustande der Reife, und auch für den vorliegenden Bericht bietet dasselbe, namentlich in Bezug auf das Wirbeltier und den Menschen, das meiste Interesse. Das im reifen Individuum vorliegende System ist durch seine vollendete, vollbrachte Entwicklung, also als fertig entwickeltes System charakterisiert, in welchem die voraufgegangenen Entwickelungs- und Fortpflanzungszustände nur als geschichtliche Momente Geltung haben, und das daneben die Keime für die Nachkommenschaft enthält. Wie bei den oben besprochenen regulatorischen Einheiten, so ist auch hier die einheitliche, indifferente Grundlage für das System — die Zelle; die durch Vermittlung der Zelle entwickelten Glieder des Systems sind die näheren und entfernteren Formbestandtheile des Organismus, — die Organe, Systeme und deren Unterglieder. Wir lernen in dem Organismus eines Individuums eine dritte Form oder Ausdrucksweise eines systematischen Produktes kennen. Die organische Schöpfung in toto stellt ein System dar, welches in Form einer komplizierten und zwar unterbrochenen Entwicklungsgreihe im Nebeneinander der Geschöpfe sich explicirt; die zu den primären, secundären etc. Entwickelungstufen gehörigen Gruppen und Abtheilungen von Species sind die Glieder dieses Systems, und die Spezies mit Rücksicht auf diese systematische Induktion — das Endglied. Es besteht aber, wegen der eigenen Fortpflanzungs- und Entwickelungs-Fähigkeit der Species, eine gewisse Unabhängigkeit zwischen und unter den Gliedern. Die Species in ihrer Totalität war ein in eigener Fortpflanzung und Entwicklung begriffenes System; die dabei gegebenen und zeitlich nach einander auftretenden Zustände sind die Bestandtheile dieses Systems, und zwischen ihnen liegt bereits eine innigere Verkettung. Im Organismus eines Individuums haben wir ein systematisches Produkt vor uns, das und insoweit dasselbe seine Entwicklung vollendet hält, und in dessen Gliederung und Organisation die voraufgegangenen Zustände als Bestandtheile auf- und untergegangen sind; die innige Verkettung der Bestandtheile hat ihren höchsten Grad erreicht. Wenn wir an ein System denken, so pflegt uns gerade diese Form eines systematischen Produktes vor Augen zu schweben. Von diesem System sagte Kant, dass die Theile nur um des Ganzen willen und das Ganze wiederum nur um der Theile willen da zu sein scheine. In dem auf seinen Entwickelungsstufen unterbrochenen und mit einer freieren Bewegung seiner Glieder ausgestatteten System der
organischen Schöpfung in toto konnte die regulatorische Einheit unter dem Spiel verwandtschaftlicher Gruppen und Abtheilungen sich mehr oder weniger unserm Blicke entziehen; das in seiner Fortpflanzung und Entwicklung kontinuierlich sich fortbewegende System der Spezies lässt die regulatorische Einheit nicht mehr verkennen, allein der eine Zustand in dieser Bewegung, das entwickelte Individuum, wird gewöhnlich als das Centrum derselben betrachtet und so in den natürlichen Strom eine, wie es uns scheint, fehlerhafte Induktion eingeführt; in dem Organismus eines einfachen Individuums (nicht Individuenstockes) ist die Determination auch der entferntesten Glieder in der regulatorischen Einheit des Systems nicht allein nicht verkannt, sondern sie hat uns sogar in einem Grade imponirt, dass wir in der Gliederung ausgedrückte, innere Einheit zu einem Archaeus idealisirt oder zu einer Kraft gestempelt oder zu einem logischen Prinzip erhoben haben. Es wird sich später zeigen, dass die in einem Organismus vorliegende innige Verkettung der Glieder, welche die regulatorische Einheit so leicht hervortreten lässt, die Sonderungsverhältnisse im System verdeckt und der Einsicht in dieselbe die grössten Hindernisse sowohl auf dem Gebiete der Physiologie, als auf dem der Morphologie entgegengestellt hat.

Ein wichtiges Moment für die Auffassung und richtige Würdigung des systematischen Charakters der organischen Schöpfung mit ihren regulatorischen Einheiten wurde durch Begründung der Lehre von der elementaren, organisierenden Zelle gegeben. Für den Atomisten wurde die Zelle das leicht zu behandelnde Atom, für alle diejenigen, welche die organische Schöpfung lieber künstlich aufbauen, als sie zergliedern wollen, ein geeignetes, allgemein verbreitetes Baumaterial, für den Systematiker wurde sie jene einheitliche, indifferente, obschon organisierende Grundlage, auf welcher und durch deren Vermittlung das komplizirte organische Schöpfungssystem in der Entwicklung sich explicirt, desgleichen sich fort- pflanzt, und als entwickeltes sich darstellt. Vor der Entdeckung der Zelle wurde der formlose (nicht organisierter) organischer Stoff als indifferente Grundlage des organischen Schöpfungssystems angesehen, wie dieses oben von C. F. Wolff angegeben war. Es lag aber ein Hiatus zwischen dem formlosen organischem Stoff und dem komplizirten organischem Schöpfungssystem, welches in allen seinen Gliedern bis zu den entferntesten Endgliedern bin durch geformte, or-

Stellen wir uns auf den Standpunkt der systematischen Naturanschauung, so sind die Fehlerquellen leicht nachzuweisen. Es zeigt sich dann, dass die Anatomie, wie sie gegenwärtig vorliegt, gewissermassen aus einem Kampfe hervorgegangen ist, den der Anatom als Architekt mit einem,

In einem System, wie es unser Organismus darstellt, führt die systematische Analyse zu Haupt- und untergeordneten Bestandtheilen bis zu den Endgliedern hin. Ein jeder Bestandtheil in einem solchen System gestattet eine dreifache systematische Relation oder Induktion: 1) zu der regulatorischen Einheit, in welche er als nächstes Unterglied eingeht, 2) zu den coordinirten Gliedern, und 3) in Voraus-
setzung, dass wir es nicht mit einem Endgliede zu thun haben, zu den ihm selbst untergeordneten Gliedern. Finden sich Aggregationsverhältnisse vor, so fällt für die in Aggregation eingehenden Bestandtheile jede selbstständige Beziehung derselben in der Gliederung des Systems weg; die Bestandtheile des Aggregats haben vielmehr gemeinschaftlich als Gruppe oder Summe eine coördinirte oder subordinirte Beziehung. Diese systematischen Induktionen sind maassgebend für den Physiologen wie für den Morphologen, zumal beide die Gliederung des Systems nicht vollständig kennen, sondern noch aufzusuchen haben. Auf dem morphologischen Gebiete führt die Induktion auf super- oder subordinirte Verhältnisse der Glieder zur Auffassung der Struktur und inneren Form eines bestimmten Bestandtheiles als einer regulatorischen Einheit, die auf coördinirte Verhältnisse zur Lagerungsweise der Theile unter- und zu einander. In einem gegliederten System gibt es streng genommen keine aussere Form. Man kann allerdings einen Nerven, ein Gefäss, einen Knochen aus dem Körper herausnehmen und willkürlich von der eigenen Struktur absehen, um eine aussere Form zu behalten. Auf dem Standpunkte der systematischen Natуrauffassung jedoch bleibt die aussere Form und Begrenzung stets nur der Ausdruck einer inneren Form und Struktur. Fassen wir die Lagerungsweise der Bestandtheile z. B. der Nerven, Gefässes, des Drüsenchleinsystems etc. einer Drüse auf, so abstrahiren wir augenblicklich von der Beziehung auf die Gesammtdrüse, und die aussere Begrenzung und Form tritt einen Augenblick in den Vordergrund. Allein, sobald wir die erwähnten Bestandtheile in der doch nothwendig subordinirten Beziehung zur ganzen Drüse denken, geht die aussere Form der Theile in die Struktur der Gesammt-Drüse auf; auf jeder Stufe der Zergliederung unseres Organismus finden sich so besondere morphologische Verhältnisse, die wir zur Auffassung und Bestimmung der Struktur verwerthen. Es giebt also in unserem Organismus nicht Bestandtheile, die bloß Struktur, oder andere, die nur aussere Form, und noch andere, bei denen es nur auf die Lagerungsweise und das Gefüge ankäme. Der Gesammt-Organismus besitzt vielmehr Struktur mit Rücksicht auf seine nächsten Unterglieder, auf die Primitivorgane, diese wiederum mit Rücksicht auf die ihnen zunächst untergeordneten Bestandtheile und so fort bis zu den Endgliedern und Zellenderivaten, bei welchen wir mit Rücksicht auf die darin zu unterscheiden den Bestandtheile von Textur zu sprechen pflegen. Nur in den Bestandtheilen eines Aggregats, und zwar allein mit Rücksicht auf das Aggregationsverhältniss treten aussere Form und aussere Lagerungsweise in das vollste Recht ein, z. B., wenn wir beim Wirbelsystem als einem Organstock von allen systematischen Beziehungen desselben im ge-
gliederten System absehen und nur die lineare Anordnung der einzelnen Aggregat-Theile im Organstock aufnehmen. Wir sehen also, dass unser Körper als systematisches Produkt Eigenschaften besitzt, welche die Auffassung äusserer und innerer Formverhältnisse von sehr verschiedenem Werthe und Bedeutung gestatten; wir brauchen nur den Regulator für solche Auffassungen, den systematischen Standpunkt aus dem Auge zu verlieren und wir haben uns das ergiebigste Terrain für Irrfahrten und willkürliche Zusammenschaffungen; — auf einem solchen Terrain befindet sich unsere gegenwärtige Anatomie. Nach beliebiger Auswahl nehmen wir Bestandtheile aus dem Körper heraus, beschreiben sie ohne alle weiteren Beziehungen nur nach ihrer inneren, eigenen Struktur und Textur in der allgemeinen Anatomie, und vergessen, dass jeder Bestandtheil seine eigene Struktur hat, und dass ebenso der Gesammt-Organismus mit Rücksicht auf die Primitivorgane Struktur besitzt, wie ein Gefäss mit Rücksicht auf die in die Struktur der Wandung eingehenden Unterglieder. In der speziellen Anatomie beliebt es uns, wenn auch nicht ausschliesslich, so doch vornachweisweise die äussere Form und nur äussere Lage rungsverhältnisse zu berücksichtigen; ja die Füllungsmasse des Visceralrohres im Wirbelsystem hat uns so impo nirt, dass wir für die in demselben enthaltenen Bestandtheile eine eigene Abtheilung der Anatomie gemacht haben. Da die Anatomie endlich auf ihrem technischen Standpunkte den Unterschied zwischen der scheinbaren Komposition in der Struktur eines gegliederten Systems und der wirklichen Kom position der Aggregatgebilde nicht anerkennt, so können diese Unterschiede in der Behandlung des anatomischen Materials auch nicht hervortreten.

Eine andere ergiebige Fehlerquelle der Anatomie auf ihrem künstlichen Standpunkte der Fabrikation resultirt aus jener Eigenschaft unseres Organismus, die sich, wie bereits berührt wurde, in der innigen Verkettung der Glieder und aller Bestandtheile des systematischen Produktes aus drückt. Wir sehen diese Einheit aller Theile morphologisch am auffallendsten verwirklicht: in dem kontinuirlichen Zusammenhange aller Gefässe und ihres Inhaltes, der Nerven und der Bindesubstanzegebilde; sie markirt sich aber auch auf kleineren Gebieten, wie z.B. in dem kontinuirlichen Zusammenhange verschiedener, sogenannter Häute und deren Epithelien. Die innige Verkettung der Bestandtheile unseres Organismus bringt in die systematische Auffassung und Behand lung desselben nicht weniger in der Physiologie wie in der Morphologie eine neue Induktion hinein; neben den Son derungs- und Differenziungsverhältnissen sind die der Verkettung und innigen Verbindung gegeben; neben den Strukturverhältnissen werden überall die durch mor-
phologische Verbindungen hervorgerufenen Formverhältnisse
sich geltend machen und zu würdigen sein. Auf dem Stand-
punkte der systematischen Naturauflassung wissen wir, dass
diese neue Induktion in Grundlage der Sonderungsver-
hältnisse im System aufzunehmen ist und die letzteren in
einer Weise beeinträchtigen darf. So z.B. sind die einzel-
en Abschnitte der Gefässe sammt Inhalt, der Nerven etc.
zunächst als Bestandtheile an Ort und Stelle in der Gliede-
 rung des betreffenden Organes oder Organbestandtheiles und
dann erst in ihrem Verbande aufzufassen; desgleichen wer-
den wir Haut und Darmkanal nicht als einen zusammenhän-
genden Schlauch, von welchem ein Stück (Cutis) das Wir-
belsystem überzieht, das andere in die Visceralröhre dessel-
ben eindringt, aufzunehmen haben, sondern beide Organe ge-
sondert in der Gliederung des Systems betrachten und daran
die morphologischen Verhältnisse ihres Zusammenhanges knü-
pfen; ebenso müsste man einen serösen Sack zunächst in
Stücke zerlegen, die in Form eines Ueberzuges als integri-
runde Bestandtheile der bezüglichen Organe und Höhlenwan-
dungen anzusehen sind und dann erst mit Rücksicht auf den
kontinuiren Zusammenhang aller Stücke den ganzen Beut-
el konstruiren; u. s. w. Unsere gegenwärtige Anatomie be-
tritt nicht allein häufig den umgekehrten Weg, indem sie die
Verbindung der Theile in den Vordergrund schiebt, sie vernichtet
einzel der Sonderungsverhältnisse gänzlich; Gefässe, Nerven etc. werden aus den Theilen,
welche sie als subordinirte Glieder angehören, herausgerissen,
die Eingeweide müssen sich in den serösen Beutel ein-
stülpen u. s. w.

Wir haben schliesslich noch einer letzten Fehlerquelle zu
gedenken. Unser Organismus ist, wie schon erwähnt, ein
systematisches Produkt, das in Grundlage und durch Ver-
mittelung der Zelle entwickelt ist. Die systematische Zer-
gliederung besitzt also in dieser Beziehung ihren Grenz-
punkt in der Zelle; die Endglieder sind die Zellen-
Derivate. Die Erfahrung lehrt aber weiter, dass die Zellen
und deren Derivate als einfachste organisirte Körper system-
atische Produkte darstellen, in deren Gliederung flüssige
und feste organische Materie als nächste Bestand-
dertheile eingreifen, und dass die Zelle und auch deren Deri-
vate auf Grundlage der flüssigen organischen Materie, inso-
fern dieselbe als Zellinhalt auftritt, entwickelt werden. Die
flüssige und auch die feste organische Materie spielt daher
unzweckmaßhaft auch in unserem Körper eine bedeutungsvolle
Rolle, doch nicht schlechthin als organische Materie in den
bezeichneten Aggregationsformen, sondern mit der nothwen-
digen, systematischen Induktion zur regulatorischen Einheit,
— zur Zelle, und durch Vermittelung derselben zum Gesammt-
Organismus. Desgleichen verlangt die Konsequenz der sy-
stematischen Naturauflassung, dass man bei der wissenschaftlichen Behandlung der Zellen und ihrer Derivate sowohl physiologisch als morphologisch den verschiedenen Standpunkt nicht aus den Augen verliere, auf welchem wir uns befinden, je nachdem wir sie als Endglieder in den gegliederten Zellenkomplex unseres Organismus, oder als regulatorische Einheiten mit Beziehung auf ihre Unterglieder in Betracht ziehen. Zur Bezeichnung der morphologischen Verhältnisse im letzteren Falle wählen wir das Wort „Textur“, im ersteren das Wort „Struktur“. Die platte Muskelzelle zeigt sich hinsichtlich der Struktur kreisförmig, longitudinal etc. gelagert und geht in dieser Form mit anderen Formelementen in die Struktur übergeordneter Bestandtheile unseres Körpers ein; hinsichtlich der Textur wird sie als plattgedrückte, spindelförmige Faserzelle gewürdigt; das Blut wird hinsichtlich seiner Struktur als meist zylindrische Blut säule in dem betreffenden Gefäss, hinsichtlich der Textur und histologischen Beschaffenheit nach den Blutkörperchen und der flüssigen Intercellularsubstanz aufgefasst und beschrieben; die Bindesubstanzgebilde zeigen hinsichtlich der Struktur sehr verschiedene Formen in den verschiedenen Theilen des Körpers, sie stellen sich als Platten, Lamellen, Schläuche, Cylinder, als Netzwerk dar; hinsichtlich der Textur haben wir es jedoch überall nur mit fester Intercellularsubstanz und den Bindesubstanzkörperchen zu thun. Unsere gegenwärtige Anatomie geht mehr oder weniger über diese Distinktionen hinweg; sie benutzt den flüssigen und festen organischen Stoff (Kügelchen, Platten, Faser), um sich das erste, gleichsam noch rohe Baumaterial zu verschaffen, und pflegt häufig auf die Unterschiede der Textur- und Struktur-Verhältnisse nicht grosses Gewicht zu legen.

Wir sind bemüht gewesen, die Widersprüche und Fehlerquellen unserer gegenwärtigen Anatomie mit Beziehung auf die Anforderungen der systematischen Naturauflassung ohne Rückhalt zu besprechen und zu erläutern. Ref. weiss wohl, dass es hier, wie in vielen anderen Fällen, viel leichter ist, vorhandene Mängel aufzudecken, als es besser zu machen, und dass es überhaupt gegenwärtig kaum möglich sein möchte, in die bisherige Auffassung und Behandlung morphologischer Verhältnisse unseres Körpers eine vollständige Aenderung im Sinne der systematischen Naturauflassung durchzuführen. Die Abhandlungen, die Handbücher sind mehr oder weniger auf den technischen Standpunkt gestellt; die geistige Uebung in systematischen Induktionen ist nicht allein nicht vorhanden; sie wird sogar in der verschiedensten Weise beeinträchtigt und möglichst unterdrückt; für das erste Studium scheint es sogar leichter zu sein, die morphologischen Verhältnisse im technischen Sinne aufzunehmen und z. B. das Gefässsystem in toto als einen Baum mit Verästelungen sich vorzustellen, als
jeden Zweig mit den terminalen Verästelungen als subordi-
nirten Bestandtheil dieses oder jenes Organes und den kon-
tinuierlichen Verband aller Gefässe in der systematischen Glied-
erung zu fassen. Dennoch würde es der Wissenschaft nicht
angemessen sein, die Schwächen zu bemängeln oder mit Still-
schweigen zu übergehen und so ihrem Fortschreiten auf der
natürlichen Bahn ein dauerndes Hinderniss entgegenzustellen.
Die üblen Wirkungen des künstlichen Standpunktes, auf wel-
chem sich unsere Anatomie und sogar noch im höheren Grade
die Physiologie gegenwärtig befindet, sind mit der rückhält-
losesten Konsequenz in jüngster Zeit uns vor Augen geführt
worden. Es liegt bereits das dringendste Bedürfniß vor, die-
sen üblen Wirkungen entgegenzusteuern, und es geziemt ganz
besonders der Anatomie, als der sichersten und besten Stütze
der Physiologie, in die natürliche Bahn einzulanken und so mit
gutem Beispiele voranzugehen. Wie diese Aufgabe zu
lösen sei, welche Anforderungen die systematische Naturaf-
lassung an den Naturforscher auf dem organischen Gebiete
tu machen hat, wo die Fehlerquellen und die Widersprüche
auf dem herrschenden künstlichen Standpunkte zu finden sind,
da Alles hat Ref. im letzten und vorliegenden Jahresbericht
mit besonderer Beziehung auf die Morphologie und Anatomie
nach bester Einsicht zu erläutern gesucht. Mit Schwierigkei-
ten, die uns das verwinkelte empirische Material der orga-
nischen Schöpfung entgegenbringt, werden wir oft zu käm-
pfen haben; allein die systematische Natuраufass-
sung hat ihre bestimmte, inductive logische Me-
thode, ihre bestimmtten systematischen Induktion-
en nach der bereits erkannten Beschaffenheit und dem Cha-
rakter des systematischen Produktes; sie sind konstant,
sie haben ihre volle Gültigkeit in der Morphologie wie in der
Physiologie, sie müssen sich überall in der wissen-
schaftlichen Bearbeitung des Stoffes aussprechen.
Mag also die Anatomie, wie sie gegenwärtig vorliegt, zu Vor-
studien gedient haben und auch noch fernerhin dienen; ihre
wissenschaftliche Bearbeitung auf dem Standpunkt der syste-
matischen Natuраuffassung verlangt einen anderen Gang, eine
andere Methode. Wir werden auch in der Anatomie des
gesunden menschlichen Körpers, wie in jeder Wiss-
schaft, einen allgemeinen und einen speziellen Theil
aufzunehmen haben. Der allgemeine Theil dürfte aber nicht
die gegenwärtige allgemeine Anatomie oder die Histologie
umfassen; denn die organisirten Formelemente unseres Kör-
pers haben eben so gut ihre bestimmten, speziellen morpho-
logischen Verhältnisse, wie irgend ein anderer Bestandtheil,
das Centralnervensystem etc., aufzuweisen; der allgemeine
Theil würde es sich vielmehr zur Aufgabe machen müssen,
den menschlichen Organismus im Vergleich zu Individuen ver-
wandter Spezies morphologisch zu charakterisiren. Der zweite,

B*
der spezielle Theil müsste mit Rücksicht darauf, was oben erläutert wurde, in zwei Abtheilungen zerfallen. Die erste Abtheilung zergliedert unsern Körper als ein systematisches Produkt, das in Grundlage der Zelle sich entwickelt hat und entwickelt ist; sie hätte es also mit der Strukturfrage zu thun. Über den Gang, welchen die systematisch-morphologische Zergliederung hier einzuhalten hätte, können keine Zweifel obwaltan. Sie hätte zuerst die Hauptbestandtheile des Systems, die Primitivorgane (Cutis, Centralnervensystem, Wirbelsystem, den Darmkanal, die Nieren und in gewisser Beziehung auch die keimbereitenden Geschlechtsorgane, das Herz und die grossen Gefässstämme, wahrscheinlich auch Leber und Lungen) aufzunehmen, das Eingreifen derselben in die Struktur des Gesamtorganismus festzustellen und schliesslich nachzuweisen, wie sich die Verkettung und Verbindung unter ihnen verwirklicht. Sodann würde die Analyse auf die systematische Zergliederung der Primitivorgane, auf deren nächste, entferntere und letzte Endglieder einzugehen, d. h. mit der organologischen Struktur sich zu befassen haben. Auf jeder Stufe der Analyse giebt es eine Vorfrage zu erledigen, nämlich, ob der zu zergliedernde Be standtheil ein Organstock oder einfach sei, damit nicht Be standtheile der Subordination und Aggregation verwechselt werden; nach jeder vollbrachten Zergliederung ist dazu, wie bei den Primitivorganen, die systematische Induktion auf die Verbindung und Verkettung der Glieder unter einander zu richten. Die zweite Abtheilung der speziellen Anatomie oder vielmehr des speziellen Theiles der Anatomie des gesunden menschlichen Körpers hat es mit den Endgliedern in der Gesammt-Organisation unseres Körpers, mit den organisirten Formelementen oder den sogenannten histologischen Formbestandtheilen zu thun. Es wurde oben gezeigt, dass bei diesen Formelementen einerseits ein Strukturverhalten, andererseits ein Texturverhältniss zu unterscheiden sei; mit der er steren Eigenschaft gehören sie zur ersten, mit der letzteren zur zweiten Abtheilung unseres speziellen Theiles. Bei der Textur haben wir es mit den Zellen und deren Derivaten zu thun, insofern dieselben in Grundlage des flüssigen organischen Stoffes sich entwickeln und flüssige und feste organische Materie als subordinirte Bestandtheile aufzuweisen haben. Referent hat bei einer andern Gelegenheit schon hervorgehoben, dass die systematische Zergliederung unseres Organismus auf einzellige und auch auf mehrzellige Formelemente hinausführe, dass aber im letzteren Falle keine Differenzen unter den Zellen gegeben und vielmehr alle von gleichen Werthe seien. —
Spezieller Theil.

Eier und Samenkörnerchen.

chagrinartig gezeichnete Eihülle (Chorion) des Barsches noch von einem besonderen, mikropylarenartigen Kanal, der aber selbst am Eingange nur einen Durchmesser von \(\frac{1}{1200} " \) besitzt, durchzogen wird. — Hinsichtlich der „histologischen Deutung“ des thierischen Eies ist Bruch der Ansicht, dass dasselbe gegenüber als das einzige aber allerdings merkwürdigste Beispiel einer einfachen thierischen Zelle mit einer secundären Umhüllung, welche der pflanzlichen Zellmembran morphologisch verglichen werden könne, anzusehen sei. Bei dieser Vorstellung wird aber das Keimbläschen mit seinem Keimfleck als die ursprüngliche, einfache Primitivzelle aufgefasst; desgleichen soll selbst der Bildungsdotter erst später an die Primitivzelle heranreten und an dessen Oberfläche als secundäre Ablagerung, wie die Cellulosc bei der Pflanzenzelle, die Dotterhaut oder die Zona pellucida der Säugetier-eier sich bilden. Wie man sieht, ist nach diesem Schema die Unähnlichkeit zwischen dem einfachen thierischen Eie und der Pflanzenzelle wohl grösser, als die Ahnlichkeit.

Eine umfangreiche und genaue Untersuchung „über die Mikropyle und den feinern Bau der Schalenhaut bei den Insekten eier“ verdanken wir R. Leuckart (Müll. Arch. 1855, p. 90 sq.). Der Verfasser unterscheidet an den Insekten eier mit Mcissner die beständig texturlose Dotterhaut und die nach aussen von dieser gelegene Schalenhaut oder das sog. Chorion. Das letztere kann aus einer, zwei, aus drei Schichten oder Hälften bestehen. Ist nur eine Schicht vorhanden, so ist das Chorion homogen und texturlos, wie die Dotterhaut selbst; in den zusammengesetzten Schalenhauten tritt sie als innerste Lage auf. Die zweite, äussere oder resp. mittlere Schicht des Chorions ist am häufigsten durch kleine \((\frac{1}{50} - \frac{1}{100}) " \) sechseckige Felder ausgezeichnet, die sich durch Furchen gegen einander abgrenzen und in der Fläche bald glatt erscheinen, bald mit Körnchen, Grüben, Löchern, Schrunden etc. versehen sind. Die Furchen oder Leisten zwischen den Feldern können verschiedenartige Bildungen zeigen; sie können das ganze Feld überwuchern, letzteres als grubenanartige Vertiefung in der Mitte zurücklassend; sie können sich in Form von Körben und Trompeten ausziehen; sie können auch der Sitz von bohroch-artigen mehr oder minder weiten Vertiefungen sein u. s. w. Obgleich die Chorionfelder der bezeichneten Schicht den optischen Ausdruck eines Epithelium gewähren, so besteht diese Schicht doch nicht aus Zellen, aber es kann zu ihr noch eine dritte und äussere Schicht hinzu treten, die aus polyedrisch sich begrenzenden Zellen besteht; ja wo letztere vorhanden ist, pflegt die mittlere in ihrer Ausbildung zurückzustehen. Wo alle drei Schichten des Chorions sich verbinden, da bilden sich diese (z. B. bei Pediculus suis, Aeschna) in zeitlicher Aufeinanderfolge von innen nach aussen, und zwar um die jedes
Mal schon vorhandene Dotterhaut. Was die Genesis des Chorions selbst betrifft, so stimmt der Verf. darin mit Stein und Meyer überein, dass sich dabei die Zellenauskleidung der Eiröhren betheiligt. Allein Leuckart hat sich nicht davon überzeugen können, dass das Chorion in seiner ganzenDicke und in allen Schichten durch Metamorphose der genannten Zellen gebildet werde. Die innerste Schicht zeige zu keiner Zeit eine Zellentextur, und ob und wie die mittlere Schicht aus Zellen-Metamorphose hervorgehe, sei nicht mit Sicherheit zu ermitteln. Nach dem Verf. wäre also die innerste Schicht des Chorions der Insekteneier nur als ein Ausscheidungsprodukt der um das Ei gelagerten Zellen der Eiröhren anzusehen, das auf der Dotterhaut abgelagert und daselbst erhärtet sei; sie wäre also nicht für eine nach aussen abgelagerte Verdickungsschicht der Dotterhaut und des Eies selbst zu halten. (?R.)

befindet sich der Mikropylenapparat am vorderen Eipole und ist in der Regel aus einer mehrfachen Anzahl von Öffnungen zusammengesetzt. Die Öffnungen stehen bald unregelmässig nebeneinander, bald in Form eines Kranzes und liegen bei Eiern mit dickem Chorion nicht selten in einer Vertiefung. Bei den Hymenopteren, deren Eier ein einfaches Chorion besitzen, liegt der Mikropylenapparat am vorderen Pole und besteht in der Regel (vielleicht immer) aus mehreren, äusserst engen Kanälen, die in paralleler oder doch nur wenig divergirender Richtung eine Strecke weit unter der Oberfläche des Chorions hinlaufen und sich ziemlich im Mittelpunkt des vorderen Poles nach innen öffnen. — Was die Bildung der Mikropylen betrifft, so spricht sich Leuckart gegen die Ansicht Meissner’s aus, dass dieselben als Lücken in dem Eiröhren-Epithelium an der Stelle stehen, wo die Dotterhaut ihre Mikropyle besitzt. Vor der Ablagerung des Chorions konnte an der Dotterhaut niemals eine Mikropyle wahrgenommen werden. Desgleichen hat der Verfasser durch Beobachtungen an Gomphocoris sich überzeugt, dass der Mikropylenapparat nicht von Anfang an dem Chorion zukomme, sondern erst nach Ablagerung desselben durch Resorption seinen Ursprung nehme. — Leuckart macht schliesslich darauf aufmerksam, dass man keineswegs berechtigt sei, überall an den thierischen Eiern die Existenz eines Mikropylenapparatr vorauszusetzen. Das Auftreten desselben dürfte sich besonders in den Fällen als physiologische Notwendigkeit herausstellen, wo die Eier schon frühzeitig, noch bevor sie mit dem Sperma zusammen treffen, von einer festen und resistenten Hülle umgeben werden, also bei Eiern, die durch die Ausbildung von stärkeren und festen Eierstockshüllen (Chorion) ausgezeichnet sind; damit stimme überein, dass man bisher die Mikropylen besonders bei Eiern von Insekten, Knochenfischen, Holothurien, Bivalven vorgefunden habe.

rest der Zelle sei, in welcher sich das Eichen gebildet, oder ob sie als eine Neubildung angesehen werden müsse.

Eine sehr auffallende und charakteristische Eigenthümlich-
keit an den Eiern der Scomberesox (J. Müller) ist von E. Häckel entdeckt. (Müll. Arch. 1855, p. 23 sq.) Sie wurde zuerst bei Belone vulgaris beobachtet und zeigt sich darin, dass zwischen der fein punktierten Dotterhaut und dem Dotter ein dichtes Netz von \(\frac{1}{450} \)—\(\frac{1}{120} \) breiten Fasern in einfacher oder am ganz reifen Ei selbst in doppelter und dreifacher, freilich unvollkommener Schicht sich ausbreiten. Die Fasern gleichen physikalisch und chemisch am meisten den elastischen; sie anastomosieren aber nicht, sind meist einfach, sehr selten einmal gespalten, solide, cylindrisch, glas-
hell, und lassen sich beim Zerdrücken des Eies in Form langer, den grössten Umfang des Eichens mehrere Mal über-treffender Fasern isoliren. Jede Faser läuft an dem einen (jüngeren) Ende sehr allmälig in eine lange Spitze aus, wäh-
rend das andere, ältere Ende allmälig oder plötzlich in einen länglich-runden Kolben anschwillt. Mit der abgeschnittenen Basis dieses Endes oder der Wurzel sitzt die Faser ziemlich
fest an der Dotterhaut, so dass oft beim Isoliren des Wur-
zelendes Stückchen an ihr haften bleiben. Das kolbig, Wur-
zelende ist namentlich bei jüngeren Eiern sehr deutlich von
einem kurzen, cylindrischen Schlauch umhüllt. Die Anord-
nung und der Verlauf der Fasern ist bei verschiedenen Gatt-
tungen verschieden. Bei Belone umspinnen sie die Dotter-
kugel in Form von Parallelkreisen; ähnlich ist es bei Hemi-
rampus, während bei Tylosurus die regelmässige, concentri-
sche Anordnung der Fasern nur spurweise markirt wird und bei Sauris Alles regellos durch einander läuft. Bei Exocetus ordnen sich die Fasern um 10—20 Mittelpunkte oder Pole, was namentlich zur Zeit der mittleren Reife des Eichens deutlich hervortritt. In Betreff der Genesis dieser Fasern liess sich das mit Sicherheit ermitteln, dass sie mit den Wur-
zein beginnt, die bei Belone anfangs als 30—50 dunkle Punkt an der ganzen Dotteroberfläche sichtbar werden, Diese Punkte vergrössern sich zu polyedrischen, soliden,
später sogar Bd. 35x83

Ueber die Bewegung und Entwicklung der Samenkörperchen der Frösche hat Ankeumann einige Beobachtungen mitgetheilt. (De mot. et evolut. filor. spermat. ran. Diss. inaug. Regioo. Boruss. 1854, 8vo.) Bei mikroskopischer Untersuchung eines Hodenstückes ohne Zusatz von Wasser

Nach längerer Zeit der Anwendung war die Bewegung der Samenkörperformen nicht mehr wiederherzustellen. Verdünnte Lösungen von Ammoniak und kaustischem Kali rufen leicht Bewegung hervor; bei längerer Einwirkung und bei koncentrirtten Lösungen werden schliesslich die Samenkörperformen aufgelöst. Unter den von dem Verf. benutzten Stoffen zeigten sich die Mineralsäuren und die Metallsalze selbst in sehr wässrigen Lösungen von dem verderblichsten Einfluss auf die Samenkörperformen. Alkohol und Te. jndt haben die Bewegungen der Samenkörperformen bald und vollständig auf; bei Anwendung von Weingeist und koncentrirtter Zuckerlösung lässt sich die unterdrückte Bewegung durch Zusatz von Wasser...
wiederherstellen. Schwefeläther zerstört die Textur der Samenkörnchen. Elektricität bleibt ohne Einfluss; in Wasser von + 45° R. und + 4° R. hört die Bewegung auf. A. Anke
mann findet die Ursache einer jeden Bewegung des Samenkörnchens in Inhibition und Endosmose, welche sich ein-
stellt, wenn der dickflüssige Samen mit einem dünnflüssigen, unschädlichen Fluidum versetzt wird. Die Zeichen der Quel-
lung und Endosmose werden in der Anschwelling und in dem Lichterwerden der Samenkörnchen offenbar. An den Zellemembranen, welche die entwickelten Samenkörnchen umschliessen, will der Verf. sogar eine Undulationsbewegung bemerkt haben. In dem nicht verdünnten Samen fehle die Bewegung der Samenkörnchen, weil es au Flüssigkeit fehle, in welcher sie sich bewegen können. Werden konzentrirtere Lösungen dem Sperma zugefügt, so fehle nicht gänzlich die Bewegung der Zoospermien, sondern sie gehe schnell vor-
über. Der Grund aber, warum bei Zusatz von konzentrir-
teren Flüssigkeiten die Bewegung schnell anfhöre und im umgekehrten Falle länger andauere, soll darin liegen, dass das endosmotische Aequivalent verschieden sei. Eine andere Ursache, warum die Bewegungen länger andauern, wird darin gesucht, dass, wegen der Verdunstung an den Rändern des Deckgläschens, an den verschiedenen Stellen des die Samenkörnchen umgebenden Fluidums ein verschiedener Grad der Konzentration sich einstelle. — Die einzelnen Samenkörnchen des Frosches entwickeln sich nach dem Verf. ans kernhaltigen Zellen. Der Kern wächst zum Köpfchen aus, bleibt aber von der Zellmembran eng umschlossen und scheint im reifen Samenkörnchen mit ihr verschmolzen zu sein. Öb der Schwanz durch Auswachsen der Zellmembran oder auf andere Weise entstehe, liess sich nicht genau ermitteln; je-
denfalls sei anfangs die Zellmembran dabei betheiligt. Die Verbindung der einzelnen Zoospermien zu Bündeln soll durch die von den Alveolen des Hoden abgesonderte granulirte Ma-
terie herbeigeführt werden. (†R.)

Sehr umfangreiche und genaue Untersuchungen über die Bewegung der Zoospermien verdanken wir Kölliker (Zeitschrift f. w. Z. Bd. VIII, p. 201—282). Wir entnehmen daraus folgende Resultate. Bei Säugethieren (Stier, Hund, Kaninchen, Pferd, Mensch) findet man im reifen Samen (aus dem Nebenhoden oder Vas deferens), namentlich am Rande des Tropfens, sehr häufig die Samenkörnchen in Bewegung. Durch Zusatz von Wasser wird die Bewegung aufgehoben; es bilden sich in Folge von Imbibition Oesen. Die mit Oesen versehenen Samenkörnchen sind jedoch nur scheinod und können durch nachherigen Zusatz konzen-
trirter Lösungen unschädlicher indifferenter Stoffe (Glyce-
rin und Amygdalin, desgleichen Zucker, Eiweiss, 1larnstoff von 10, 15—30 pCt., auch Zucker mit 1/1000 KO) und Salzen
(2NaO\textsubscript{2}H\textsubscript{2}O, PO\textsubscript{3}\textsubscript{4} von 5 pCt. und 10 pCt.; NaCl von 1 pCt., 5 pCt. und 10 pCt.) zur lebhaften Bewegung erweckt werden. Es ist wahrscheinlich, dass das ganze Phänomen des Wiederauflebens auf einer Wasserentziehung und Durchtränkung der Samenkörperehen mit der konzentrierteren Lösung beruht. Kaustische Alkalien lösen zwar die Oesen, aber eine Bewegung tritt nicht mehr ein. — In allen thierischen Flüssigkeiten von grösster Konzentration oder grössem Salzgehalt, die ferner nicht zu sauer und nicht zu alkalisch, auch nicht zu zähflüssig sind, erhält sich die Bewegung der Samenkörperehen, so in Blut, Lymphe, alkalischem oder neutralem Harn, alkalischem Milch, verdünntem Schleim, dickerer Galle, Humor vitreus, im Sekrete der Samenbläsen, der Prostata, des Uterus masculinus (Kaninchchen), der Cowper'schen Drüsen, im flüssigen Theil des alkalischem reagirenden und viel NaCl enthaltenden Eiweisses von Eiern. Die verdünnter Lösungen dieser thierischen Flüssigkeiten erzeugen Oesen, wie Wasser, und hemmen so die Bewegung; gleichwohl kann auch hier durch die oben genannten konzentrierteren Lösungen die Ruhe wieder gelöst werden. In Speichel, saurem und stark ammoniakalischem Harn, saurer Milch, saurem Schleim, Magensaft, dünner Galle, dickem Schleim hört die Bewegung der Samenkörperehen auf; diese schädliche Einwirkung kann beseitigt werden, wenn man den für die Bewegung passenden Grad der Konzentration dieser Flüssigkeiten und ihre neutrale Reaktion herstellt. — In allen Lösungen indifferenter organischer Substanzen von mittlerer Konzentration bewegen sich die Zoospermien vollkommen gut, so in allen Zuckerarten, Harnstoff, Picrotoxin, Glycerin, Salicin, Amygdalin. Stärkere Konzentrationen dieser Substanzen heben die Bewegungen auf, doch stellt nachträgliche Verdünnung mit Wasser dieselben wieder her; zu diluirte Lösungen wirken wie Wasser. — Gewisse sogenannte Lösungen indifferenter organischer Substanzen, von Gummi arabicum, Pflanzenschleim (Gum. tragacanthae, Mucilage seminum cydoniorum) und Dextrin wirken wie Wasser, auch wenn sie noch dickflüssig sind. Konzentrierte Lösungen anderer Substanzen stellen auch in diesem Falle die Bewegung wieder her. Der Verf. sucht aus mehreren endosmotischen Erscheinungen nachzuweisen, dass die Lösungen von Gummi, Pflanzenschleim und wahrscheinlich auch von Dextrin nicht wirkliche Lösungen seien, sondern sich wie Wasser mit darin suspendirten Substanztheilchen verhalten, woraus sich ihre Einwirkung auf die Samenkörperehen ableiten ließe. — Viele organische Substanzen heben die Bewegungen der Samenkörperehen auf, weil sie chemisch auf dieselben einwirken, so Alkohol, Crenosot, Gerbstoff, Aether, Chloroform, andere, weil sie ein mechanisches Hinderlösung abgeben, wie die meisten Oele. — Einige Narcotica,

Kölliker sucht darzutun, dass die Bedingungen für die Bewegung der Samenkörperehen weder in einem endosmotischen und exosmotischen Prozesse, noch in einer Imbibition der Samenkörperehen, noch in einer von aussen auf sie einwirkenden chemischen oder elektrischen Kraft, noch in der Verdünnung des Sperma oder in der Wärme zu suchen sei; man sei vielmehr zur Annahme genöthigt, dass ihnen, wie den Cilien und der Substanz einfachster Thiere, das Vermögen inhärente, zufolge einer bestimmten Eigenschaft ihrer Molekule unter günstigen Bedingungen Veränderungen zu erleiden, die zu der bekannten Bewegung der Samenkörperehen führen. Daher werden solche Bewegungen auch stets auf treten, sobald die Medien, in welchen sich die Zoospermien befinden, keine mechanischen Hindernisse in den Weg stellen oder den molekularen Zustand derselben nicht zu sehr alteriren, nöthig in tierischen Flüssigkeiten mittlerer Konzentration, die nicht zu sauer oder zu alkalisch sind, in nicht zu diluirten Flüssigkeiten und indifferenten Substanzen, in gewissen Salzlösungen von bestimmter Dichtigkeit. Die Unterschiede, welche die letzteren zeigen, erklärt sich der Verf. aus der Verschiedenheit der Imbitionsverhältnisse. Schliesslich vergleicht Kölliker die Nervenröhren und Samenkörperehen in ihrem Verhalten gegen chemische Reize und erklärt die Eigenthümlichkeiten der letzteren. In dem zweiten Kapitel der Abhandlung theilt der Verf. einige Bemerkungen über die chemische Zusammensetzung des Samens,

Referent hat schon vor 10 Jahren in seiner Abhandlung über die Entwicklung der Samenkörperschen bei den Nemato-oden, wohl die günstigsten Objekte für dergleichen Un- tersuchungen, hervorgehoben, dass der Kern eine wichtige Rolle spiele, sich durch seine Grösse und sein eigenthümli- ches morphologisches Verhalten auszeichne, dass ferner auch
das Kernkörperchen, wie es scheint, charakteristische Ver-
änderungen erleide; ja man darf wohl Kölliker darin be-
stimmen, dass diese Theile bei der Befruchtung vielleicht
die wichtigste Aufgabe zu erfüllen haben. Dennoch vermag
Ref. nicht, sich auf den Standpunkt Kölliker's zu stellen
und in den Zoospermien gewissermaassen emanzipirte und
selbstständig gewordene Kerne von Zellen zu sehen. Bei
den Nematoden, namentlich auch bei den Ascariden, die Ref.
noch in diesen Tagen unter Händen gehabt hat, ist es ganz un-
zweifelhaft, dass die eigenthümlich geformten Kerne
je einzeln einer Zelle angehören. Die Zellmembran
ist sehr leicht zerstörbar, namentlich auch durch Druck, und
die freien Kerne mit Spuren eines flockigen Anhanges liegen
dann zu Tage und können durch Pressung eigenthümliche,
bei Ascaris mystax köcherartige Formen erhalten, wie sie na-
entlich auch von Meissner als natürliche Formen beschrie-
ben worden sind. Auf der anderen Seite gelingt es aber,
die unversehrten Zoospermien mit ihrer Zellmembran
mitten unter den Eiern im Uterus ganz deutlich zu er-
kennen; Ref. hat bei glücklichen Präparationen nicht eine
einzige zerstörte Zelle gesehen. Unter solchen Umständen
ist es wenigstens für die Nematoden unstatthaft, von Zoon-
spermien zu sprechen, die nur als Kerngebilde anzusehen
seien. Aber selbst für den Fall, dass die sog. geschwäz-
ten Samenkörperchen mit ihrem Körper und sogar mit dem
fadenförmigen Anhange nur als metamorphosirte Kerne an-
gesehen werden müssten, und ferner wenn selbst dieser Kern
nach Form und Mischung bei der Befruchtung eine Haupt-
rolle spielte, so wäre es dennoch, nach des Ref. Ermessens,
nicht erlaubt, das Verhältniss der Kerne zu der Zelle, wie
es sich überall kundgibt, zu vergessen und hier namentlich
die Beziehung des geschwätzten Kernes zu seiner Zelle, als
eines integrierenden Bestandtheiles derselben, zu vernichten.
Dass eine solche unveränsserliche Beziehung des gewöhnlich
gogenannten Samenkörperchens zu einer Zelle auch bei den
Wirbeltbieren ursprünglich gegeben sei und vorliege, lassen
auch die gegenwärtigen Beobachtungen Kölliker's unzwei-
deutig hervortreten. Aus dem Umstande, dass es bei dem
egentlichen Befruchtungsakt, d. h. bei der Vermischung des
männlichen Keimstoffes mit dem weiblichen in dem entwik-
kelungsfähigen Keim des befruchteten Eies, weniger auf die
Form als auf die Substanz ankommt, und dass ferner für
diese Vermischung der unmittelbare Kontakt des männlichen
Keimstoffes mit dem Eie nothwendig ist, lässt sich, wie es dem
Ref. scheint, ungezwungen die leichte Zerstörbarkeit der „Sa-
menzelle“, desgl. die größere Beständigkeit und eigenthümlichen
Formverhältnisse des Kerns der Zelle, welcher vorzugsweise
den männlichen Keimstoff enthält, verständlich machen. Das
Samenkörperchen ist demnach streng genommen

Epithelien.

Aus II. Finck's physiologischen Studien über das Darm.

Den allmäßigen Uebergang des Darmepithels in die Epidermis am After beschreibt Harpeck (De polypis recti; Diss. inaug. Vratislav. 1855, 80, Tab. II, adj., p. 25). Ref. kommt später auf diese Abhandlung zurück.

Durch C. Eckhards ist die Aufmerksamkeit der Histologen von neuem auf das Epithelium der Nasenschleimhaut namentlich in der Regio olfactoria geleitet worden. (Beiträge zur Anat. u. Phys. Heft I, p. 79 — 84, Giess. 1855, 4°.) Der Ref. bestätigt zunächst, was den Lesern dieses Archivs aus den in diesen Berichten mitgetheilten Beobachtungen des Ref. vor zwei Jahren bekannt ist, dass beim Kaninchen auch die Reg. olf. Cilien tragendes Epithelium besitzt. Beim Frosch ist das Flimmerepithel dieser Gegend nach dem Verf. durch die ausserordentliche Länge und Feinheit ausgezeichnet und soll in besonderer Beziehung zu der Endigungsweise des N. olfactorius stehen. Wird die Nasenschleimhaut des Froeschens mit einer nicht zu duldurten Lösung von saurem chromsaurer Kali eine Stunde lang behandelt und je nach Umständen das Epithel allein oder mit dem Substrat zur Untersuchung be-

Über das Epithelium an den freien Flächen des Cen-
gebildet werden. Bei Erwachsenen ist das Flimmerepithelium gewöhnlich verschwunden und durch eine andere Art von Zellen ersetzt. Dieser Wechsel schreitet verhältnismässig sehr langsam vorwärts, so dass auch selbst noch beim Erwachsenen Spuren des ursprünglichen Epitheliums vorgefun- den werden. Am häufigsten erhielt sich dasselbe in der Rau- tengrube, überhaupt im vierten Ventrikel, obschon durchaus nicht regelmässig. An drei durch das Fallbeil hingerichteten Männern zeigten sich nur einzelne kurze, mit Cilien besetzte Cylinderchen auf der Rautengrube und an der unteren Fläche des Vel. med. sup.; desgleichen am vorderen Umfange der Zirbel. Sonst überall fand sich ein gut ausgeprägtes Pilaster- epithelium vor. Die Plättchen besassen eine durchschnittliche Breite von 0,014 Mm., hatten eine bald mehr rundliche, bald mehr polygonale Form und enthielten einen deutlichen, fein- körnigen, mit Kernkörperchen versehenen Nucleus. Bei weite- tem die meisten Zellen waren bis auf den Kern ganz hell, fast homogen; andere boten ein fein granulirtes Ansehen dar. Obgleich fast durchgehends die einfache Schichtung der Zel- len unverkennbar war, so kamen doch auch Stückerchen vor, in welchen unter den ganz hellen Zellen noch eine Anzahl dunklerer und etwas kleinerer verborgen lagen. Bei den ge- wöhnlichen Leichen findet man selten wohlerhaltenes Pila- sterepithelium vor. In den durch Abstreifen gewonnenen Prä- paraten machen sich am meisten die länglich runden, durch- schnittlich 0,008 Mm. messenden Kerne bemerkbar, die in einer feinen Molekularmasse eingelagert sind. Daneben er- kennt man rundliche und eckige Zellen von 0,012—0,016 Mm. Breite und zarten Konturen. Die Epithelialzellen der Ader- geflechte bilden einen leicht abstreifbaren, unmittelbar auf der strukturslosen Grenzlamelle der Zellen ruhenden Überzug, dessen Elemente sich lose neben einander liegen, dass sie bei der geringsten Störung aneinanderfallen. Das Epithelium soll wenigstens stellenweise aus zwei bis drei Schich- ten bestehen. An ganz frischen Präparaten, die von Hinge- richteten oder eben getödteten Thieren entnommen worden, sah der Verf. auf der freien Fläche des Epitheliums eine grosse Menge ganz heller, rundlicher Zellen, welche häufig keinen oder einen sehr blassen Kern besitzen, und ausser- dem zahlreiche, kreisrunde oder länglich runde, homogene, glasartig helle, höchst zart konturierte Tropfen (Eiweisstro- pfen? R.), die sich öfters vom Epithelialüberzuge ablöseten und flott wurden. Die darunter liegenden Zellen des Epitheliums besitzen meist eine polygonale Form und ein zart körniges Ansehen; ihr Durchmesser beträgt 0,012—0,016 Mm. Diejenigen, welche auf der grössten Konvexität der Läpp- chen an den Adergefl echtzellen aufsitzen, zeigen, der Unter- lage entsprechend, concave Flächen. Im Allgemeinen erin- nern die Zellen hinsichtlich ihrer Form an die Leberzellen,
nderstand leistet. — In dem Centralkanal des Rückenmarks, das der frischen Leiche eines gesunden Selbstmörders entnommen war, fand der Verf. ein Epithelium, welches aus rundlichen (kreisförmigen? R.), glatten, nucleusähnlichen Kör
deren mehrfach Der

Die mikroskopische Beschaffenheit des Epitheliums auf den serösen Oberflächen der grossen Höhlen des menschlichen Körpers beschreibt, unter Anleitung Reissner's, Taube. (De membran. seros. in cavis magnis corp. hum. obviis. Diss. inaug. Dorpati 1855.) Das Epithelium der serösen Oberfläche an der Dura mater des Schädel's und der Wirbelsäule wird aus polyedrischen, plattgedrückten Zellen gebildet, deren län
gerer Durchmesser 0,005 — 0,007" beträgt; der eiförmige oder rundliche Kern hat einen langen Durchm. von 0,003 — 0,004". Die Kontouren der Zellen sind öfters undeutlich; bisweilen schiennen mehrere Schichten von Zellen über einander zu liegen. Der längste Durchmesser der Zellen des ähnlich be
schaffenen Epitheliums der Pia mater des Gehirns und Rückenmarks beträgt 0,0061 — 0,0082"; der breite Durchmesser der länglichen, granulirten Kerne mass 0,002 — 0,004".

Die Existenz von Fortsätzen an den Epitheliazellen der Plexus choroiidei wird geleugnet. Der grösteste Durchmesser der Zellen des Plattenepitheliums der Pleura beträgt 0,004 bis 0,008"; der grössere Durchmesser der länglichen Kerne erreicht die Grösse von 0,0013 — 0,0041". Das Epithelium des Pericardium besteht gleichfalls aus einem einfachen Plattenepithelium, deren Zellen einen Durchmesser von 0,004 — 0,006" besitzen. Die Zellen des auf der serösen Oberfläche der Bauchhöhle (Pars parietalis) sich ausbreitenden Plattenepitheliums erreichen einen längeren Durchmesser von 0,012"; der Durchmesser der rundlichen Kerne beträgt 0,004". Der grösteste Durchmesser der Epithelialzellen auf der freien Ober
fläche der Organe, Bänder und Fortsätze in der Bauchhöhle beträgt 0,0041 — 0,012", derjenige des gewöhnlich centralen Kernes 0,0012 — 0,0041". Dieselben morphologischen und Grössen-Verhältnisse der Epithelialzellen kehren an der serösen Oberfläche des Hodens und seiner Umgebung wieder.

Nach Luschka's Untersuchungen soll die Schleimhaut der Oberkieferhöhle ein mehrfach geschichtetes Epithe
lium besitzen. Die oberste Schicht besteht aus konischen, bisweilen sehr lang gestreckten „Wimperkörperchen“, wäh

Dursy fand die glatten, mit einander in Kontakt stehen-

Über das Verhalten der Epithelien bei Cyclas cornea giebt Leydig folgende Mittheilungen (Müll. Arch. 1855, p. 47 sq.). Die Gehörkapsel ist deutlich von zylindrischem Flimmer epithelium ausgekleidet. Der Durchmesser des Kerns der Zellen beträgt 0,006"; die Cilien tragende Wand bildet einen hellen Saum. Aehnlich verhält sich die Gehörkapsel bei Unio und Auodonta. Im Darmkanal finden sich an einigen Stellen grössere flimmernde Cylinderzellen, an anderen kleinere mit feinen Cilien versehene. Auch der Inhalt der Zellen ist nicht gleichmassig beschaffen; bald ist die Zelle mit dunkler Punkt-
Muller's Archiv, 1890. Jahresbericht.

Linse und Glaskörper.

bung, und der Verf. schliesst daraus, dass jene Stelle des Glaskörpers durch keine selbstständige Lamelle abgegrenzt werde. Desgleichen fehlte gegenüber dem gelben Flecke in einem kleinen Umfange die Trübung gleichfalls. Bei näherer Untersuchung zeigte sich, dass hier die durch Exsudatrübung sichtbar gewordene Lamelle sich um- oder vielmehr zurückschlug und in lückenförmiger Ausbreitung sich an die Hyaloidea anlegte. Ausser dieser Schichtenanordnung liess der Glaskörper durch anderweitige Trübungen einen komplizirt strahligen Bau erkennen, indem von der Axe des Glaskörpers her kleine trübe Granulationen und Papillen in zahlloser Menge, desgleichen feine Flecke in nebeligen und namentlich Federwolken ähnlichen Gruppierungen senkrecht radial gegen die Oberfläche des Glaskörpers aufstiegen.

vensysteme sichtbar waren. Thomas selbst zweifelte, ob dieses Phänomen aus der bekannten Struktur der Linse, namentlich aus der Zusammensetzung derselben aus genau konzentrischen und für die Fischnlinse auch hinreichend genau sphärischen Lamellen sich erklären lisse. Czermak weist nun durch eine geometrische Konstruktion nach, dass konzentrisch in der Richtung der Meridiane verlaufende und in Folge dieser Anordnung eine Kugel zusammensetzende Fasern gegen eine, senkrecht auf die Aequatorebene, parallel zur Axe dieser Kugel geführte, plane Schnittfläche so gestellt sind, dass ihre auf dieser Fläche zum Vorschein kommenden Durchschnitte und Entblösungen in mehrfachen sich interferirenden, konzentrischen Kurvensystemen angeordnet erscheinen.

Gebilde der Bindesubstanz.

gebende Stoff der Grundsubstanz in Form von Fasern oder vielmehr eines Fasernetzes von dem Glutin gebenden aus; auf diese Weise entstehen nachweislich die elastischen Fasernetze, wie z. B. im elastischen Knorpel, und machen dann das Bindesubstanzgebilde elastisch. Ob unter den letzteren Umständen auch noch der übrige Rest der Grundsubstanz fibrillär zerfallen kann, ist wenigstens noch nicht nachgewiesen. Käme ein solcher Fall vor, und würden zugleich auch die Bindesubstanzkörperchen eine Faserform annehmen, so hätte man ein Bindesubstanzgebilde vor sich, an dessen histologischer Textur dreierlei Fasern partizipiren würden. In welche Kategorie die Blastemfasern des Verf. zu bringen seien, vermag Ref. nicht zu entscheiden.

Luschka hatte bekanntlich sehr wesentlich dazu beigetragen, dass wir zur Erkenntnis der Täuschungen in Betreff der umspinnenden Spiralfasern gelangt sind. Für die zwischen der Arachnoidea und der Pia mater hinlaufenden Fäden, an welchen Henle die Entdeckung der umspinnenden Fasern gemacht hatte, wird in vorliegender Abhandlung die wirkliche Existenz derselben anerkannt. Es bestehen die genannten Fäden nach dem Verf. aus einer grösseren oder geringeren Anzahl von Bindegewebsbündeln, welche meist isolirt, an manchen Stellen aber auch untereinander mehrfach verschmolzen sind. Die meisten dieser Bündel sollen nun von feinen elastischen Fasern spiralig umwickelt sein (p. 58).

Nach Taube (a. a. O. p. 9 etc.) besteht das bindegewebsige Substrat der serösen Häute in den grossen Höhlen des menschlichen Körpers aus gewöhnlichem reifen Bindegewebe, welches häufig durch die Anwesenheit von einer grösseren oder geringeren Menge elastischer Fasernetze elastisch geworden ist; Bindesubstanzkörperchen von rundlicher, ovaler oder sternförmiger Form sind nirgend, auch nicht sicher an der serösen Oberfläche der Pia maier nachzuweisen. Die in der fibrillär oder streifig erscheinenden Grundsubstanz des Schnengewebes vorhandenen Fasern sind Spiralfasern und elastische Fasern, welche letzteren zwar die Feinheit der ersteren erlangen können, dennoch aber mit ihnen nicht identisch seien und verwechselt werden dürfen. Die elastischen Fasern gehen nicht aus Zellen hervor, sondern durch Soöderung aus der Grund- und Interzellularsubstanz; sie zeichnen sich ferner durch ihre Verfärbung und Anastomosenbildung aus und geben sich auf Querschnittchen als verschiedenartig verteilte Reihen von Pünktchen, den Querschnitten der Fasern, zu erkennen. Die Spiralfasern sind zu Fasern ausgewachsene Zellen oder Bindesubstanzkörperchen des Schnengewebes; niemals war an ihnen eine Verfärbung, Spaltung oder Anastomosenbildung nachzuweisen; auf Querschnittchen erscheinen sie als dunkle ohne Ordnung hie

Ref. hatte schon in seiner Schrift über die Bindesubstanzgebilde angegeben, dass die Descemet'sche Haut mit dem bindegewebigen Substrat der Iris in kontinuierlicher Verbindung stehe und zwar durch Vermittlung des Lig. iridis pectinatum. Ringförmige, am Hornhautrande verlaufende Faserzüge, die von der Descemet'schen Haut entsendet waren, hat Ref. bisher vergebens gesucht. Dagegen besteht unzweifelhaft eine kontinuierliche Verbindung der Demours'schen Haut mit dem bindegewebigen Substrat der Sclera; ob grade mit dem elastischen Fasernetze derselben allein, das möchte sehr zweifelhaft sein. Diese Verbindung erfolgt aber nicht mit der ausserhalb des Canals Schlem, gelegenen Schicht der Sclera, sondern vielmehr mit der nach innen, gegen die Höhle des Bulbus gewendeten Wand dieses Kanales, an welche zugeleich der Tensor choroideae sich inserirt, oder vielmehr, in welche die Sehne dieses Muskels sich kontinuierlich fortsetzt. Ref. kann den Gegenstand nicht verlassen, ohne noch einmal darauf hinzuweisen, dass der kontinuierliche Zusammenhang der Cornea mit den angrenzenden Gebilden, welchen er schon vor 12 Jahren ausführlich besprochen, nicht so zu fassen sei, als ob die angrenzenden Gebilde durch Fortsetzung die Hornhaut bildeten. Das faserknorpelartige Substrat der Hornhaut unterhält kontinuierliche Verbindungen mit der Conjunctiva bulbi, mit der Sclera, und zwar nur mit den selnigen Strägen derselben, die mit ihrem streifigen Zuge in der Richtung der Meridiane des Bulbus verlaufen, endlich mit dem Tensor choroideae und dem bindegewebigen Substrat der Iris. Wenn das bindegewebige Stroma aller dieser Gebilde, zwar mit Veränderung des histologischen Charakters, doch mit Beibehaltung seiner Anordnung und des Verlaufes der einzelnen Stränge und Lamellen vom Rande her durch die ganze Hornhaut sich fortsetzen würde, so müsste die letztere allerdings ein sehr kompliziertes Flechtwerk darstellen. Davon ist jedoch bei den Säugethieren und dem Menschen keine Spur zu finden. In welcher Richtung auch die Hornhaut senkrecht durchschnitten werden mag, überall zeigen die Schnittchen dieselbe parallele Streifung der mehr homogenen Grundsubstanz mit eingelegten Hornhautkörperchen; nirgend lassen sich elastische Fasern oder Spiralfasern nachweisen. Diese parallele Streifung lässt sich, wie bis zur Membr. Descemetii, so auch bis unmittelbar zur vorderen

sätze der Knorpelzellen und der innersten Substanz des An-
nulus fibros. gebildet. Zwischen denselben findet sich ausser-
dem eine grössere Menge synoviaähnlicher Flüssigkeit (?R.)
mit darin suspendirten zarten, weisslichen Flocken. Von die-
sen Masse werden die Fortsätze durchfeuchtet, und von ihr
hält die gallertartige Beschaffenheit des Nucleus pulposus
ab. Die schleimartige Flüssigkeit soll nach Luschka theils
das Ergebniss einer, die Bildung des Gallertkernes als einer
Höhle bedingenden Verflüssigung der ursprünglich festen mitt-
leren Substanz des Zwischenwirbelbandes sein; theils soll sie
fort und fort durch eine Schmelzung mancher Theile jener
Fortsätze entstehen, und hiermit das häufige Freiwerden (?R.)
von Knorpelzellen Hand in Hand gehen.

Von der Ueberzeugung durchdrungen, dass die Synchon-
drosen die niedrigste Stufe der Gelenkformation überhaupt
darstellen und in wirkliche Gelenke auf die oben angedeu-
tete Weise sich verwandeln können, hat Luschka die Ent-
wickelung echter Gelenke studirt und gefunden, dass
auch hier anfangs mindestens die Interzellularsubstanz der an
einander grenzenden Knorpel kontinuirlich sei, später aber
da, wo das Gelenk auftrete, im Innern eine Verflüssigung
erfahre und nach aussen hin faserig zerfalle, — bei gleich-
zzeitiger Entwicklung von Blutgefässen und elastischen Fa-
sern. Bei dieser Umwandlung des äusseren Theiles der Zwischenknorpelmasse finde gleichfalls, bis zu einem gewissen
Grade, noch Verschmelzung statt, und gleichzeitig stellen sich
Excrecenzen ein, ähnlich denen, die an dem Invertebralknorpel
beschrieben wurden, die aber später ebenfalls der
Auflösung entgegen gehen. Ueber die Bildung des die Syno-
vialkapsel auskleidendem Epitheliums hat sich der Verfasser
nicht weiter ausgesprochen (Müll. Archiv 1855, p. 481 sq.).
Luschka stellte seine Beobachtungen einerseits an solchen
Stellen des Körpers an, wo die Gelenkbildung bisweilen erst
nach der Geburt auftritt und anderseits an fast allen Gelen-
ken des Neugebornen, an welchen sich noch Spuren des
muthmasslichen Entwicklungstypus wahrnehmen lassen. In
ersterer Beziehung zeigten sich besonders belehrend die Ver-
bindungsstellen der 2. — 7. Rippe mit dem Brustbeine und
die Vereinigung zwischen Handgriff und Körper des Sternum.
Häufiger bei ersteren als bei letzterer stellt sich nach der
Geburt in der bisher kontinuirlichen, faserigen Verbindungssubstanz eine kleine Höhle ein, die sich nicht zu einer Ge-
lenkkapsel ausbildet, sondern eine Gelenkbildung auf einer
früheren Bildungsstufe darstellt. Die ganze Anordnung der
diese Höhlung begrenzenden Gewebstheile gewährt den Ein-
druck eines sie betreffenden, allmählich fortschreitenden Schmel-
zungsprozesses, indem der Knorpel der Rippe und des Si-
nus costalis sterni mit einer gestreiften Substanz bedeckt ist,
welche an ihrer freien Fläche ein vielfach zerklüftetes, durch

In der Abhandlung „Ueber die Brüche der Rippenknorpel etc.“ (Zeitschr. für klinische Mediz. Bd. VII, Heft 1, p. 6 sq.) hat Klopsch seine Beobachtungen über die Verbindung der Rippenknorpel mit der knöchernen Rippe, mit dem Sternum und untereinander mitgetheilt. Um die Verbindung der Rippenknorpel mit der knöchernen Rippe zu studiren, wurden die betreffenden Theile mit verdünnter Salzsäure behandelt, um durch Entfernung der Erdsalze die Gewinnung feiner Schnitte auch aus der angrenzenden, spongiösen Knochensubstanz zu ermöglichen; aus den Schnitten wurde das Fett durch Kochen mit Schwefeläther oder durch Chloroform ausgezogen. An solchen Schnitten, die den Knorpel und den angrenzenden Knochen getroffen hatten,
lassen sich unter dem Mikroskop bei 200maliger Vergrösse-
rung deutlich vier Regionen unterscheiden. In der ersten
Region findet man den unveränderten, byalinen Knorpel vor;
die Begrenzungen der Knorpelkörperchen sind einfach linear;
der Längsdurchmesser der grössten betrug 0,006" P., der
der kleinsten 0,003" P. Der Beginn der zweiten Region
macht sich durch die Gröszenzunahme der Knorpelkörper-
chen bemerklich; sie wachsen allmälig, bis schliesslich ihr
Längsdurchmesser nicht selten die Länge von 0,01" P., ihr
Dickendurchmesser die von 0,006" P. erreicht. Gleichzeitig
ordnen sich die Knorpelkörperchen in Gruppen von 20 – 32
Knorpelkörperchen, die eine ungleiche Begrenzung und all-
gegene oblonge oder mehr elliptische Form zeigen. Bei der
Gruppierung platten sich die gegen einander-gewendeten Flä-
chen der Knorpelkörperchen ab; sonst zeigt sich keine Ver-
änderung in der Form. Die Grundsubstanz zwischen den
Haufen von Knorpelkörperchen ist nicht faserig, wie es Köll-
licher beschreibt, sondern höchst feinkörnig. Diese Grund-
substanz setzt sich auch zwischen die einzelnen Knorpelkor-
perchen in Form von dünnen Lamellen oder Septa fort und
trennt dieselben unter einander. Die Haufen von Knorpel-
körperchen sind also nicht in gemeinschaftliche Höhlen und
von Mutterzellenmembranen eingeschlossen. Eigenthümlich
ist aber die dunkle Begrenzung der Knorpelkörperchen. Eine
genanere Untersuchung derselben zeigt, dass sie der Wand
der Knorpelhöhle angehört, in welcher die meist kerulose
Knorpelzelle sich befindet. Der eigenthümliche, optische Aus-
druck rührt von der Inkrustation her, welche in der, die
Höhle unmittelbar begrenzenden Grundsubstanz ihren Aufang
genommen hat; man hat es also in dieser Region schon mit
den von Brandt sogenannten primären Knochenkapseln zu
thun. In der dritten Region ist die Inkrustation der Grund-
substanz durch Ablagerung von Erdsalzen weiter vorgerschrit-
ten, und die primären Knochenkapseln haben sich theils in
die Knochenzellen Kölliker's oder glomeruli seu globuli
ossei Brandt's verwandelt, theils sind sie zur Bildung pri-
märer Markhöhlen des spongiosen Knochengewebes verwen-
det. In der vierten Region ist die knöcherne Rippe mit ih-
rer kompakten Rindensubstanz und der spongiosen Knochen-
substanz nach der von Brandt angegebenen Verknöcherungs-
weise fertig gebildet. Die knorpelige und knöcherne Rippe
sind daher ein fortlaufendes Ganze, aus denselben Elementen
gebildet, nur dass diese im Rippenknorpe1 unverändert,
in der Rippe inkrustirt erscheinen. Zwischen beiden ist keine
Spur eines anderen sie trennenden Elementes. — Die Ver-
bindung der Rippenknorpe1 mit dem Brustbein gehört, was
die zweiten bis siebenten anlangt, zu den Amphiarthrosen.
Der Knorpel der ersten Rippe geht ohne Unterbrechung in
das Brustbein über, die der zweiten bis siebenten werden

E*

Im Jahresbericht (Müll. Arch. 1854, p. 47) wurde der Untersuchungen des Dr. Morawitz erwähnt, die auf eine Verwandtschaft der Chitinsubstanz mit den Bindestsubstanzbildern hinweisen. Leydig hat die Frage, wohin im histologischen System das Chitingsewebe zu stellen sei, in seiner Abhandlung über den feineren Bau der Arthropoden gleichfalls aufgenommen (Müll. Archiv 1855, p. 390 sq.) und die Chitinhäute der Gliedertüssler für chitinirte Bindestsubstanz erklärt. Die Ähnlichkeit springe so recht in die Augen, wenn man vergleichungsweise einen senkrechten, mit Kalklauge behandelten Hauptschnitt, etwa eines Frosches, und einen ebenso behandelten senkrechten Schnitt der Flügeldecke eines Käfers nebeneinander betrachte; hier wie dort habe man sehr regelmässig geschichtete Massen, die von Hohlräumen durchsetzt seien, die mitunter in der Art ihrer Begrenzung und Verästelung eine grosse Uebereinstimmung mit den Bindestsubstanzkörperchen der Wirbelthiere darlegen. Selbst die oft epitheliumartig gezeichneten Grenzschichten des Chitinskele-
ter, namentlich der Haut, seien, wie schon oben berichtet wurde, nicht zum Horngewebe, sondern zur Chitinsubstanz zu rechnen.

Muskelgewebe.

dem die Bündel mit einander verschmolzen sind. Die ersten Muskelfasern waren beim Embryon von 6—7 Mm. Länge und zwar zuerst längs der Wirbelsäule sichtbar; später erscheinen sie der Reihe nach in den Brust- und Bauchwänden, am Halse, zuletzt in den Extremitäten.

dern weich gebliebene schlanchartige Fortsetzung der Sehne, mit dem Unterschiede jedoch, dass in letzterer die Kerne fehlen. — Die Primitivcyliner der Muskeln von Cyclas cornea fand Leydig ebenso, wie bei anderen Conchiferen, als bandartige Gebilde vor, die entweder rein homogen aussehen oder mit einer körnigen Axe versehen waren, welche hier und dort Kernrudimente sichtbar werden liess. (Müll. Arch. 1855, p. 50.)

Histologische Formelemente des Nervensystems.

wörtig, wegen der zahlreichen Verbindungen der Nervenkörper untereinander und wegen der Unsicherheit in Betreff etwa vorhandener centraler Ausläufer derselben, nicht gut möglich, auch nur über die äusseren Formverhältnisse des histologischen Formelementes im Nervensystem sich eine bestimmte Vorstellung zu machen. Der schlüpfrige Boden, auf dem wir uns befinden, hat sich durch die neuesten Arbeiten auf diesem Gebiete bereits hinlänglich verrathen.

körper zu prüfen. Es ist ihm die Ueberzeugung geworden, dass die Theorie der Nerven-Elementarröhrenchen auf Täuschungen beruht, welche durch die Anwendung zu starker Vergroßerungen und durch mangelhafte Würdigung der Veränderungen, welche das Mark, der Inhalt der Kerne der Nervenkörper, selbst die granulierte Masse der letzteren, sowie die Bindesubstanzgebilde erleiden, herbeigeführt worden sind.

Remak hat, wie er sagt, Mittel gefunden, in Betreff der grossen multipolaren Nervenkörper in den vorderen Hörmern des Rückenmarks festzustellen: 1) dass jede Zelle mit einer motorischen Nervenwurzelfaser in Verbindung tritt; 2) dass die übrigen centralen Fortsätze sich physikalisch und chemisch von jener Faser unterscheiden; und 3) dass die Zahl der übrigen Fortsätze durch 2 theilbar ist, und dass ebenso viele centrale Fortsätze nach dem Kopfe wie nach dem Schwanz, ebenso viele nach hinten wie nach vorn ziehen.

C. Köttner hat in seiner Inaugural-Abhandlung (De origine nervi sympathici ranarum ex nervorum dissectorum mutationibus judicata; Dorpati 1854) über die mikroskopische Anatomie des N. sympathicus beim Frosch folgende Beobachtungen mitgetheilt. Die Nervenkörper finden sich nur in den Ganglien des N. sympath., niemals in den Nervensträngen, wie z. B. in den Ramis communicantibus; in dem Herzen allein kommen Nervenkörper auch in den Nerven vor. Die Nervenkörper des N. sympath. sind durch ihre ge- ringe Grösse, durch die zarten Konturen und durch ihren sehr deutlichen Kern ausgezeichnet. Ihre Grösse schwankt zwischen 0,00056 und 0,00082", die der Nervenkörper in den Spinalganglien zwischen 0,0007 und 0,0012". Während die Nervenkörper der Spinalganglien stets bipolar sind, zei-

beweisen, dass die graue Substanz des Rückenmarks beim Frosch zum grösseren Theile aus formlosem Bindegewebe besteht, zu welchem die oben bezeichnete formlose Masse als Grundsubstanz, die rundlichen und sternförmigen Zellen, desgleichen die interstitiellen elastischen Fasern (Henle's Kernfasern) als Bindestanzköperchen gehören. Breite, markhaltige Nervenfasern kommen in der grauen Substanz nicht vor; die Fasciculi decussati bestehen aus denselben Gewebe wie die Pia mater. Eine von C. Schmidt ausgeführte chemische Analyse der weissen Substanz aus der Commiss. max. cerebri des Menschen und der grauen Substanz aus der Rindenschicht der Hemisphären ergab, dass die graue Substanz, das Fett als Einheit genommen, sechs Mal mehr Albuminate, neun Mal mehr Leim gebende Substanz, elf Mal mehr anorganische Salze, sechs und ein halbes Mal mehr Wasser, als die weisse Substanz enthält. In der wasserfreien weissen Substanz kommen auf 100 Theile: 74,26 Cholestearin, Fette, Fettsäuren und deren Salze; 20,53 Albuminate etc.; 4,0 Leim gebende Stoffe; 1,21 anorganische Stoffe. Diesem entsprechen in der grauen Substanz die Zahlen: 30,46; 49,21; 14,74; 5,59.

Von R. Blessig ist unter Bidder’s Leitung die Textur der Netzhaut untersucht worden. (De retinæ textura disqui- sitiones microscopicae. Dorp. L. 1855.) Wegen der verschieden mikroskopischen Beschaffenheit theilt der Verf. die Retina in zwei Bezirke, Zonen, Abschnitte, den hinteren und vorderen. Die Trennungslinie beider Abschnitte liegt im Aequator des Bulbus und ist von der Insertion des Sehnerven an der inneren Seite 4,5" P., an der äusseren dagegen fast 6" P. entfernt; von der Ora serrata ist sie unter solchen Umständen auf beiden Seiten gleich weit entfernt gelegen. Die Dicke der Netzhaut ist nach Aussen von der Insertion des N. optici. bedeutender als nach Innen, etwa 0,207″. An der Trennungslinie beider Abschnitte ist die Retina am dünnsten, ungefähr 0,059″ P. dick (an Chromsäure-Präparat R.). In dem vorderen Abschnitte nimmt sie gegen die Ora serrata hin ganz allmäglich an Dicke zu und verdünnt sich dann schlüsslich mit einem Margo acutus. Die Stäbchenschicht ist im Allgemeinen 0,026″ P. dick und erstreckt sich über die ganze Retina hin. Da die Zapfen und Stäbchen nur eine einfache Kontour besitzen, auch nicht durch Reagenzien sich eine Membran darstellen lässt, und da sie überdies so leicht in Stückchen zerfallen, so werden sie für solid gehalten. Die Körner der äusseren KörnerSchicht haben einen Durchmesser von 0,003″ P.; sie werden zum Verf. gleichfalls für Zellen
ganz deutlich in der in Rede stehenden Schicht. Dagegen
hat Ref. bisher vergeblich (bei Katzenaugen) nach der zuwi-
schen den beiden Körnerschichten beschriebenen, radiär gestrei-
ten Schicht gesucht. Die Nervenzellschicht erkennt Blessig
nicht an; es ist ihm niemals gelungen, eine wirkliche
Ganglienzelle aus dieser Gegend frei zu machen. Diese Schicht
besteht nach ihm vielmehr aus einem Maschenwerk, welches
von bald dickeren, bald dünneren Bündeln von Fasern ge-
bildet wird. Die Maschen, wenn sie geschlossen sind, haben
die grösste Ähnlichkeit mit Zellen. Der Binnenraum wird
aber nur von Portionen der molekulären Schicht mit einem
Kern, wie er in den Körnerschichten vorkommt, angefüllt.
Der Verf. will daher die Ganglienzellschicht als dritte Kör-
nerschicht aufgefasst wissen, in welcher die Körner jedoch
nicht so dicht gedrängt bei einander liegen. Diese Ansicht
Blessig's wird sicherlich Anstoss erregen; allein darin muss
Ref. beistimmen, dass in der sog. Ganglienschicht an Chrom-
säure-Präparaten wirkliche Nervenkörper schwer nachzuwei-
sen sind; die Körper in der zweiten Körnerschicht verrathen
die Beschaffenheit eines Nervenkörpers viel auffallender. Die
Dicke der in Rede stehenden Schicht beträgt, etwa 4" von
Collicul. n. optici, 0,045". In der Nervenfaser-Schicht sind
(vo Blutgefassen abgesehen, R.) zwei sehr verschiedene
Bestandtheile zu unterscheiden: die eigentlichen Nerven-asern des N. opticus und die hier wiederum sichtbar wer-
denden Radialfasern. Das ganze Stratum ist in der Entfer-
nung einer Linie vom Collie, n. opt. 0,038" dick und ver-
dient sich allmälig gegen den grössten Umfang des Bulbus
hin. Jenseits des Acquators waren Nervenfasern nicht mit
Sicherheit nachzuweisen. Die Nervenfasern werden durch die
Radialfasern in Bündel geschieden, und diese Bündel nehmen
gegen den Acquator hin allmälig an Dicke ab, während gleich-
zeig die Radialfasern dicker und häufiger werden. Die letz-
teren entspringen nach dem Verf., wie schon angegeben, am
inneren Theile des molekulären Stratum, bilden dann das
erwähnte Netzwerk der sog. Ganglienzellschicht und der
Nervenfasernschicht, in dessen Maschen die scheinbaren Ner-
venkörper und die Bündel von Nervenfasern enthalten sind,
und nehmen schliesslich, beim Übergange zur M. limitans
hin, einen regelmässigeren, radiären Verlauf an, um sich, sich
keelhartig erweiternd, mit der M. limitans zu vereinigen. Diese
Vereinigung erfolgt unter kontinuierlichem Übergange der
Radialfasern in der M. limitans derartig, dass letztere aus den
keelhartigen Erweiterungen der Radialfasern gebildet erscheint.
Die M. limitans enthält keine Kerne und Zellenbestandtheile;
sie zeigt sich als eine homogene, elastische Membran. Was
die Macula lutea betrifft, so hält Blessig den um die Fo-
vex centralis nach dem Tode sichtbaren Wall für eine Falte
der Netzhaut, da der Wölbung an der Innenfläche eine Ver-
also entweder den Bindegewebsgebilden beigezählt oder für morphologische Elemente eigener Art gehalten werden. C. Schmidt kochte mehrere Tage eine Partie Netzähute, die von Rindern entnommen waren. Die Radialfasern und das Stratum moleculare waren nicht mehr vorzufinden; es waren übrig geblieben: Stücke von Stäbchen, die Zapfen, die Körner, die Nervenfasern, die Membr. limitans. Bei der chemischen Analyse gewann Schmidt eine Substanz, die weder genau die Reaktionen einer eiweißartigen Substanz, noch die des Leims gab.

nachgewiesen, die Lamina spiral. membr. in der Gegend der Zähne der ersten und zweiten Reihe von einer nüter der Loupe glasartig erscheinenden Lamelle bedeckt. An dieser Lamelle unterscheidet Reissner nicht 4, sondern nur 3 Zonen. Die innerste Zone besitzt die größte Breite und ge- ringste Dicke, und ist schwach gestreift; die mittlere ist schmäler, aber zugleich dicker und sehr deutlich gestreift; die äußere ist am schmalsten und scheint sich zugleich ge- gen den äusseren, scharfen Rand hin zu verdünnen. In die- ser Zone bemerkt man rundlich-ekige Kontouren von 0,0025"" bis 0,005"" im Durchmesser, in deren Mitte ein dunkles Kör- perchen sichtbar wird. Die Richtung der Streifen in den be- den ersten Zonen ist schräg, und oft scheint es, als wären die Streifen in mehrfachen Lagen vorhanden und hielten in einzelnen Lagen eine verschiedene Richtung ein. Der Verf. meint, dass die in Rede stehende Lamelle vielleicht die in der Schnecke ber Sängethiere fehlenden Otolithen ersetzte. (Müll. Arch. 1854, p. 420 sq.)

Nach Bilharz enden die Nervenfasern im elektrischen Organ des Zitterwelse in Form eines scheibenförmigen Säckchens, welches mit granulirter Substanz, ähnlich derjenigen der Nervenzellen, und feinen Kernen angefüllt ist. Aehnliche, mit Ganglienkugeln vergleichbare Anschwellungen fand Ecker an den peripherischen Enden in den Plättchen des elektrischen Organs bei Mormyrus. (Freiburg. Berichte No. 11).

Blut und Lymph.

Nach Kölliker erleiden die Blutzellen des Froesch durch konzentrierte Harnstofflösung (50 Pct.) eine merkwürdige Veränderung; sie werden zackig und verwandeln sich in die schönsten sternförmigen Zellen mit meist 3—6 ziemlich langen, kolbenförmigen Fortsätze. Die so veränderten Zellen erhielten sich aber nicht lange; die Fortsätze begannen wie einzuschaeln, indem sie theils vom Rande aus

Lymphgefäss.

Drüsen.

Häute.

Taube's Untersuchungen der serösen Häute in den

In der bei den Epithelien erwähnten Inauguralabhandlung des Dr. Harpeck sind genaue, durch gute Zeichnungen erläuterte Beobachtungen über die Struktur- und Textur-Ver-

Sowohl die cirkularen als longitudinalen Muskeln sind in Fascikel abgetheilt; von der cirkularen Schicht treten einige Fascikel in die Interstitien zwischen den Fundi der Lieberkühn'schen Drüsen hinein, aber weiter hinauf waren keine Fasern nachzuweisen. Das sogenannte Stratum vasculosum des Rectums ist ausgezeichnet durch den Reichthum der Gefässe und deren plexusartige Beschaffenheit; schon beim Fötus von 7 Monaten macht sich diese Eigenthümlichkeit des Rectums vor allen übrigen Theilen des Darmes bemerkbar.

Nähe des Sphincter ani externus beginnen Fettzellen aufzutreten, womit der Anfang des Coriums gegeben ist, an welchem nun auch Haare, aber noch nicht Drüsen sichtbar werden. Vor der äusseren Muskellage endet die cirkuläre Schicht, an Dicke zunehmend und einen gegen die Afteröffnung offenen Bogen beschreibend, in dem Sphincter ani internus, ohne in Längsmuskeln auszulaufen, wie es Kohlrausch angiebt. Die Längsmuskelschicht dagegen, gleichfalls an Dicke zunehmend, steigt zugleich mit den quergestreiften Muskelfasern des Levator ani zwischen beiden Sphinkteren herab und verliert sich mit ihren Fasern zwischen die tiefsten Bündel des Sphincter ani externus.

Handbücher und Hulfsmittel.

I. W. Griffith and Henfrey: The micrographic dictionary etc. Part. IV—XIV.

Berlin, Druck der Gebr. Unger'schen Hofbuchdruckerei.
Beiträge zur Entwicklungsgeschichte der Spongillen.

Von

N. LIEBERKÜHN.

Die Bestandtheile, welche bis jetzt von den Forschern als den Spongillen angehörig angegeben worden sind, sind folgende: das aus verschiedenen Formen von Kieselnadeln bestehende Gerüst; die eingelagerte gallertige Substanz; die sogenannten, mit einem Porus versehenen Gemmulae, welche entweder eine glatte Schale haben oder von Amphidisken rings umgeben sind; zu gewissen Jahreszeiten vorkommende bewegungsfähige Körperchen, welche die Fortpflanzung der Schwämme bewirken sollen; nach Hogg bewegen sich dieselben durch endosmotische Vorgänge, nach Laurent durch Wimpern. Für die Meerschwämme hat Grant über ähnliche Körper berichtet, welche am Vorderende bewimpert sind, hinten nicht; Quekett erklärt jedoch, dass er diese Beobachtungen nicht bestätigen könne, und giebt eine ganz andere Darstellung von der Fortpflanzung. Samenthiere beschrieb Huxley für Tethyum, und Carter für die Spongillen.

Die nachfolgenden Beobachtungen sind fast ausschliesslich an Spongilla fluviatilis angestellt, welche ich beinahe täglich im frischen Zustande während zweier Sommer und eines Winters zur Untersuchung erhielt. Die Spongillen sind in der Spree innerhalb Berlins ungemein verbreitet; sie finden sich namentlich an alten Holzpfählen und auf dem Grunde des Wassers.

Das Skelet und die gallertige Substanz.

Die Kieselnadeln sind vielfach beschrieben und abgebildet, sowohl in ihren gewöhnlichen als ungewöhnlichen Formen.

Müllers Archiv. 1856.
N. Lieberkühn:

erkennt häufig entschieden Gebilde, welche die Form einer Zelle haben; es gelingt dies namentlich im Winter leicht, wenn die Körnchenmasse nicht so vorwiegend vorhanden ist; sobald die amöbenartigen Bewegungen aufhören, erblickt man in solchem Stück einen Nuclens und einen Nucleolus. Und es besteht alsdann nicht etwa blos ein Theil der gallertigen Masse daraus, sondern der ganze Schwamm. Die Zellenmembran selbst darzustellen, ist mir niemals gelungen; die Berechtigung des Ausdruckes Zelle ist daher noch nicht dar­gethan; ich habe mich der Kürze halber jedoch seiner bedient; bisweilen findet man den Nuclens mit seinem Nucleolus isolirt zwischen andern unversehrten Zellen, namentlich wenn der Schwamm schon nicht mehr ganz frisch ist. Die Durchmesser der Zelle betragen 0,02 mm., des Nuclens 0,01 mm., des Nucleolus 0,003 mm. Häufig sieht man in den Zellen nur den Nuclens, und bisweilen auch diesen nicht, indem als­dann grüne oder farblose Körnchen das Innere des Kugel­chens ausfüllen. Ofters erreichen auch die Zellen die obige Grösse nicht. Einige Male fand ich zwischen den Schwam­zellen Gebilde, welche fremde Körperchen z. B. Bacillarien in sich enthielten; im Uebrigen glichen sie ganz den Schwamm­zellen, enthielten auch eben solchen Nucleolus; eine contractile Blase war nicht vorhanden; sie streckten Fortsätze und zogen sie wieder ein; es ist möglich, dass es wirklich Amö­ben waren, bei welchen man ja öfters auch nichts von einer contractilen Blase entdecken kann. Entschiedene Amöben mit contractilen Blasen sind im Schwamm keine seltene Erschei­nung. Ueberhaupt sind die Spongillen, namentlich im Winter, der Sitz eines reichen infusoriellen Lebens; ich fand im Laufe des letzten Winters in grossen Mengen Paramecium aurelia, Paramecium colpoda, Chilodon cucullatus, mehrere Species von Trachelius, namentlich Trachelias ovum, weniger häufig die verschiedenen Formen der Amphilepten, besonders Amphileptus anser von einer halben Linie im Längsdurchmesser und mit einer stäbchenförmigen Auskleidung im Schlunde ver­sehen, ähnlich wie Prorodon, der gleichfalls vorkam; ferner Loxodes bursaria, mehrere Arten von Bursarien und auch
Ophryoglenen; von den Oxytrichinen waren es namentlich die Stylonichien, Urostylen und Euplotes.

Die Gemmulae.

Häufig sitzen die lebenden Spongillen nicht unmittelbar auf dem Holz, den Steinen oder andern Gegenständen auf, sondern es trennt sie davon eine eigenthümliche dunkelbraune erdige Masse, welche oft mehrere Zoll dick ist. Diese Masse besteht der Hauptsache nach aus den Resten des abgestorbenen Schwammes, leeren Gemmulaeschalen mit ihren Amphidisken, den verschiedenen Formen der Kieselnadeln und vermoderter gallertiger Substanz; bisweilen findet man da-zwischen auch noch braune Gemmulae mit entwicklungsfähigem Inhalt; in manchen ist die Entwicklungsfähigkeit des Inhaltes erloschen, indem er nur noch aus äusserst feinen nadelförmigen Krystallen und detritusähnlicher Masse besteht; die Krystalle sind zu klein, um ihre Form bestimmen zu können, indessen erkennt man an einzelnen die Kanten noch vollkommen genau. In wenigen Fällen hatte der abgestorbene breite Schwamm ganz die Form und die Farbe des lebenden bewahrt und erst das Mikroskop gab darüber Auskunft, dass die Zellen fehlten; auch zwischen solchen Nadelgerüsten fanden sich Gemmulae. Die abgestorbenen verästelten Spongillen, die sich meist auf dem Grund des Wassers finden, sind häufig von Gemmulae so dicht besetzt, dass sie davon grau oder grünlich erscheinen; die Nadeln ragen dann über die Gemmulae mit ihren Spitzen hinaus; oft werden sie wieder ganz und gar von neuen Schwammbildungen überkleidet und bemerkt man sie erst, wenn man den Schwamm zerbricht. In den untersten Lagen des lebenden breiten Schwammes, welche die abgestorbenen Schichten begrenzen, findet man bisweilen grosse Mengen blendend weisser Gemmulae; sie verhalten sich im Uebrigen wie die gewöhnlichen braunen Gemmulae, ihre Schale ist sehr fest, und leistet beim Zerdrücken einen erheblichen Widerstand, nur sind die Amphidisken auffallend klar. Ihr Inhalt besteht aus den bekannten kugeligen Massen, welche aus grössern und kleineren fett-
artigen Körnchen und einweißartiger Substanz zusammengesetzt sind, ungefähr die Grösse der grössten Schwammzellen haben und beim Druck leicht zerfallen. Andere hier vorkommende Gemmulae zeichnen sich durch eine sehr weiche, durchsichtige Schale aus, welche sogleich zerplatzt, wenn man nur das Deckgläschen behutsam auf das Objektglas bringt, um sie zu bedecken; auch sie haben sehr klare Amphidisken, jedoch zerfallen die darin enthaltenen kugeligen Massen nicht so leicht. Wenn man ein Stück Schwamm dieser Art, welches die beschriebenen Gebilde enthält, unter Wasser mittels feiner Nadeln zerfasert, so treten in der Regel einzelne wechselnde, nicht scharf umgrenzte, kugelige Stücke ungefähr von der Grösse der Gemmulae hervor, welche sich durch folgende Eigenschaften auszeichnen. Schon bei schwacher Vergrösserung erkennt man zwei verschiedene Lagerungen der Substanz, die oberflächliche bricht das Licht schwach, ungefähr wie die gewöhnlichen Schwammzellen, die innere kugelige Masse bricht es stark, fast wie Fettanhäufungen. Zerdrückt man solchen Körper unter dem Deckglase, so zerfällt er in zwei Formen zellenartiger Gebilde, welche beide etwa die Grösse der Spongillenzellen besitzen. Die innern, welche dem das Licht stärker brechenden Theile angehören, kleben sehr fest an einander, und bestehen aus sarkoider Masse, in der ziemlich grosse fettartige Körnchen dicht eingestreut sind; sie zeigen isolirt ähnliche Bewegungen wie die Spongillenzellen, sie schieben Fortsätze, in welche die Körnchen mit eindringen und zichen sie auch wieder ein; liegt ein grösserer Haufen von ihnen zusammen, so sieht es aus wie ein Fettklumpen, der zu schmelzen beginnt und nach allen Seiten hin die Flüssigkeit in einzelnen Streifen entsendet; bei einem entsprechenden Druck auf solche Anhäufung sieht man die ursprünglichen einzelnen Stücke, diese haben aber die mannigfaltigsten Formen. Es gelang mir nicht, hier die durchsichtige zarte Haut zu finden, welche die eben beschriebenen weissen Gemmulae umschliesst. Statt dessen bemerkte ich nur eine Lage fest zusammenklebender zellenartiger Kugeln, von denen die einen den Schwammzellen in der Anordnung der Körnchen
und des Nucleolus durchaus ähnlich sahen, die andern aber Amphidisken einschlossen. Ein Theil der eingeschlossenen Amphidisken hat vollständig die Form derer, welche gewöhnlich die Gemmulae umgeben; sie begrenzen mit der Peripherie ihrer Räder je einen kreisförmigen Theil des Innern der Kugelschale, welche sie einschliesst. Ein anderer Theil besitzt die beiden Räder noch nicht, sondern es liegt im Innern des zellenartigen Gebildes ein dünnes Stäbchen, welches an jedem Ende eine leichte knopfförmige Anschwellung trägt; in wieder andern strahlt die knopfförmige Anschwellung eine Reihe äusserst feiner Stacheln aus, welche auf dem Stäbchen senkrecht stehen; man braucht sich diese Stacheln nur breiter und den Stiel dicker vorzustellen, so ist die Form des gewöhnlichen Amphidiskus gegeben. Die Conturen der mit einem Amphidiskus versehenen zelligen Gebilde sind so scharf und bestimmt, wie bei den Schwammzellen, einen Kern vermochte ich nicht in ihnen aufzufinden; bisweilen enthielten sie einige fettartige Körnchen.

Aehnliche Thatsachen sind mir für die mit glatten Schalen versehenen Gemmulae nicht bekannt geworden. Beiläufig will ich hier nur noch bemerken, dass ich bis jetzt an einem und demselben Schwammstück niemals die mit Amphidisken umgebenen und die glatten Gemmulae zugleich fand; beide Formen kommen übrigens zu allen Jahreszeiten vor; die verästelten auf dem Grunde der Spree lebenden Spongillen enthielten
bisher nur glatte Gemmulae; bei dem breiten an Brettern und Pfählen wachsenden Schwamm kamen beide Formen vor, aber nicht an demselben Stück.

Der gewöhnliche Inhalt der Gemmulae ist bereits von Meyen genau beschrieben (Beiträge zur näheren Kenntniss unseres Süsswasserschwammes. Müllers Archiv 1839. S. 83), wo nachgewiesen wird, dass die Amphidiskin Bestandtheile der Gemmulae sind. In manchen Exemplaren fand ich die kugelige Anordnung nicht mehr vor, und die feiner eine lebhafe Molekularbewegung zeigenden Körnchen waren vorwiegend vorhanden.

keit soll ungefähr zwei Tage dauern, dann sollen sie sich festsetzen, ihre sphärische Form verlieren und sich ausbreiten, wie ein dünnes Häutchen; Spicula finden sich jetzt noch nicht vor, bald erscheinen sie aber und sollen sogleich dieselbe Form und dieselbe Größe haben, wie bei den ausgewachsenen Spongillen. Diese Darstellung lässt es unerklärt, wo die äußerst feinen und kurzen Kieselnadeln herkommen, welche nach Meyen's Angaben $\frac{1}{16}$—$\frac{1}{10}$ mm. Länge haben. Die Resultate der neuesten Untersuchungen über diese Vorgänge sind in den Lectures on Histology by John Quekett 1854 vol. II. p. 33 etc. mitgetheilt. Dieser Forscher geht zunächst an, dass er bei seinen Untersuchungen über die Schwämme die Anwesenheit von bewimperten Sporen nicht gefunden habe und trägt dann eine Entwicklungsgeschichte von Spongillen mit hornigem Skelet vor, welche Carter in Bombay fand. Die Gemmulae sitzen an der Basis des Schwammes und sind von Spicula bedeckt. Sie haben einen Pors. Innerhalb der zähen lederartigen Membran und ihrer Umhüllung von Spicula finden sich eine Menge mehr oder weniger transparenter Zellen, welche, wenn sie unter Wasser ausgedrückt werden, zuerst eine unregelmässige Gestalt haben und bewegungslos sind, aber bald durch Endosmose anschwellen und in wenigen Stunden bersten. Ihr sichtbarer Inhalt, welcher nach Carter aus einer Menge von Keimen besteht, füllt ungefähr $\frac{2}{3}$ der Zellenhöhle an. Jeder Keim ist eine scheibenförmige, kreisförmige, wohl umschriebene durchsichtige Zelle, welche grün oder gelblich im Umfange, bleich und farblos am Centrum ist; diese Zelle scheint von einer farblosen durchsichtigen Kapsel umgeben zu sein, deren Natur unbekannt ist. Bald nachdem die Keime aus den Gemmulae ausgeschlüpft sind, sammeln sie sich zu inselartigen Gruppen, die von einem halbdurchsichtigen Schleim zusammengehalten werden. Der Inhalt der Keime erleidet dann eine Veränderung und die Keime selbst verschwinden nach und nach, indem an ihre Stelle durch allmäßige Entwicklung vielgestaltige Zellen treten, welche die abenteuerlichsten Formen annehmen. Die fleischige Substanz dieser Spongillen besteht nach Carter.
aus Zellen, in denen eine Menge Körner sich befinden; diese Zellen verändern ihre Form und Lage ähnlich denen, welche aus den Gemmulae abstammen, mit welchen sie sehr nahe verwandt, wenn nicht identisch sind. Wie man sieht, weichen diese Angaben Carter’s von denen der früheren Beobachter sehr ab, vorzüglich darin, dass er von Schwärmsporen nichts gefunden hat. Der von ihm dargestellte Gang der Entwicklung schliesst freilich die Möglichkeit nicht aus, dass dieselben übersehen sind. Richtig ist wohl die Beobachtung, dass insel-förmige Gruppen von Keimen vorkommen, deren Inhalt sich allmäß in die vielgestaltigen Zellen umwandelt.

Im Monat Juni dieses und des verflossenen Jahres sind häufig von mir bewimperte Schwärmsporen der Spongillen beobachtet worden und es liegt eine Reihe von Thatsachen vor, welche beweisen, dass sie integrirende Bestandtheile der Spongillen sind.

Dass die ganze Gemmula in die Schwärmspore übergeht, wie einige Forscher glaubten, ist mit den gleich zu beschreibenden Thatsachen unvereinbar; die Schale der Gemmula und die Corticalsubstanz der Schwärmspore stimmen in ihrem Verhalten durchaus nicht überein. Ungemein häufig finden sich leere Gemmulaschalen; und nichts spricht gegen Meyen’s Vermuthung, dass aus dem Porus ihr Bewohner auskrieche.

Die Schwärmsporen.

Die Bewegungen werden mittels Wimpern ausgeführt, welche über den ganzen Körper gleichmässig verbreitet sind. Mittels der starken Vergrösserung des Mikroskopes nimmt man sie deutlich wahr, sowohl wenn die Schwärmspore sich noch bewegt, als auch wenn sie bereits still geworden ist. Sie haben eine Länge ungefähr wie die Wimpern der Turbellarien, sind jedoch wohl noch feiner. Was sie aber so-

Unter der Epiteliumschicht liegt die Corticalsubstanz, welche
eine bedeutende Dicke im Verhältniss zur Bläschenschicht besitzt. Man erkennt sie schon mit blosem Auge. Selbst bei starker Vergrösserung konnte ich keine bestimmte Struktur in ihr entdecken; es ist eine gallertige Masse, worin hie und da feine fettartige Körnchen eingestreut sind, ohne eine nachweisbare Regelmässigkeit in ihrer Anordnung. Wenn man beim Zerreissen der Schwärmospore einzelne Stücke isolirt erhält, so dass sie nicht mehr mit den Wimpern zusammenhängen, so zeigen sie ähnliche Bewegungserscheinungen, wie die Schwammzellen selbst.

Auf die Corticalsubstanz folgt die Medullarmasse, welche in Form eines Sphäroids das Innerste der Spore ausfüllt; man nimmt schon bei schwacher Vergrösserung wahr, wie sie sich als ein besonderer Körper gegen die Corticalschicht absetzt. Der Durchmesser dieses Sphäroids erreicht, wo er am grössten ist, gegen einen halben Millimeter und variirt verhältnissmässig zwischen denselben Grenzen, wie die Schwärmospore selbst. Die Oberfläche desselben bildet ein dünnerer schleimartiger Ueberzug und das Innere ist derjenige Theil der Schwärmospore, welcher grosse Verschiedenheiten bei verschiedenen Exemplaren zeigt, während das Uebrige beinahe constant bleibt. Das nach vorn liegende grössere Stück des Sphäroides erwies sich bei den zu Anfang Juni zur Beobachtung gekommenen Schwärmosporen als eine sulzige Masse mit eingestreuten feinen Körnchen; der hintere Theil des Sphäroids zeigte schon auf den ersten Blick kleinere und grössere fettähnliche Körnchen, welche mit sarkoider Substanz zusammen kleinere und grössere Kugelchen bilden, die beim längern Liegen im Wasser unter einander zusammenflossen; in manchen von ihnen zeichnete sich besonders ein Körperchen aus, welches zuweilen das Gallertkugelchen fast vollständig ausfüllte und auch ein sehr starkes Lichtbrechungs vermögen hatte, zuweilen kam ein solches Körperchen auch ohne die Gallertumhüllung vor; es war ungefähr halb so gross, wie eine gewöhnliche Schwammzelle. Die eben angegebene Art des Inhaltes ist es, welche dem hintern Theile der Schwärmospore das weisse Ansehen verleiht, das schon
Beiträge zur Entwicklungsgeschichte der Spongillen.

bei der Betachtung ohne optische Instrumente auffällt. Das ganze Sphäroid, sowohl der wasserhelle als der weisse Theil, birgt verschiedene Formen äusserst feiner Kieselnadeln, an welchen man oft schon vollständig die Form der ausgewachsenen Spicula wahrnimmt. Die kleinsten sind kaum messbar dick, aber schon gegen \(\frac{1}{75} \) mm. lang, die grössern erreichen eine Dicke von \(\frac{1}{500} \) mm. und eine Länge von \(\frac{1}{50} \) und mehr. Die grössern, schon deutlich erkennbaren, sind entweder glatt, oder mit vielen kleinen Auswüchsen versehen, welche sich wie Dornen auf einem Zweige erheben. Letztere Form ist auch bei den ausgebildeten Kieselnadeln nicht selten und einige Mal fand ich Spongillen, welche dergleichen ausschliesslich enthielten. Die Lagerung der Nadeln ist innerhalb der Schwärmsporen in der Regel so, dass sich keine entschiedene Regelmaessigkeit erkennen lässt. Dass die Schwärmsporen die Kieselnadeln beständig in sich enthalten, ist das erste Kriterium, welches ihre Abstammung aus den Spongillen verrath. Ich fand die Schwärmsporen sowohl im breiten Schwamm, als in dem verästelten, sowohl in dem mit glatten, als in dem mit Amphidischen tragenden Gemmulae versehenen.

Die Ausdrücke Gemmulae, Schwärmsporen u. s. w. sind von mir gebräuche worden, weil sie einmal für die damit bezeichneten Gegenstände eingeführt sind; ich bemerke aber ausdrücklich, dass sie hier weder über die thierische, noch pflanzliche Natur eine Andeutung geben sollen.

Verschiedenheiten des Inhaltes der Schwärmsporen.

Die wesentlichen nachweisbaren Verschiedenheiten im Inhalte verschiedener Schwärmsporen bestehen in dem grössern oder geringern Gehalte der Keimkörner. Die ausgebildeten Keimkörner sind in der Regel kugelig, seltener linsenförmig. Bisweilen liegen zwei so zusammen, dass das eine wie eine Schale über den grössern Theil des andern hinaübergreift; solche uhrglasförmigen Körperchen kommen auch einzeln vor und können es auch leere Schalen sein. Die Keimkörner
erreichen eine Grösse bis zu $\frac{1}{2} \text{mm}$ im Durchmesser; es kommen aber auch weit kleinere vor. Man unterscheidet an ihnen eine das Licht auffallend stark brechende Schale und einen Inhalt; letzterer ist bei denen, welche in den Schwärm- sporen vorkommen, nicht in dem Grade deutlich, wie bei vielen von den frei vorkommenden, über die sogleich berichtet werden soll. Bisweilen setzt er sich jedoch entschieden gegen die Schale ab und bildet ein nicht scharf umgrenztes gallertiges Kügelchen; in vielen Keimkörnern nimmt man ihn nicht direkt wahr. Die Keimkörner haben trotz der Einfachheit ihrer Form etwas so Charakteristisches, dass sie wohl mit keinem andern Gebilde verwechselt werden können; auf den ersten Blick möchte man glauben, man habe es mit grossen Fettkügelchen zu thun, man braucht sie aber nur durch einen starken Druck auf das Deckgläschen zu zersprengen, um sich sogleich vom Gegentheil zu überzeugen. Die Zahl dieser Keimkörner nimmt nun in manchen Schwärm- sporen so überhand, dass sie mit den kleinen Kieselndeln und eiweissartiger Substanz die Medullarmasse der Schwärm- spore fast ausschliesslich bilden, indem sie theils einzeln darin liegen, theils auch mit einigen Fettkörnchen und Ei- weissmasse verbunden zu kleinen Haufen von dreien und mehreren vorkommen. Solche Schwärmsporen erkennt man schon mit blossem Auge, indem der das Licht stark brechende Theil einen grössern Umfang in ihrem Innern einnimmt und bisweilen ein vollständiges Sphäroid bildet. Ich hebe hier beiläufig hervor, dass die oben beschriebene Form der Schwärm- sporen auch eine weisse Kugel in sich zu enthalten scheint, wenn die Spore gerade mit ihrem vorderen Theil sich nach unten wendet und die hintere Halbkugel nach oben kehrt; so wie sie aber wieder in der gewöhnlichen Weise schwimmt, überzeugt man sich von dem wirklichen Sachverhalt. Einige Male trat es sich, dass ein solches Keimkörnerkonglomerat mit seinen Kieselndeln vollständig aus der Schwärmspore durch Zerplatzen ihrer Hülle hervortrat; es hatte die kugelige Form bewahrt und war von einer schleimartigen strukturslosen leicht zerpflatsenden Hülle umkleidet.
Die Keimkörnerkonglomerate.

Solche Keimkörnerkonglomerate von kugeliger Gestalt finden sich nun in ungeheurem Mengen frei in den verschiedensten Theilen der Spongillen vor, namentlich sitzen sie aber häufig an der Basis. Sie kommen jedoch auch bis in die äussersten Spitzen vor. An allen diesen Stellen habe ich jedoch auch bewimperte Schwärmsporen entdeckt; sie dringen vollständig in die lebendige Spongillenmasse ein; es ist aber nur selten, dass sie sich ganz unversehrt herausheben lassen. Leere Gemmulaeschalen lagen an solchen Orten nicht. Indessen setzen sich die Schwärmsporen in den leeren Kieselknochen ebenfalls fest; wenn man sie frei präparirt, so schwimmen sie wie gewöhnlich in der Flüssigkeit umher. Die Keimkörnerkonglomerate tragen nur selten noch die kleinen glatten und höckrigen Spicula in ihrem Innern; öfters findet man sie in ihrer unmittelbaren Umgebung. Die schleimartige Umhüllung liess sich bisweilen isoliren, indem der Inhalt durch einen allmählichen Druck entleert wurde; eine Struktur zeigte sie aber auch so niemals. Die Grösse der Keimkörnerkonglomerate schwankt zwischen $\frac{1}{6}$ bis $\frac{1}{2}$ Millimeter. Die Keimkörner sind entweder gleichmassig durch den ganzen Behälter verteilt, oder sie sind in kugeligen Haufen geordnet, in welche auch fettartige Kugelchen mit schleimiger Masse eingehen. Manche von ihnen enthalten in ihrem Innern ein sich deutlich gegen die Schale absetzendes Gallertkügelchen, welches bisweilen feine fettartige Körnchen, in anderen Fällen auch ein kernähnliches Gebilde einschliesst. Es ist hier der Ort, noch einmal auf Carter's Untersuchungen zurückzukommen. Soviel ich aus den darüber vorhandenen Beschreibungen entnehmen kann, sind die inselähnigen Gruppen von Keimen, welche nach Carter in die vielgestaltigen Zellen übergehen, unsere Keimkörnerkonglomerate; im Wesentlichen abweichend ist jedoch die Angabe dieses Beobachters, dass dieselben unmittelbar aus den Gemmulae ausschlüpfen sollen; dürfte man voraussetzen, dass Carter diesen Vorgang direkt beobachtet hat und ihn nicht bloß vermutet, und dass wirk-
lich die Schwärmspore bei den von ihm erforschten Spongillen fehlen: so wäre eine so grosse Verschiedenheit in der Entwicklung so nahe verwandter Gebilde dargethan, wie sie sonst wohl kaum vorkommen mag.

Bisweilen sah ich Schwammstücke, deren Keimkörnerkonglomerate nicht mehr die angegebene bestimmmt umgrenzte Form hatten, sondern im Zerfallen begriffen erschienen; ich fand auch die schleimartige Umhüllung nicht mehr vor; einzelne Keimkörner lagen in der nächsten Umgebung zerstreut.

Auch zu der Zeit, wo alle die beschriebenen Gebilde vorkommen, finden sich immer grosse Spongillenmassen, welche von allen diesen keine Spur enthalten. Selbst an ein und derselben Oertlichkeit findet man neben einander Spongillen, welche Gemmulae, Schwärmsporen und Keimkörnerkonglomerate in grosser Menge bergen, und Spongillen, welche ganz frei davon sind.

Die Jugendformen der Gallertsubstanz und der Spicula.

Bereits im Juni bemerkt man auf den verschiedensten Stellen des Schwammes weisse Flecke von der Grösse eines oder mehrerer Keimkörnerkonglomerate, welche sich zum Theil bestimmt gegen die Spongillensubstanz absetzen, zum Theil mit ihrer Umgebung verfliessen. Man findet sie bisweilen auch auf andern Körperrn auf dem Grunde der Gewässer, z. B. auf Schneckenhäusern, auf Phryganidenlarvenschalen, auf Strohhalmern, auf Steinen, kurz auf allen solchen Gegenständen, welche die Spongillen zu überziehen pflegen. Die mikroskopischen Bestandtheile, aus welchen sie bestehen, sind folgende: Keimkörner von der beschriebenen Form und Grösse, welche entweder ein feinkörniges Kügelchen in ihrem Innern haben, das sich deutlich gegen die Umhüllungsschale absetz, oder ein zellenartiges Gebilde, das ein schwach lichtbrechendes Körperchen in sich enthält, ähnlich dem Nucleolus der Schwammzellen; Keimkörner, welche an einer Stelle ihrer
Oberfläche sarkoide Substanz hervorstrecken, und zwar setzt sich dieselbe in das Innere des Keimkernes hinein fort, indem die Conturen des ausserhalb liegenden Stückes in die des innerhalb liegenden übergehen; kleinere und grössere gewöhnliche Spongillenzellen, welche theils einen deutlichen Nucleolus zeigen, theils aber nur ein Konglomerat von vielen feinen Körnchen und sarkoider Substanz bilden, welches die amöbenartigen Bewegungen ausführt; verschiedene Formen kleiner und grösserer Kieselnadeln, welche theils den glatten und knorrigen gleichen, die innerhalb der Schwärmsporen und Keimkörnerkonglomerate vorkommen, theils aber grösser sind, indessen die Grösse der ausgewachsenen noch nicht erreichen. Es ist mir dunkel geblieben, ob diese Spicula sich aus den Keimkörnern entwickeln; es finden sich Formen unter ihnen, welche in der Grösse einem Keimkörnchen gleichkommen; sie sind entweder völlig kugelig oder an entgegengesetzten Stellen in feine Spitzen ausgezogen, oder spindelförmig und meist höckrig; man erkennt sie leicht an dem den Kieselnadeln eigenthümlichen Lichtbrechungsvermögen; an den kleinsten Exemplaren wird jedoch auch dies Merkmal unsicher.

Ob die beschriebenen Neubildungen des Schwammes die einzigen sind, welche vorkommen, oder ob es noch ausserdem möglich ist, dass die gewöhnlichen Spongillenzellen sich durch Theilung weiter vermehren, ist unbekannt.

Eine Vergleichung der Spongillen mit verwandten Gebilden findet sich in Johannes Müller’s Abhandlung über Thalassicolla, Collosphaera und Acanthometra (Monatsbericht der Akademie April 1855).

Die zoospermartigen Körperchen.

Ebenfalls im Juni dieses und des verllossenen Jahres fanden sich nicht selten grosse Mengen von beweglichen Körperchen beim Zerfasern von Spongillen vor, welche sich leicht von denen unterscheiden lassen, die die Bewegungen der Schwärmsporen verursachen; jene haben nämlich weit längere
und dickere Fäden und ein viel kleineres Köpfchen, wie diese. Sie schwärmen meist zu vielen mit den Köpfchen an einander gelagert umher und erinnern in ihrer Bewegungsart sehr an die der bekannten Spermatozoiden. Selten gelingt es, sie an dem Orte ihres Urspringes aufzufinden. Sie stammen nämlich aus kugeligen, mit einer strukturlosen durchsichtigen Umhüllungsmembran umgebenen Behältern, welche rings von Schwammzellen umlagert sind; der Durchmesser eines solchen Behälters beträgt ungefähr 1/12 mm. Man sieht sie in dem Behälter sich mit grosser Schnelligkeit hin und herbewegen, bis derselbe an irgend einer Stelle aufplatzt, dann schwimmen sie in grössern und kleineren Gruppen nach den verschiedensten Richtungen aus einander, indem ihre Fäden stets hin- und herschwingen. Um ihre Bedeutung als Spermatozoiden zu beweisen, habe ich versucht, ihr Eindringen in den Porus der Gemmula, als die etwaige Mikropyle, zu beobachten; diese Versuche waren indess bis jetzt erfolglos.

Ich hatte das Glück, die hauptsächlichern der in vorstehender Arbeit besprochenen Gegenstände, die Schwärmsporen, die Keimkörnerkonglomerate, die Amphidisken in ihren zellenartigen Gebilden, meinem geehrten Lehrer, Herrn Johannes Müller, zeigen zu können; die Spermatozoiden sind seither bereits anderweitig von ihm beobachtet worden.
Beiträge zur Anatomie der Infusorien.

Von

N. Lieberkühn.

Ehrenberg giebt die der Gattung Ophryoglena eigenthümlichen Merkmale, insoweit sie der direkten Beobachtung zugänglich sind, dahin an, dass Mund und Analstelle nicht an einem Körperende liegen, dass der Körper auf seiner ganzen Oberfläche Wimpern trägt, und dass ein Stirnauge vorhanden ist, und zwar „ist der Mund eine Grube unter der Stirn, und die Afterstelle ist auf der Rückenseite an der Basis des Schwanzes beobachtet“.

Ich fand häufig in Spreewasser, worin Spongillen lagen, während des verflossenen Winters und Frühlings ein Infusorium, welches die wesentlichen Eigenschaften mit Ophryoglena flavicans theilt und ausserdem einige bisher unbekannte Eigenthümlichkeiten zeigt. Es hat einen gelblichen überall bewim-
Beiträge zur Anatomie der Infusorien.

Abweichend ist bei dem von mir beobachteten Thier die Grösse, welche bis zu 1/4 Linie stieg, und ferner das beständige Vorhandensein von zwei contractilen Blasen, während Ehrenberg in der Regel nur eine sah, selten zwei, was er als beginnende Theilung auslegt.

Das Thier nahm reichlich Indigo auf; das Auswerfen von Substanzen habe ich nicht gesehen und weiss daher über eine Analstelle nichts anzugeben; ein besonderes Loch war nicht sichtbar.

Die Gegenwart eines Augenfleckes, die Lage des Mundes, der Wimperüberzug über den ganzen Körper verlangen die Stellung des Thieres unter die Ophryoglenen; und die beschriebene Form des Körpers, seine Farbe, die eigenthümliche, eine Tasche bildende Gestalt des Mundes, die Schwankungen in der Deutlichkeit des Pigmentfleckes: dies Alles lässt es wohl gerechtfertigt erscheinen, das Thier bis zur Auffindung sicherer Unterscheidungsmerkmale Ophryoglena fluvicains zu nennen. Die nachfolgenden Mittheilungen über dasselbe beziehen sich im Wesentlichen auf die Existenz eines bisher unbeobachteten uhrglaseformigen Organes neben dem Pigmentfleck und auf das Gefässsystem.
Der Augenfleck und das uhrglasförmige Organ.

Um die Lage dieser Theile genau angeben zu können, soll vorerst der Mund des Thieres näher beschrieben werden. Derselbe bildet eine schmale Spalte in Form einer halben Kreislinie und liegt in einer geringen Vertiefung. Bei einem grossen Exemplare, dessen Länge 0,6 mm., dessen grösste Dicke 0,14 mm. maass, betrug die Entfernung der oberen Mundspitze vom Kopfende 0,1 mm., und die der untern von der oberen Mundspitze 0,024 mm. Die Mundwimpern, welche auf dem ganzen Rande der Spalte aufsitzen, sind weit länger, als die ohnehin schon langen Wimpern des übrigen Körpers; man sieht sie weit über die letztern hinweg ragen, wenn das Thier gerade so liegt, dass der Mund in den Rand des Bildes fällt. Die Mundspalte führt sogleich in einen sackförmigen Raum, welcher sich eine kurze Strecke in die Körperhöhle hinein verfolgen lässt, wenn diese nicht gerade von den das Licht stark brechenden Körnchen angetüpfelt ist; man erkennt dann auch im Innern des Sackes eine beständig hin und her schwingende Membran. Vollkommen deutlich wird dieser Theil aber in der Regel erst, wenn man beim Zerdrücken des Thieres den Mundtheil nebst der Tasche isolirt erhält; der Mund ist der Eingang in die Tasche; auf der entgegengesetzten Seite ist die Oeffnung, durch welche die in den Mund gelangten Substanzen weiter geführt werden. Nahe an dieser setzt sich die schwingende Membran an und befestigt sich mit ihrer einen Kante auf der innern Wand des Sackes, mit den übrigen Theilen ragt sie frei in denselben hinein. Dass es nicht eine nur scheinbare undulirende Membran ist, wie Stein mit Recht von dem Wimperkreise der Trichodinen behauptet, davon überzeugt man sich sogleich, wenn man das isolirte Mundstück zerdrückt, während die Membran noch flimmert.

Unmittelbar neben der Mundspalte auf ihrer concaven Seite liegt der Pigmentfleck. Seine Form ist äusserst unregelmässig, bald ist er kugelförmig, bald ellipsoidisch, bei vielen Exemplaren gezackt. In der Regel ist er so deutlich, dass
Beiträge zur Anatomie der Infusorien.

Der Nucleolus.

ein Gebilde, welches zuerst v. Siebold bei Loxodes bursaria beschrieben und später auch Stein bei Prorodon beobachtet hat, ist eigentlich ausser dem Augenpunkt der einzige Theil, welcher die besprochene Ophryoglene sogleich von der Bursaria flava unterscheidet, wenigstens von allen denjenigen Exemplaren, welche bis jetzt von mir beobachtet worden sind. Beide Thiere stehen sich im Ganzen noch näher, als die auch in der Form und Mundbildung sehr ähnlichen Bursaria leucas und Ophryoglena atra, wie denn Ehrenberg selbst angiebt, dass er Ophryoglena flavicans von einer Bursarie nur durch den Augenpunkt unterschieden habe. Bursaria flava, welche ich in grossen Mengen im Frühling und Sommer in den stehenden Gewässern des hiesigen Thiergartens gefunden habe, hat denselben Bau des Mundes, dieselbe schlundartige Verlängerung, dieselbe undulirende Membran, wie Ophryoglena flavicans; auch das uhrglasförmige Organ sitzt an derselben Stelle neben der concaven Seite des Mundes, und ist ebenso in der Regel mit seiner convexen Seite nach der Kopf spitze zugekehrt; nur ist es etwas grösser, es betrug nämlich die Länge des Durchmessers der Basis 0,015 mm., trotzdem das Thier durchweg nur 1/4 mm. lang war. Im Innern des Körpers liegen häufig blasockergelbe gegen 0,01 mm. grosse kugelige Körner, welche das Thier undurchsichtig machen, dazwischen fanden sich einzelne farblose sphäroidische Räume, ganz wie es Ehrenberg für Bursaria flava mittheilt. Eine Afteröffnung konnte auch ich nicht finden, aber bisweilen war am hintern Ende des Körpers eine hellere Stelle und Einbiegung, was Ehrenberg auf die Analöffnung bezieht. Die Körperform fand ich vollständig mit der von Ehrenberg abgebildeten Bursaria flava in Uebereinstimmung, ebenso auch die Lage der contractilen Blase. Es passt sonach genau Ehrenberg’s Beschreibung: Bursaria corpore ovato-oblongo, flavo, saepe postica parte paullo tenuiore, subacuto, ore corporis aliqua parte superato.

Kehren wir nun zur Beschreibung des Nucleolus bei Ophryo-
Beiträge zur Anatomie der Infusorien.

25

glena flavicans zurück. Da dies Thier gewöhnlich nur äus-
erst wenige und feine Körnchen von starkem Lichtbrechungs-
vermögen in seinem Innern enthielt (in seltenen Fällen fand
ich ähnliche, wie bei Bursaria flava vorkommen), so fielen die
innern Theile meist sogleich in die Augen. Der Nucleolus
hat die Form eines Gerstenkornes und ist an den beiden
Spitzen mit einigen scharf hervortretenden Streifen oder Ein-
schnitten versehen; sein Längsdurchmesser beträgt etwas über
0,02 mm., seine Dicke in der Mitte ungefähr 0,01 mm. Die
Substanz desselben hat ein stärkeres Brechungsvermögen als
die übrige Körpermasse, aber ein weit geringeres als die fett-
artigen Kugelchen. Sie zeigt selbst bei den stärksten Ver-
grösserungen des Mikroskopes keine Struktur und widersteht
der Einwirkung des Wassers ziemlich lange. Der Nucleolus
sitzt mitten auf der Samendrüse, wie Ehrenberg diesen
Theil bezeichnet, oder dem Nucleus, wie ihn v. Siebold
nennt. Der Nucleus ist ungefähr ein Fünftel so lang, als das
ganze Thier und in der Mitte ein drittel Mal so breit als lang.
Seine Längachse fällt so wie die des Nucleolus in der Regel
nab zu in die Längsachse des Thieres. Seine Gestalt ist ei-
förmig; seine Substanz ohne erkennbare Struktur.

Ganz anders verhält sich bei den bis jetzt von mir beob-
achteten Exemplaren der Bursaria flava der Nucleolus. Der-
selbe war stets so klein, dass er sich nur schwierig auffinden
liess und immer nur erst beim Zerdrücken des Infusoriums
zum Vorschein kam, während er bei Ophyroglena flavicans ge-
wöhnlich schon durch die Haut hindurch zu sehen ist. Er
ist von kugeliger Form und zeigt keine Struktur. Meist klebt
er auf der Oberfläche des eiförmigen Nucleus fest.

Der Nucleus ist auch nicht grösser bei den etwas grö-
sern Exemplaren der Bursaria flava, welche zwei contractile
Blasen besitzen. Ich fand solche bisweilen zugleich mit den
einblasigen. Sie wichen in ihrer Gestalt, in der Beschaffen-
heit des Wimperüberzuges, in der Mundbildung gar nicht von
den übrigen ab, so dass ich sie so lange für identisch damit
hielt, bis ich die zweite contractile Blase bemerkte oder das
eben etwas anders gestaltete und kleinere uhrglasförmige Organ;
Letzteres besass namlich bei den bis jetzt darauf untersuchten Exemplaren keine kreisförmige, sondern eine elliptische Basis, insoweit sich nach dem blossen Ausehen ein Urtheil hierüber abgeben lässt. Die an einem Exemplare angestellten Messungen ergaben: Länge des Thieres 0,4 mm., grösste Dicke 0,2 mm., Durchmesser des kugelförmigen Nucleus 0,07, des Nucleolus 0,007 mm., Entfernung des Mundes von der Kopfspitze 0,12 mm., Entfernung der contractilen Blasen von einander 0,1, der hintern von der Schwanzspitze 0,07 mm., grösster Durchmesser der Basis des uhrglasförmigen Organes 0,007, kleinster 0,004 mm.

Beiträge zur Anatomie der Infusorien.

Blase endigt; man unterscheidet leicht seine Wandungen und seinen Inhalt durch ihr verschiedenes Brechungsvermögen. Wenn man einen solchen Kanal von der Ausmündungsstelle aus rückwärts verfolgt, so entdeckt man öfter, nachdem er einen kurzen Weg durchlaufen hat, eine Abzweigung; diese kann man häufig bis an eines der Körperenden hin verfolgen und bisweilen gibt sie noch einmal einen Zweig ab; schliesslich werden die Kanäle aber so äusserst fein, dass man sie aus den Augen verliert. Sehr deutlich sieht man ihre Ausmündung und ihren weiteren Verlauf auch dann, wenn die contractile Blase gerade nach oben hin gekehrt ist; man erkennt dann, wie zwischen dem der Körperoberfläche sehr nahe liegenden contractilen Behälter und zwischen jener innerhalb der Corticalsubstanz die Kanäle verlaufen und sieht auch die Ausmündungsstelle. Eine bemerkenswerthe Stelle ist noch die, wo der Kern am nächsten an die Oberfläche des Körpers heranrückt, hier sieht man auf seiner heller Grundlage die Kanäle ausgezeichnet klar. Einige Kanäle ziehen sich stets in geringen Krümmungen sogleich nach der untern Partie des Mundes hinüber. Liegt das Thier so, dass die contractile Blase am Rande des Körpers erscheint, so sieht es bisweilen aus, als mündeten hier einer oder mehrere Kanäle nach aussen, bei genauerer Betrachtung sieht man sie jedoch sich umbiegen und nach andern Theilen des Körpers verlaufen.

Die Zahl der in die contractile Blase einmündenden Gefässe ist ungefähr dreissig bei Bursaria flava; so viel oder einige mehr oder einige weniger zählte ich bei allen darauf untersuchten Exemplaren. Sie sind anscheinend gleichmassig über die ganze Oberfläche verteilt.

Die mit zwei contractilnen Blasen versehenen Exemplare der Bursaria flava haben das Kanalsystem doppelt; jedes gruppirt sich selbstständig um seinen Behälter. Die Kanäle des hintern Behälters erstrecken sich bis in das Bereich des vorderen; Communicationen zwischen beiden habe ich niemals auffinden können.

Die Ophryoglenen aus der Spree liessen von den Gefäs-
N. Lieberkühn:

sen nur wenig wahrnehmen, selbst wenn sie im Innern des Körpers fast nur schwach lichtbrechende Substanz enthalten. Wenn ein geeignetes Exemplar etwas zwischen Objektträger und Deckglas gedrückt wird, so dass es sich nicht mehr von der Stelle bewegen kann, so sieht man die Gefässe namentlich genau, wo sie den Kern als Unterlage haben, und wo sie in die contractile Blase enden.

In dem Moment, wo die contractile Blase die grösste Ausdehnung erreicht hat, also die Diastole beendet ist, erscheint sie in Form einer mit einer wasserhellen Flüssigkeit erfüllten Kugel, von der nach allen Seiten bin in die Corticalsubstanz die Gefässe als anscheinend gleich weite Kanäle auslaufen; sie haben jetzt den geringsten Durchmesser, welchen sie über-
Beiträge zur Anatomie der Infusorien. 29

haupt an ihren Aeusmündungsstellen anzunehmen vermögen. Für die undurchsichtigen Exemplare ist dies derjenige Moment, wo nur die geöffnete contractile Blase bemerkt wird. Noch bevor man jetzt den Eintritt der Systole bemerkt, beginnen die Gefässe ungefähr um einen Durchmesser der contractilen Blase von deren Oberfläche entfernt langsam um das Mehrfache ihres ursprünglichen Lumens sich auszudehnen. Je mehr nun die Systole vorschreitet, desto umfangreicher und länger wird die angeschwollene Stelle; sie nähert sich der contractilen Blase mehr und mehr. Stellen wir uns den Moment vor, wo der Durchmesser der contractilen Blase etwa auf ein Viertel seiner ursprünglichen Grösse vermindert ist, so ist die Gestalt des Apparates im Wesentlichen die bekannte sternförmige Figur, wie sie etwa Dujardin für Paramecium Aurelia abbildet, mit dem einzigen Unterschiede, dass die Ausmündungen der Strahlen deutlich zu sehen sind und ihre peripherischen Fortsätze sich in Form von Kanälen über das ganze Thier weithin ausdehnen. Undurchsichtige Exemplare der Bursarien bieten die Erscheinung auch nur in dem Maasse dar, dass die Ausstrahlungen mit einer feinen Zuspitzung etwa um den Durchmesser des Behälters von ihm entfernt enden. Schliesst sich nun die contractile Blase vollständig, so erblickt man nur die spindelförmig angeschwollenen Gefässe, wie sie mit ihren Spitzen in einem Punkte zusammentreffen. Die Systole ist damit beendet. Es beginnt wieder die Diastole. Betrachten wir den Moment, wo der Behälter wieder die Hälfte seines grössten Durchmessers erreicht hat. Die Erscheinung ist eine völlig andere, wie im entsprechenden Moment der Systole. Die Gefässe sind jetzt nicht spindelförmig sondern trichterförmig angeschwollen, die Basis des Trichters steht in der contractilen Blase und die Spitze setzt sich als das Gefäss in seinen weiteren Verlauf fort. Es ist dies diejenige Form, welche Ehrenberg für Paramecium Aurelia abgebildet hat, nur mit Hinweglassung des weiteren Gefässverlaufes; V. Siebold verwirft zwar Ehrenberg’s Abbildung und erkennt die Dujardin’s an; in Wirklichkeit sind aber beide richtig, nur werden verschiedene Momente dargestellt, Du-
N. Lieberkühn:

jardin gibt einen Moment aus der Systole und Ehrenberg aus der Diastole.

Je mehr sich jetzt die contractile Blase ausdehnt, desto mehr verkürzt sich die Höhe jenes Trichters und verbreitert sich verhältnismässig seine Basis, oder mit andern Worten: Das Gefäss ist nur an seiner Ausmündungsstelle erweitert, und die Höhe der erweiterten Stelle sinkt um so mehr, je weiter die Diastole des Behälters vorschreitet. Bei undurchsichtigen Bursarien sieht man in diesem Moment nur die contractile Blase, wie sie nach verschiedenen Seiten hin in kurze trichterförmige Fortsätze ausgezogen ist. Allmählich verschwinden nun diese Fortsätze vollständig, indem die contractile Blase sich auf ihr ursprüngliches Volumen erweitert. Man sieht jetzt wieder, wie von der möglichst ausgedehnten contractilen Blase die sämtlichen Gefässe als dünne Streifen nach allen Seiten hin in die Corticalschiicht auslaufen; in den undurchsichtigen Exemplaren ist nur der contractile Behälter sichtbar.

Die Vorgänge, welche aber beschrieben wurden, sind die gewöhnlichen, wie man sie beobachtet, wenn ein geeignetes Exemplar sich gar nicht oder nur wenig auf dem Objektträger hin und her bewegen kann. Wenn nun eine Bursarie noch stärker mit dem Deckglase gedrückt wird, oder wenn das Wasser auf dem Objektträger grösstentheils verdampft ist, so treten noch einige eigenthümliche Erscheinungen auf, und zwar sowohl an der contractilen Blase, als auch an den Gefässe. Während die letzte Diastole noch vollständig zu Stande kommt und man nichts Abweichendes bemerken kann, als dass der Behälter sich mehr in die Länge zieht, treten bei der Systole plötzlich zwei contractile Blasen statt einer auf; es schiebt sich nämlich ein Theil der umgebenden Substanz mitten durch die contractile Blase, während sie sich mehr und mehr zusammenzieht, hindurch und theilt sie in zwei Theile. Von diesen beiden neuen Behältern hat jeder seine eigene Systole und Diastole. Meistens finden ihre Contractionsen nicht in demselben Moment statt. Jeder ist mit denjenigen Gefässe im Zusammenhang, welche vor der Trennung in ihn ausmündeten. Die Gefässe zeigen noch dasselbe

Bei *Phialina vermicularis*, *Bursaria cordiformis* u. a. beobachtete bereits v. Siebold, „dass bei starken Contractionen des ganzen Leibes ein grösserer runder pulsirender Raum sich in die Länge zieht, in der Mitte einschnürt und zuletzt in zwei kleinere runde Räume von einander theilt, ganz wie wenn sich ein Oeltröpfchen in zwei Theile aus einander zieht“.

aussentellt, wenn er sich nach aussen hin zusammenzieht und sich von aussen wieder füllt, wenn er sich nach innen ausdehnt? Wenn der contractile Behälter mit demjenigen Theile, welcher nach der Oberfläche des Thieres hin gekehrt ist, an der Innenseite der Corticalsubstanz befestigt wäre, während der in das Innere des Körpers hineinragende Theil frei in der weichen Medullarmasse schwebte, würde dann nicht die Zusammenziehung von innen nach aussen stattfinden müssen und die Ausdehnung von aussen nach innen: mag die Flüssigkeit ein- und ausströmen, wie sie will? Bei Actinophrys, bisweilen bei Arcella vulgaris, bei Urostyla gran-dis, müsste für die contractilen Behälter eine ganz andere Bedeutung aufgestellt werden, wenn Schmidt's Kriterium Geltung hätte; hier zieht sich nämlich der Behälter nicht nach der Körperformfläche hin zusammen, sondern nach dem Körper hinein, und bildet eine Erhabenheit aussen, wenn er sich auffüllt, was von v. Siebold und Claparède für Actinophrys näher beschrieben ist. Indessen ist es dies nicht allein, worauf Schmidt seine Ausicht stützt; er behauptet auch beobachtet zu haben, dass die contractile Blase wirklich eine Öffnung nach Aussenn habe. Ich muss es bestätigen, dass Bursaria vorticella eine entschiedene Öffnung am Hinterleibsende hat und zwar gerade an der Stelle, wohin sich die contractile Blase bis zum Verschwinden zusammenzieht. Aber von dieser Öffnung, welche ich sah, steht nur so viel fest, dass sie die Analöffnung ist, welche bereits Ehrenberg beschrieben hat; ich habe das Austreten von Resten verschlungener Substanzen, von Bacillarienschalen, von feinen unbeweglichen Körnchen u. s. w. gerade aus diesem Loch so häufig gesehen, dass darüber kein Zweifel sein kann, ja gerade während der Diastole gleitet nicht selten ein Körperehen zur Analöffnung hinaus, also in demselben Moment, wo nach Schmidt die Flüssigkeit von Aussenn einströmen soll. (Die eben besprochene Bursarie fand ich während des Frühlings und Sommers im stehenden Gewässer bei Tempelhof; sie stimmt in der Grösse vollständig mit Ehrenberg's Bursaria vorticella über-
die Mundöffnung liegt ähnlich wie bei *Bursaria truncatella*, bei der ich jedoch keine contractile Blase am Hinterleibsende bemerke; die von mir beobachteten Exemplare der *Bursaria truncatella* hatten sämtlich eine Größe von \(\frac{1}{3} \) Linie und darüber, die von *Bursaria vorticella* höchstens \(\frac{1}{6} \) Linie. Letztere ist jedenfalls keine *Leucophrys*; sie würde also für den Fall, dass Ehrenberg seine *Bursaria vorticella* für einen *Leucophrys* erklärte, ein von dieser verschiedenen Thier sein.) Ebensowenig konnte ich mich bei den Paramecien von der Richtigkeit der Ansicht Schmidt’s überzeugen. Wenn ein Exemplar von *Paramecium aurelia* so liegt, dass man die contractile Blase, sei es die vordere oder die hintere, am Rande erblickt, so scheint es unter Umständen, als liefe direkt ein kurzer Kanal von ihr durch die Haut des Thieres hindurch nach Aussen, in Wirklichkeit verlief er aber nur in der Haut und bog nach der von Auge abgewendeten Körperseite um; dasselbe finde ich bei *Paramecium Chrysalis* vor; es ist stets eine von den Ausstrahlungen der contractilen Blase gewesen, welche den Schein der Ausmündung darbot; ebenso ist es bei *Bursaria flava*, wo ich die Umbiegung des Gefässes nach der entgegengesetzten Seite des Körpers hin auf das Entscheidende verfolgen konnte. Für die Vorticellen stellt F. Stein die Ausmündung der contractilen Blase geradezu in Abrede. Hiernach ist klar, dass die Bedeutung eines Wassergefässsystems für die contractilen Behälter unbewiesen ist.

Lässt es sich nun aber vielleicht eher feststellen, dass die contractilen Behälter ihren Inhalt wieder zurück in’s Parenchym ergiessen, aus dem sie ihn empfingen, wie v. Siebold lehrt? Und wenn dies der Fall ist, auf welchem Wege würde es geschehen? Alles spricht zunächst dafür, dass die contractilen Blasen während der Diastole von den Gefässen aus gefüllt werden. Man sieht, wie während derselben die nahe an der Einmündungsstelle angeschwollenen Gefässe allmälig oder plötzlich zu ihrer geringsten Weite zurückkehren, wie die sternförmige Figur verschwindet. Auch beobachtete ich,
wie eine durch die Flüssigkeit aufgetriebene Stelle eines Gefäßes, welche am äussersten Ende des Thieres entstanden war, den ganzen Weg bis zur contractilen Blase während einer einzigen Diastole zurücklegte; es lässt sich diese Erscheinung so auffassen, dass die angestaute Flüssigkeit, welche das Gefäss kugelig aufgetrieben hatte, während der angegebenen Zeit bis in den contractilen Behälter hineinfloss.

Wenn es sonach annehmbar erscheint, dass die contractilen Blasen von den Gefässen aus gefüllt werden: so lehren die mitgetheilten Beobachtungen gar nichts darüber, wohin die Flüssigkeit während der Systole strömte.

Es ist mir bis jetzt nur eine Thatsache bekannt geworden, welche hierher gehört. Bei Bursaria vorticella nimmt man nämlich Folgendes wahr: sobald die contractile Blase, welche am Hinterleibsende liegt, sich zusammengezogen hat, bemerkt man, wie an den Rändern des in seiner gewöhnlichen Weise schwimmenden Thieres zwei lange schmale mit einer wasserhellen Flüssigkeit erfüllte Räume entstehen, welche sich von der Höhe des Mundes bis zur Gegend der contractilen Blase hin erstrecken. Sie erweitern sich beide allmählich und rücken dabei der Analstelle immer näher; hier treffen sie zusammen, verlieren ihre oft sehr unregelmässige Form und gehen in die kugelige über; der sonstige Körperinhalt wird dabei nach oben verdrängt; jetzt kontrahirt sich dieser kugelige Behälter bis zum Verschwinden, ohne dass man sieht, wo seine Flüssigkeit hin getrieben wird; nach einiger Zeit kommen die schmalen hellen Streifen wieder zum Vorschein und der Vorgang wiederholt sich in der angegebenen Weise. Die zuführenden Kanäle füllen sich also nicht beim Eintritt der Systole. Müsste das aber nicht um so mehr erwartet werden, wenn die Flüssigkeit auf denselben Wegen wieder zurückströmte, auf welchen sie gekommen ist, zumal das Verschwinden der contractilen Blase weit schneller zu Stande kommt, als ihr Entstehen?

Besondere Kanäle, in denen man die Flüssigkeit in den
Körper während der Systole zurückströmen sieht, und durch die ein vollständiger Kreislauf vermittelt würde, sind mir bisher bei keinem Infusorium bekannt geworden.

Weitere Beiträge zur Lehre vom Stoffwandel.

Von

FR. TH. FRERICHs und G. STAEDLER.

Wir haben vor etwa einem Jahre in diesem Archiv1) die Mittheilung gemacht, dass die Proteinstoffe im menschlichen Organismus eine ganz ähnliche Spaltung erleiden können, wie bei der künstlichen Zersetzung durch Säuren und Alkalien. Wir hatten nachgewiesen, dass die dabei auftretenden, kry stallinischen Produkte, das Leucin und Tyrosin, sich bei gewissen Krankheiten der Leber, in diesem Organ anhäufen, und gestützt auf das Resultat der Untersuchung gesunder menschlicher Lebern, der Milz und einiger anderer Organe, sprachen wir die Ansicht aus, dass das Leucin schon früh im Organismus gebildet und wahrscheinlich in der Leber, ebenso wie das Tyrosin, zur Bereitung der Gallensäuren verwandt werde.

Unsere ferneren Untersuchungen haben die frühe Bildung des Leucins in der That vollständig bestätigt, denn wir fanden dasselbe, mitunter begleitet von Tyrosin und anderen kry stallinischen Stoffen, in den verschiedensten Organen von Menschen und Thieren.

Obwohl wir unsere Untersuchung schon in der zweiten Hälfte des vorigen Jahres mit bestem Erfolg fortsetzten, und über die grosse Verbreitung des Leucins völlige Gewissheit erlangten, so schoben wir doch die Publikation bis jetzt auf, weil die Nachweisung von Tyrosin, das wir als constanten Begleiter des Leucins vermuteten, uns häufig nicht gelang;

1) 1854. S. 383.
die meisten Versuche wurden aus diesem Grunde mehrfach wiederholt. Ausserdem war es unser Wunsch, die Abweichungen in Betreff des Vorkommens beider Körper kennen zu lernen, die sich etwa bei Krankheiten ergeben möchten.

1. Die Leber.

Dass sich Leucin und Tyrosin bei gestörter Funktion der Leber in bedeutender Menge in diesem Organ anhäufen können, haben wir auf's Neue beobachtet.

In dem gepressten Saft einer Kalbsleber fanden wir keine Spur der genannten Stoffe; ebensowenig konnten wir sie in dem Auszuge auffinden, den wir durch Behandeln des ausgesprengten Gewebes mit heissem Wasser darstellten.

Als wir den mit Weingeist erschöpften Rückstand des letzteren Auszuges, der also kein Leucin mehr enthalten konnte, mit wenig heissem Wasser übergossen, verwandelte er sich in eine steife, leimähnliche Masse, die sich nach kurzer Zeit mit zahllosen Leucindrüsen durchwebte; daneben zeigten sich Büschel von zarten Nadeln, die Tyrosin sein konnten, sie entzogen sich aber, ihrer geringen Menge wegen, der weiteren Prüfung.

Eine andere Kalbsleber, deren ausgespresster Saft untersucht wurde, gab einen Syrup, in welchem wir ebenfalls nach zwei Tagen kein Leucin wahrnahmen. Wir kochten darauf mit Bleioxydhydrat, um einen Theil der amorphen Materie zu entfernen, befreiten das Filtrat mit Schwefelwasserstoff von aufgenommenem Blei, und verdampften. Der braune Rückstand zeigte andern Tages neben farblosen, prismatischen Krystallen ganz unzweifelhaft einige Leucindrüsen, und diese
vermehrten sich im Laufe einer Woche so sehr, dass die Masse, namentlich an den Rändern, in einen Krystallbrei überging. — Es ist möglich, dass die amorphe Materie, die wir dem Leberauszug mit Bleioxydhydrat entzogen, die Krystallisation kleiner Mengen von Leucin verzögerte oder verhinderte; dass sie aber die Abscheidung der ganzen Menge Leucin, die wir schliesslich erhielten, hätte hindern können, halten wir nicht für möglich.

1) Nachdem wir das Obige niedergeschrieben, machten wir folgende Beobachtung: Die Leber eines Hundes, dem zur Auffangung von Blut eine Canule in die Pfortader gebracht worden, und der in Folge dessen verblutet war, wurde etwa sechs Monate lang in Spiritus aufbewahrt. Während dieser Zeit hatten sich auf der Oberfläche des Organs und in den grösseren Aesten der Pfortader zahlreiche weisse, mohnsamengrosse Körner gebildet, die alle Eigenschaften von Chevallier's und Lassaignes Xanthocystin besassen. (Das Xanthocystin wurde bekanntlich in der Leiche einer, zwei Monate lang begraben gewesenen Frau auf der Schleimbaut des Magens, des Duode-
2. Die Milz.

Leucin ist ein nie fehlender Bestandtheil des Milzaftes, wir fanden es in gesunden und kranken Milzen von Menschen und Thieren.

Tyrosin konnten wir dagegen nicht immer mit Sicherheit nachweisen; fanden es nicht in der Milz des Kalbes und Schweines, in der Ochsenmilz wurde es aber mit Sicherheit, wenn auch nur in sehr geringer Menge, aufgefunden. Größere Quantitäten von Leucin, die wir aus menschlicher Milz dargestellt hatten, zeigten bei wiederholten Umkrystallisiren ebenfalls einige Krystallbüschel, die wir für Tyrosin halten. Die Milz des Schweines war reicher an Leucin wie die des Ochsen; beide Milzen enthielten nicht ganz unerhebliche Mengen von Cholesterin, die wir mit Weingeist ausziehen konnten.

<table>
<thead>
<tr>
<th>Kohlenstoff</th>
<th>Wasserstoff</th>
<th>Stickstoff</th>
<th>Sauerstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,71</td>
<td>8,95</td>
<td>4,82</td>
<td>32,52</td>
</tr>
</tbody>
</table>

Lienin: 100,00 Leucin: 100,00

Sollte Herr Scherer mit so abweichendem Resultat das Leucin analysiren können, oder so wenig Sorgfalt auf die Reinigung einer Substanz verwenden, die er für die Elementaranalyse bestimmmt hat? Wir glauben es nicht, denn sonst müssten wir auch an der Existenz des Inosits und Hypoxanthins zweifeln. Herr Scherer würde die Zusammensetzung des Lienins gewiss nicht in den Würzburger Verhandlungen (II. 299) mitgetheilt haben, wenn er gar keinen Werth darauf gelegt hätte; denn er lässt die Darstellung und die Eigenschaften dieses Körpers ganz unerwähnt, und macht uns vorläufig nur mit der Zusammensetzung desselben bekannt, „um sich das Prioritätsrecht gegen etwaige Plagiäte zu sichern.“ Niemand aber kann die Entdeckung eines Körpers für sich in Anspruch nehmen, ohne irgend ein Merkmal anzugeben, woran der entdeckte Körper zu erkennen ist; in gegenwärtigen Falle war dieses Merkmal einzig die Zusammensetzung.

In der Milz beobachtet man mitunter einen, in kleinen Prismen krystallisirenden, der Hippursäure nicht unähnlichen Körper; er ist vielleicht das Lienin Scherer's. Berechnet man aus der oben mitgetheilten, procentischen Zusammenstellung die Aequivalentsverhältnisse, so gelangt man zu der Formel C₂₆H₂₅NO₁₂. Der grosse Sauerstoffgehalt scheint auf eine gepaarte Verbindung zu deuten, und sollte sich die Vermuthung Lehmann's⁴) in Betreff der Constitution des Hämatics bestätigen, so könnte das Lienin ein Abkömmling desselben, und ebenfalls ein Glucosid sein. Die Bildung des, von Scherer in der Milz, neben Lienin beobachteten eisenreichen albuminartigen Körpers würde dann wahrscheinlich mit der des Lienins im Zusammenhange stehen. — Ist das Lienin eine hygroskopische Substanz, und aus diesem Grunde der Wasserstoffgehalt zu hoch gefunden worden, so könnte es eine gepaarte Verbindung von Zucker, mit einem dem Leucin homologen Körper (vielleicht mit Leucin selbst) sein, wie

aus der folgenden Gleichung hervorgeht: \[C_26 H_25 NO_{12} + 4 H_2 O = C_{12} H_{12} O_{12} + C_{14} H_15 NO_{4}. \]

3. Pancreas und pancreatischer Saft.

Im Pancreas von Menschen und Thieren findet man stets Leucin und daneben nicht unerhebliche Mengen von Tyrosin. In keinem Organ ist das Leucin so reichlich angehäuft wie hier. Wir untersuchten die Pancreasdrüse von Menschen (wiederholt), vom Pferd und vom Ochsen. Beim letzteren Thier nahmen wir besonders auf Tyrosin Rücksicht, und fanden es in der Menge, dass es durch wiederholtes Umkrystallisiren aus Ammoniak rein dargestellt werden konnte. Im ausgepressten Saft des Pancreas war es in geringerer Menge vorhanden, als im heiss bereiteten Auszuge; es scheint somit, als ob dasselbe nicht nur in Lösung, sondern auch in fester Form in diesem Organ vorhanden sei.

Wir fanden das Leucin auch im pancreatischen Saft eines Pferdes und eines Hundes; in beiden Fällen konnten nur kleine Quantitäten verarbeitet werden, und dies wird der Grund sein, weshalb die Nachweiszun von Tyrosin nicht gelang. — Vom Hund konnten wir etwa 3 Unzen des Secretes aufsammlen, es enthielt viel kohlensaures Alkali, und der, nach der Behandlung mit essigsaurem Blei erhaltene Rückstand stellte daher eine krystallinische Salzmasse dar, die hauptsächlich aus essigsauren Natron bestand. Um dieses zu entfernen, setzten wir etwas zweifach schwefelsaures Kali zu, verdampften die frei gewordene Essigsäure, und zogen den Rückstand mit Weingeist aus. Da der Weingeist das überschüssig zugesetzte zweifach schwefelsaure Kali unter Freiwerdung von Schwefelsäure zerlegte, so wurde der Auszug mit Barytwasser
neutralisirt, und der verdampfte Rückstand noch einmal mit Weingeist extrahirt. Beim Verdunsten schied sich das Leucin in prächtigen Drusen ab.

4. Speicheldrüsen und Speichel.

5. Lymphdrüsen.

Die Lymphdrüsen von Menschen und Thieren enthalten Leucin in ansehnlicher Menge; Tyrosin konnten wir nicht darin entdecken. Wir untersuchten zweimal die Lymphdrüsen aus dem Mesenterio eines Typhösen, sowie die Halslymphdrüsen eines Ochsen mit gleichem Resultat.

Die Schilddrüse haben wir nur einmal und zwar vom Ochsen untersucht. Wir fanden darin Leucin in nicht unansehnlicher Menge, jedoch weit weniger, als im Pancreas von demselben Thiere. Tyrosin konnten wir nicht mit Sicherheit nachweisen.
7. Thymusdrüse.

Die Thymusdrüse ist kürzlich auch von Gorup-Besouez untersucht worden. Er fand darin einen Körper, den er Thymin nennt. Das Verhalten des Thynins gegen Lösungsmittel stimmt vollkommen mit dem des Leucins überein, ebenfalls ist schon von Laurent und Gerhardt beobachtet worden, dass sich dasselbe mit Salzsäure und Salpetersäure zu krystallinischen Verbindungen vereinigen kann. Es gelang uns leicht, auch das schwefelsaure Salz und eine Platinverbindung hervorzubringen; das erste Salz erhielten wir in langen, farblosen Nadeln oder Blättchen, die Krystalle der Platinverbindung schienen dem klinorhombischen System anzugehören. 1) — Die Platinverbindung des Thynins soll in Ok-

1) Annal. der Chem. u. Pharm. 89. 114.
2) Vermischt man die drey Lösung von salzsaurem Leucin mit einem grossen Ueberschuss von Platinchlorid, so scheidet sich das Doppelsalz
taedern krystallisiren; bestätigt sich dieses, so würden Thymin und Lecin allerdings verschiedene Körper sein. — Obwohl wir in den von uns untersuchten Thymusdrüsen kein Thymin auffinden konnten, so ist es doch in hohem Grade wünschenswerth, dass Herr v. Gorup die versprochene Fortsetzung seiner Untersuchung nicht unterlässt; denn nach dem Alter der Thiere könnten die Bestandtheile der Thymusdrüse wechseln, ebenso wie wir dies durch Wöhler's Untersuchung vom Harn der Herbivoren wissen. Gorup-Besouez fand den Saft der Thymusdrüse (wahrscheinlich von jungen Kalbern) immer stark sauer reagirend, und beobachtete darin, wie es mir scheint, nur Natronsalze; wir fanden dagegen, dass der Saft in der neunten oder zehnten Woche stets neutral und reich an Kalisalzen ist.

8. Gehirn.

Das Gehirn gesunder Thiere haben wir bisher nicht untersucht, wir prüften indess das Gehirn einer, an acuter Leberatrophie gestorbenen Frau, 18 Stunden nach dem Tode, und konnten darin mit völliger Sicherheit, wenn auch nur in sehr kleiner Menge, Lecin nachweisen. Das Gehirn an Typhus gestorbener Kranken wurde zwei Mal mit zweifelhaftem Erfolge untersucht.

Die Muskeln eines Typhösen und an einer an acuter Leberatrophie gestorbenen Frau enthielten weder Lecin noch Tyrocin. Ebensowenig konnten wir beide Körper in der Lungensubstanz einer apoplectischen Frau auffinden.

Das Blut aus dem Herzen und der Hohlvene, das wir derselben Leiche entnahmen, deren Gehirn und Glütäen wir auch nach längerem Stehen nicht ab; das Lecin wird in diesem Falle theilweise zersetzt, und auf Zusatz von Aether entsteht allmählich ein Niederschlag von Ammoniumplatinchlorid.

11. Harn.

0,292 Grm. gaben 0,3735 Grm. Ammonium-Platinchlorid = 8,03 Proc. Stickstoff. — Die Formel des Tyrosins verlangt 7,73 Proc. Versuch und Rechnung stimmen so gut überein, dass an der Identität unserer Krystalle mit Tyrosin nicht
gezweifelt werden kann. Wir beobachteten aber, dass nach dem Verdunsten des freien Ammoniaks viel mehr von dem krystallinischen Körper in Lösung blieb, als bei der Krystallisation von reinem Tyrosin der Fall zu sein pflegt. Wir verdampften deshalb die Mutterlaugen, und unterwarfen den Rückstand wiederholten Krystallisationen, wobei jedesmal die zuerst anschliessenden Krystalle entfernt wurden.

Die so erhaltenen, leichter löslichen Krystalle, die dem Tyrosin vollkommen ähnlich waren, auch die Piriäische Reaktion auf's Schönste zeigten, reichten leider nicht zu einer vollständigen Analyse hin; wir mussten uns daher damit begnügen, den Stickstoffgehalt derselben zu bestimmen.

0,187 Grm. gaben 0,263 Grm. Ammonium-Platinchlorid = 8,83 Proc. Stickstoff.

Diese leichter löslichen Krystalle enthielten also mehr Stickstoff wie das Tyrosin. — Da wis uns davon überzeugt haben, dass diese Abweichung nicht von beigemengtem Leucin herrühre, so glauben wir, dass der analysirte Körper dem Tyrosin homolog, wahrscheinlich der Formel C\textsubscript{16}H\textsubscript{9}NO\textsubscript{6} entsprechend zusammengesetzt ist.

Um das Lecin zu gewinnen, das wir neben dem Tyrosin beobachtet hatten, wurde der mässig verdampfte, von Sediment getrennte Harn mit basisch essigsaurum Bleioxyd gefällt, und das Filtrat, nach Entfernung des überschüssig zugesetzten Bleies, im Wasserbade verdampft. Es hinterblieb eine sehr bedeutende Menge eines bräunlichen Extraktes, im Ansehen und Geruch vollkommen ähnlich der Masse, die man bei der Darstellung von Leucin und Tyrosin aus Proteinstoffen durch Zersetzung mit Säuren erhält. Da die Krystallisation des Leucins in dieser amorphen Masse sehr langsam vor sich ging, so sahen wir uns veranlasst, zunächst den gesammten Rückstand einer Prüfung auf Harnstoff zu unterwerfen, denn ein vorläufiger, in kleinerem Maassstabe angestellter Versuch hatte zu einem negativen Resultat geführt.

Wir extrahirten daher den Rückstand mit kaltem, absolutem (96\%) Weingeist, so lange dieser noch etwas aufnahm, und behandeln den Rückstand mit siedendem Weingeist von
gewöhnlicher Stärke, wobei eine zähe, dunkelbraune, in Wasser lösliche Substanz und etwas harnsaures Salz zurückblieb.

Die mit gewöhnlichem Weingeist bereitete Lösung hinterliess beim Verdunsten einen syrupsförmigen Rückstand, der nach einiger Zeit von sich ausscheidendem Leucin kristallinisch erstarrte. Die Krystallisation war also früher durch die Gegenwart der, in Weingeist unlösslichen, sowie durch die in absolutem Weingeist lösliche amorphe Materie verzögert worden.

1) Der Harnstoff kann aus weingeistiger Lösung durch Aether teilweise gefällt werden, es ist dazu aber das mehrfache Volumen Aether und langeren Stehen erforderlich.

Müller’s Archiv. 1866.

4
anzustellen, war unmöglich, da die Kranken, als uns diese Frage aufstieß, bereits ihrem Leiden erlegen war.

Um über den Ort, an welchem sich im vorliegenden Falle Leucin und Tyrosin vorzugsweise gebildet oder angehäuft hatten, Aufschluss zu erhalten, wurden nach der 18 Stunden p. m. ausgeführten Obduktion die verschiedenen Organe und Gewebe auf ihren Gehalt an diesen Produkten des Stoffumsatzes untersucht.

Die Schnittfläche der Leber bedeckte sich bald mit einem

Milz und Leber waren also die Organe, in welchen allein namhafte Anhäufungen jener Körper sich vorfanden.

Denn einmal bildet sich das Tyrosin bei der Zersetzung in viel geringerer Menge als Leucin, es kann also leicht übersehen werden; dann aber sind bis dahin vorzugsweise die Säfte, welche aus den betreffenden Organen ausgepreßt werden konnten, untersucht, in welchen das in dem Gewebe fest abgelagerte Tyrosin möglicherweise nur zum geringsten Theil

Da der Blut- und Lymphstrom die einzelnen Organe fortwährend auswässert, da also die in jedem Organ gebildeten Zersetzungsprodukte schliesslich in das Blut übergeben müssen, wenn nicht wie bei der Leber und einigen ander Drüsen ein besonderer Ausführungs gang vorhanden ist, so wäre es

Die physiologischen Folgen, welche aus einem so verbreiteten Umsetzungsproceß, wie wir ihn nachgewiesen haben, hervorgehen, müssen sehr mannigfache sein.

Dass sich jene Stoffe an dem Aufbau neuer Atomgruppen betheiligen können, das Tyrosin (oder ein isomerer Körper) z. B. bei der Bildung der Galle, haben wir schon früher hervorgehoben. Ebenso könnte das Ammoniak, das wir in der Thymusdrüse, sowie in der Schilddrüse und den Lymphdrüsen fanden, von einer Zersetzung des Leucins herrühren, und damit die Bildung flüchtiger fetter Säuren, die im Schweiss etc. angetroffen werden, in Verbindung stehen. Auch die flüchtigen Fettsäuren im Magen und Dünndarm könnten wenigstens zum Theil durch Zersetzung von Leucin, das mit dem Secret der Speicheldrüsen des Kopfes und des Unterleibes fortwährend in den Darmkanal gelangt, entstehen. Für jetzt enthal-
ten wir uns jedoch, näher hierauf einzugehen, denn, obwohl unsere Erfahrungen den ersten Lichtstrahl in das tiefe Dunkel geworfen, welches bis dahin auf der vielberührten Umsetzung in den Gefässdrüsen ruhte, so reizen dieselben in dieser Beziehung doch mehr unsere Wissbegierde, als dass sie dieselbe befriedigten. Wir brauchen daher kaum zu bemerken, dass wir unsere Untersuchung nicht als beendet ansehen; wir hoffen vielmehr, dass wir alsbald im Stande sein werden, weitere Aufschlüsse über die angeregten Fragen zu geben.
Ueber die Umwandlung der Gallensäuren in Farbestoff.

Von

Fr. Th. Frerichs und G. Staedeler.

Es kann als feststehend angenommen werden, dass in dem Harn Ikterischer, wenn derselbe reich an Pigment ist, keine Gallensäuren oder doch nur Spuren davon vorkommen. Wir selbst konnten bei wiederholten früheren Versuchen keine Gallensäuren darin auffinden, gelangten also zu demselben Resultat wie Griffith, Pickford, Gorup-Besanez und Scherer.

Lehmann hat dagegen beobachtet, dass bei entscheidendem Ikterus in schwach pigmentirtem Harn die Gallensäuren oft in grosser Menge vorkommen.

Diese Beobachtung, an deren Richtigkeit wohl nicht gezweifelt werden kann, schien uns entschieden darauf hinzuweisen, dass ein nahe Zusammenhang zwischen den Säuren und den Farbstoffen der Galle stattfinde, und dass, bei verhindertem Abluss der Galle die Säuren entweder unzerstört in den Harn gelangen, oder zuvor im Blute oder irgendwelchen Organen eine Umwandlung in Farbstoff erleiden.

Zur Beantwortung dieser Frage suchten wir zunächst auszumitteln, ob eine solche Umwandlung ausserhalb des Organismus möglich sei, und wir wurden so sehr vom Glück begünstigt, dass schon unsere ersten Versuche zu höchst interessanten Resultaten führten. -- Jeder, der die Metamorphosen der Gallensäuren verfolgt hat, weiss, wie schwierig es ist, die durch Einwirkung von Mineralsäuren entstandenen Produkte, namentlich das Dyslysin, ungefärbt zu erhalten,
selbst wenn man von vollkommen reinem Material ausgeht; wir richteten deshalb unser Augenmerk zunächst auf diese färbenden Produkte, suchten dieselben aber nicht mit Salzsäure, sondern mit Schwefelsäure hervorzubringen, da im ersten Falle die Ausbeute immer nur eine äußerst geringe ist. Wir fanden aber bald, dass die Einwirkung der concentrirten Schwefelsäure auf Gallensäure durchaus verschieden ist von der der Salzsäure; es werden dadurch Chromogene erzeugt, deren Verhalten wir in dem Folgenden kurz beschreiben werden, obwohl wir gegenwärtig über die Zusammensetzung dieser Produkte und über das Verhältniss, in welchem sie zu den Gallensäuren stehen, noch nichts mittheilen können.

Wird reines glycocholsaures Natron mit conc. Schwefelsäure übergossen, so klebt es zu einer farblosen, harzähnlichen Masse zusammen, die sich in der Kälte allmählich mit safrangelber, beim Erwärmen mit lebhaft feuerrother bis bräunlich rother Farbe auflöst. Aus der Lösung fällt Wasser farblose, grünlliche oder bräunliche Flocken, je nach der Temperatur, bei welcher die Lösung erfolgte. Weder die zuerst entstehende harzähnliche Masse, noch die durch Wasser fällbaren Flocken sind Glycocholsäure oder Cholonsäure, wie man bisher irrtümlich annahm, 1) eine mässig verdünnte Schwefelsäure scheint dagegen die Glycocholsäure auf gleiche Weise zu zersetzen, wie concentrirte Salzsäure.

Die durch conc. Schwefelsäure veränderte Glycocholsäure hat die Eigenschaft, an der Luft rasch Sauerstoff aufzunehmen und damit in prachtvoll gefärbte Verbindungen überzugehen. Bringt man die, durch Schwefelsäure entstandene, farblose, amorphe Masse, nachdem sie möglichst von anhängender Säure befreit worden ist, auf ein Stück Filtrirpapier, so zerfliesst sie, und es entsteht ein rubinrother Fleck, der bald blauere Ränder zeigt, und nach kurzer Zeit rein indigo-blau wird.

Nach einigen Tagen verschwindet auch diese Farbe und

1) Annal. der Chem. und Pharm. LXVII. 19.
Ueber die Umwandlung der Gallensäuren in Farbestoff.

Der Fleck wird hellbraun. — Die Papiersubstanz scheint bei dieser Reaktion ohne Einfluss zu sein, denn man beobachtet einen ganz ähnlichen Farbenwechsel beim Zerfließen der amorphen Masse auf Glas oder Porzellan, nur tritt er in diesem Falle etwas weniger rasch ein.

Die Lösung der Glycocholsäure in conc. Schwefelsäure enthält dasselbe Chromogen aufgelöst, die überschüssige Säure verzögert aber die Oxydation und die damit verbundene Färbung. Fällt man die Lösung mit Wasser, und erwärmt die von der sauren Flüssigkeit getrennten Flocken gelinde im Wasserbade, so färben sie sich nach wenigen Sekunden violettblau. Sehr schön beobachtet man auch den Farbenwechsel, wenn man ein Stück Filtrirpapier mit Wasser befeuchtet, dann mit der sauren Lösung bestreicht, und über der Lampe trocknet. Hat die Schwefelsäure längere Zeit bei der Temperatur des Wasserbades auf Gallensäure eingewirkt, so wird der auf gleiche Weise auf Papier erzeugte Fleck grün.

Dies Verhalten wird man häufig mit Vorteil zur Nachweisung von Gallensäure anwenden können, da die kleinste Menge abgedampfter Galle noch eine intensive Reaktion gibt.

Um die Eigenschaften des blauen Zersetzungsproduktes der Glycocholsäure etwas näher kennen zu lernen, haben wir einige weitere Versuche mit entfärbter Ochsengalle, aus deren weingeisligcr Lösung der größte Theil des taurocholsauren Natrons mit Aether gefällt war, angestellt.

braun wurde, ohne sich in wesentlicher Menge zu lösen. Säuren, selbst verdünnte Essigsäure, stellten die ursprüngliche Farbe wieder her.

Die getrocknete, gummiähnliche Masse wurde in wenig Wasser unter Erwärmen gelöst, und tropfenweise mit conc. Schwefelsäure vermisch. Wenige Tropfen der Säure waren hinreichend, um ein prachtvolles Roth hervorzubringen, das in Berührung mit Luft allmählich in Blau überging. Die Lösung
Ueber die Umwandlung der Gallensäuren in Farbstoff.

59

dieses Farbestoffes trübte sich nicht auf Zusatz von Wasser, und Salpetersäure brachte den schönsten Farbenwechsel von violett, roth und hellbräunlichgelb hervor.

Als wir die durch Schwefelsäure rothgefärbte Gallenlösung mit mehr Säure vermischten, ging die Farbe in Braun über.

Der durch Wasser entstandene Niederschlag war jetzt nicht dickflockig (wie bei Anwendung von Glycocholsäure), sondern sehr zart, und setzte sich nur allmählich mit blassgrüner Farbe ab.

Als wir die durch Einwirkung von Schwefelsäure zuerst auftretende rothe Farbe, die allmähig in Blau übergeht, scheint darauf hinzudeuten, dass der durch Aether gefällten Gallenmasse etwas Zucker, essigsaures Salz, oder überhaupt Körper, welche zu der Pettenkofer'schen Gallenreaktion Veranlassung geben können, beigemengt waren. Zucker konnten wir indess bei einem in kleinem Maassstabe angestellten Versuch nicht nachweisen; obwohl, wenn überhaupt im Organismus eine Umwandlung der Gallensäuren in Pigment vorkommt, 1) wie es die im Eingang erwähnten Thatsachen wahrscheinlich machen, eine Beteiligung des Zuckers in der Leber nicht unwahrscheinlich wäre. — Für jetzt beschränken wir

uns darauf, auf die Ähnlichkeit der natürlichen Gallenpigmente mit den von uns erhaltenen Zersetzungsprodukten der Gallensäuren aufmerksam zu machen. Das aber glauben wir jetzt schon bestimmt aussprechen zu dürfen, dass das Chromogen, aus welchem durch Oxydation der blaue Farbstoff entsteht, mitunter in der Leber, und wie es scheint, auch im Pancreas vorkommt. Wir haben schon bei früherer Gelegenheit auf diesen Farbstoff aufmerksam gemacht, damals war es uns jedoch noch unbekannt, dass derselbe in so einfacher Relation zu den Gallensäuren stehe. Wir sprachen schon früher die Ansicht aus, dass dieser Farbstoff als Nebenprodukt bei der Bildung der Glycocholsäure entstehen könne, indem sich das Tyrosin in der Leber in Glycin und Saligenin zerlege; wir nehmen an, dass nur Glycin zur Gallenbereitung verwendet werde; ebensowohl aber ist es möglich, dass das Tyrosin oder wahrscheinlicher ein isomerer Körper direct mit einer fetten Säure zu Glycocholsäure zusammentritt. Die gepaart fette Säure wäre dann der Ricinussäure homolog = \(\text{HO} \cdot \text{C}_3\text{H}_3\text{O}_3 \). Gepaart mit dem, dem Tyrosin isomerer Körper würde sie die Glycocholsäure bilden:

\[
\text{HO} \cdot \text{C}_3\text{H}_3\text{O}_3 + \text{C}_1\text{H}_1\text{N}_1 \text{NO}_6 = \text{HO} \cdot \text{C}_5\text{H}_4\text{NO}_{11},
\]

und gepaart mit Saligenin die Cholsäure:

\[
\text{HO} \cdot \text{C}_3\text{H}_3\text{O}_3 + \text{C}_4\text{H}_4\text{O}_4 = \text{HO} \cdot \text{C}_4\text{H}_4\text{O}_9.
\]

Die letztere Säure würde dann die Eigenschaft, beim Kochen mit Säuren Wasser zu verlieren und in die harzähnliche Choloidinsäure und Dyslysin überzugehen, dem Saligenin verdanken, welches sich bekanntlich durch Einwirkung von Säuren ebenfalls unter Wasserverlust in das harzähnliche Saliretin verwandelt. Welchen Antbeil die stickstoff- und schwefelhaltigen Paarlinge der Gallensäuren bei der Bildung der Farbstoffe nehmen, lässt sich gegenwärtig nicht einsehen. So viel wir bis jetzt wissen, enthalten unsere Farbstoffe ebenso wie die natürlichen Gallenpigmente, mit deren Untersuchung wir eben

2) Dieses Archiv, 55. S. 384 Anmerk.
3) Ebendas. S. 640.
beschäftigt sind, Stickstoff, aber keinen Schwefel. Herr Dr. Cloetta in Zürich hat kürzlich die interessante Entdeckung gemacht, dass die Lungensäure Veedil's nichts anderes ist als Taurin; er konnte dasselbe aus dem coapulirten, mit Bleiessig behandelten Lungensaft vollkommen rein abscheiden und analysiren. Dass dieses Taurin mit der Taurocholsäure in Zusammenhang steht, unterliegt wohl keinem Zweifel: sehr gewagt würde es aber sein, dasselbe als Zersetzungsprodukt dieser Säure anzusetzen, da es ebensowohl zur Bildung derselben verwendet werden kann.
Die sensitiven Zweige des Zungenfleischnnerven des Menschen.

Von

Prof. H. Luschka in Tübingen.

(Hierzu Taf. I.)

Mit A. F. J. C. Mayer's 1) höchst interessanter Nachweisung einer hinteren, mit einem Knötchen versehenen Wurzel am Hypoglossus mancher Thiere, wurden wieder neue Zweifel reger, und neue Nachforschungen veranlasst.

So weit bis jetzt in Absicht auf den Menschen über diesen Gegenstand Untersuchungen angestellt worden sind, haben sie zu entschieden negativen Resultaten hingeführt, wie denn auch die von Mayer selbst gemachte Mittheilung hierüber, seinen Erfunden bei Thieren keineswegs entspricht. Wenn aber einige Schriftsteller, wie Longet 2), Desmoulins u. A. die Existenz einer hinteren, mit einem Ganglion versehenen Wurzel des Zungenfleischnnerven auch bei den von Mayer bezeichneten Thieren (Ochs, Schwein, Canis Molossus), ganz in Abrede stellen, oder höchstens für Ausnahmsfälle wollen gelten lassen, so sind sie sehr im Irrthume und beweisen nur, dass

2) Anatomie et Physiol. du système nerveux. T. II. p. 496.
Die sensiblen Zweige des Zungenfleischnerven des Menschen. 63

Obgleich es nun feststeht, dass der menschliche Hypoglossus durchaus einer hinteren gangliösen Wurzel entbehrt, und dass diese auch nicht einmal in Ausnahmefällen in einer unzweideutigen Weise vorkommt, so müssen wir dennoch aus der Vertheilung einzelner Zweige auf die gemischte Natur desselben einen Schluss ziehen. Valentin 1) hat meines Wissens zuerst die Angabe gemacht: dass vom Zungenfleischnerven Fäden auch zu solchen Gebilden sich erstrecken, in welchen dieselben eine motorische Bedeutung — nicht haben können. „Ex omnibus sequitur, lehrt Valentin, nervum hypoglossum mixtum quidem esse et hac re nervos spinales quodammodo aequalia, tamén ab iis eo differre, quod non fibris sensoriis motorisque inter se numero aequalibus mixceatur, sed eximie motorius sit." 2

Von der genaueren Erforschung der Quelle sensitiver Zweige des menschlichen Zungenfleischnerven vorerst ganz abgesehen, ist zu bemerken, dass sich selbstständige Beobachter, und zwar sehr gute Neurologen, vom Vorhandensein derselben überhaupt noch nicht haben überzeugen können, so dass also schon von dieser Seite her eine Aufforderung zu erneuten Nachforschungen gegeben ist. Es liegt aber in der Natur der hier obschweibenden Streitfrage, und eben dadurch wird sie besonders belangreich, dass sich an dieselbe noch manche Betrachtungen vom grössten Interesse anknüpfen müssen, die sich einerseits um die ursprüngliche Eigenschaft des Hypoglossus, andererseits um die Art seiner Verbindungen nothwendig bewegen müssen. Wir schicken die hierauf beziehenden Erörterungen der Darlegung der Endausbreitung des Hypoglossus voraus.

1. Ursprung des Zungenfleischerven.

Die feinsten, an der Oberfläche des verlängerten Markes zu Tage tretenden Wurzelfäden vereinigen sich zu 2—4 unter spitzen Winkeln miteinander zu je einem dickeren plattrunden Faden. Es sind 6—12, ausnahmsweise auch noch mehr solcher Fäden, welche nach aussen hin konvergiren, und entweder isolirt verlaufend, oder zu 2—4 an einander geklebt, die Wurzel des Hypoglossus constituiren.

In der grossen Mehrzahl der Fälle treten diese Fäden in zwei nicht gleiche Bündel vereinigt, getrennt durch die barte Hirnhaut hindurch, welche, sowie auch die Spinnenwebenbaut scheidenartige Fortsätze an sie abgeben, die sich schliesslich in der Bildung des Neurilems verlieren. In ziemlich gleicher Häufigkeit sieht man dieser Regel gegenüber den Durchtritt sowohl aller Fäden durch nur eine Öffnung der Dura mater, als auch in drei Portionen angeordnet durch drei gesonderte Lücken.

Es ist als die Regel zu betrachten, dass sämtliche Wurzelfäden über die Wirbelpulsader da hinweglaufen, wo die Art. cerebelli inf. von ihr abgeht, sehr selten unter ihr, häufig aber zugleich unter und über ihr, in zwei Portionen geschieden und sie gewissermaassen schlingenähnlich umfassend. Auf dieses letztere Verhältniss hat man einstmal's ein grosses Gewicht gelegt. Th. Willis') und seine nächsten Anhänger, welche diese Anordnung als die gewöhnliche bezeichnen, vergleichen sie mit einem der Wirbelpulsader angelegten Zügel. „Hujus nervi fibrae quaedam arteriam vertebralem circumligant, ne forte inter loquendum, si quando vehementius commoveamur, sanguis concitatus cerebrum torrente obruat: nimirum hic nervus arteriam vertebralem tanquam freno injecto circumligatus, adeoque non linguae tantum, sed et sanguinis moderator, rapidiorem ejus influxum coercet."

In neuerer Zeit hat man mehrfach aus der Lage der Hypoglossuswurzel zur Arteria vertebrales, bei Übersättlungen

1) Cerebri anatome Cap. XVIII.
Die sensitiven Zweige des Zungenfleischnerven des Menschen. 65

dieses Gefässes einen Druck auf dieselbe, und davon bei manchen Congestionen nach dem Kopfe die Schwerbeweglichkeit der Zunge ableiten wollen. Ohne eine aneurismatische Erweiterung des Gefässes, ein Fall der übrigens von Cruveilhier (28 Livraison. Pl. 3. Fig. 2) wahrgenommen wurde, kann eine solche Rückwirkung von jener Seite her nicht wohl gedacht werden. Dagegen sind, wie später ausführlich gezeigt werden soll, sowohl um die innere Öffnung des Canalis hypoglossi, als auch in seinem Verlaufe Beziehungen von Venen zum Zungenfleischnerven vorhanden, welche im Zustände ihrer grössten Füllung einen nachtheiligen Druck auf denselben auszuüben wohl im Stande sein dürften.

des ersten Cervicalnerven, anzuerkennen. Dazu kommt noch, aber freilich nur höchst selten, dass ein oder das andere Fäden auch der hinteren Wurzel des ersten N. cervicalis sich zum Hypoglossus begiebt.

Nun muss man aber zunächst bedenken, dass nicht der ganze Ursprung des Hypoglossus auf die Höhe dieser Stelle beschränkt ist, indem regelmässig eine Anzahl seiner Wurzelfäden abgehen von dem unter der Spitze des Calamus scriptorius befindlichen Abschnitte des verlängerten Markes; und zweitens, dass die als besonderer Ursprungskern bezeichnete graue Masse überhaupt keine für sich abgegrenzte Partie darstellt, sondern, wie schon Förö3) richtig bemerkt, eine mit ihr zusammenhängende Fortsetzung jenes Abschnittes der grauen Commissur des Rückenmarkes ist, welche den Canalis spinalis von vorne her umschliesst.

1) Ueber die Textur und Funktion der Medulla oblongata. Erlangen 1843.
2) Vgl. A. Ecker: Icon. physiol. Taf. XV. Fig. IV.

So verlockend nun auch seiner ganzen morphologischen Verwandtschaft mit der vorderen Wurzel der Spinalnerven nach, die Annahme einer Kreuzung des Hypoglossusursprunges, gleich diesem Verhalten bei jenen, erscheint, so muss man sich doch zunächst daran erinnern, dass eine solche wenigstens für diejenigen Wurzelfäden des Hypoglossus nicht wohl anzunehmen ist, welche in gleicher Höhe liegen mit den Striae medullaries der Rautengrube, da ja diese die Ausläufer des zwischen den beiden Hälfte der Medulla oblongata befindlichen Septum darstellen, an und zwischen dessen Bestandtheilen man nirgends eine Kreuzung oder ein commissurenartiges Herübertreten von Fasern aus einer Hälfte in die andere wahrzunehmen vermag. Es war dies zwar eine von Vicq d'Azj-r gehegte Meinung, welcher, indem er das Septum für eine Commissur ansah, dasselbe Raphe nannte. Dieser Ansicht folgte nun auch, wie es scheint, Stillings, und bezeichnete die Raphe als eine wahre, aus Querfasern gebildete Commissur, vermittelt welcher eigenthümliche, querverlaufende Faserzüge der beiden Hälfte der Medulla oblongata verbunden werden. Wie es Förg zuerst in sehr überzeu- gender Weise dargethan hat, erstrecken sich die Fasern des Septum in der unteren Hälfte des verlängerten Markes, so
lange die noch ungetheilte graue Commissur im Innern sich befindet, nur bis zu dieser, sie selbst aber wird nicht von ihnen durchbrochen.

Wie ich schon in der Einleitung bemerkt habe, findet sich bei manchen Thieren ausser einer im Wesentlichen sich gleich wie bei dem Menschen verhaltenden vorderen Wurzel, am Hypoglossus auch eine hintere, mit einem Ganglion versehene. Sie ist stets sehr fein, und entspricht kaum der Dicke eines einzelnen Fadens der vorderen Wurzel, kommt aber genau wie ein solcher, mit 3—4 Fäden, am verlängerten Marke, und zwar an der hinteren Seitenfurche zu Tage. Die hintere Wurzel geht in ein kleines, länglich-rundes, beim Kalbe kaum birsekorngrosses, beim Schafe nur $\frac{1}{2}$ Millimeter langes Knötchen über, aus dessen äusserem Ende ein dem eintretenden Faden an Dicke gleicher hervorkommt, welcher gewöhnlich durch die Spitze der obersten Zacke des Lig. denticulatum hindurchtritt und sodann in den hinteren Umfang der vorderen Wurzel übergeht.

Beim Menschen habe ich trotz zahlreicher Untersuchungen an Leichen aus allen Altersstufen nichts auffinden können, was sich auch nur entfernt als hintere Hypoglossuswurzel oder als Ganglion dieses Nerven hätte deuten lassen. Aber auch der von Mayer angeführte Fall eines Ganglion am Hypoglossus des Menschen hat, wie leicht einzusehen ist, zum Ursprungseines Nerven keine Beziehung. Bei einem Cadaver entsprang nämlich ein kleines Ganglion aus dem
Ramus spinalis nervi vagi, beinahe an der Stelle, wo derselbe vereinigt mit dem Hauptstamme des Vagus in die Grube des Foramen lacerum eintritt, welches sodann einen Nervenfaden abgab, der sich mit der Wurzel des Hypoglossus vor seinem Antritt durch die harte Hirnhaut verband.

Nachdem wir in der Natur des regelmässigen Ursprungs des menschlichen Hypoglossus kein Moment gefunden haben, welches ihn als einen von Haus aus gemischten Nerven kennzeichnete, so müssen wir angesichts der dennoch von ihm abtretenden unzweifelhaft sensitiven Fäden, um vielleicht dadurch den wünschenswerthen Aufschluss zu erhalten, einer Untersuchung unterwerfen:

2. Die Verbindungen des Nerv. hypoglossus.

Von früheren Beobachtern, Sömmerring, Boek, Clolquet, Hirzel¹) u. a. wird diese Verbindung für eine nur seltene gehalten, während wohl alle selbstständigen Zerglie

Vom morphologischen Gesichtspunkte aus ist es begreiflich nicht möglich, einen stringenten Beweis zu liefern, ob der

¹) Dissert., 1824.
Verbindungsfaden ein cerebraler vom Hypoglossus zum Sympathicus gelangender ist, oder ob er vom Sympathicus aus zu jenem Nerven tritt. Auf dem Wege des Experimentes ist dagegen Budge\(^1\) zur Überzeugung gekommen, dass jener Verbindungszweig dem Ganglion cervicale supremum Hypoglossuselemente zuführe und schliesslich dem „Iris-sympathicus“ eine Reihe von motorischen Fasern ertheile.

b. Die Verbindung mit Cervicalnerven.

Diese bezicht sich nach den Annahmen der meisten Lehrer und Schriftsteller einerseits auf die Vereinigung von Fädchen aus dem vorderen Aste der drei oberen Cervicalnerven mit dem als aus dem Hypoglossus abstammend betrachteten Descendens zur Bildung bald einer Schlinge, bald eines Geflechtes, aus welchen Zweige für die Unterzungenbeinmuskeln abgehen; andererseits auf centripetale Bogenfasern, welche von dem centralen Ende eines Cervicalnerven ausgehen und zum Centralende des Hypoglossus sich erstrecken, oder vielleicht auch eine umgekehrte Bedeutung haben sollen.

In Betreff des Descendens Hypoglossi habe ich\(^2\) mich schon früher dahin ausgesprochen, dass er mindestens in manchen Fällen mit dem Ursprunge des Zungenfleischnerven in gar keiner Beziehung stehe. Nach einer grösseren Anzahl neuerer, mit aller möglichen Sorgfalt angestellter Untersuchungen bin ich vollends zur Überzeugung gekommen, dass der Descendens überhaupt nie vom Hypoglossus abstamme, sondern bald von einem Zweige des ersten Cervicalnerven allein, bald von diesem und einem aus dem zweiten Cervicalnerven herrührenden Fädchen zugleich, gebildet werde, welches sich aber schon hoch oben in die Scheide des Hypoglossus einsenke und erst da wieder unter spitzem Winkel abtrete, wo er anfängt, in seinen Bogen überzugehen. Mit dem so konstituirten Descendens vereinigen sich dann aus dem 2ten, 3ten, selten auch aus dem 1ten Cervicalnerven ent-

1) Über die Bewegung der Iris. Braunschweig 1855. S. 128.
2) Der Nerv. phrenicus. Tübingen 1852. S. 33.
sprungene und selbstständig und frei nach abwärts verlaufs-
rende Fäden in der bekannten Weise.

Nur ausnahmsweise verbindet sich der Descendens mit
einem sympathischen Fäden aus dem oberen Halsknoten,
und noch viel seltener findet man den Hereintritt eines feinen
Fäden aus dem Vagus. Ich habe mir sehr viele Mühe
gegeben, den Grund dieser ungewöhnlichen, der gesetzmaßige-
gen Verbreitung des Descendens und seiner Kommunikationen
in der Unterzungengebärmuskulatur fremden Verbindung ken-
nen zu lernen, und dabei gefunden, dass sie nur da be-
stehen, wo ein Ramus cardiacus aus dem Descen-
dens abgeht, welcher gleich jenen nur ausnahmsweise
vorkommt. Es wird daraus, was übrigens auch anderwärts
im Nervensystem zu sehen ist, klar, wie die für einen be-
stimmten peripherischen Bezirk berechneten Nervenelemente
öffers in seltsamer Weise auf Umwegen, um die unvollständi-
dige Summe direkter Zweige zu ergänzen, dahin zu gelangen.
Einer besonderen Bemerkung wird es jetzt kaum mehr
bedürfen, dass zum Herzgeflechte keine Spur eines Bestand-
theiles des Hypoglossus, wie ganz irrig gelehrt wird, gelan-
gen könne.

Mit der Erforschung der für so räthselhaft gehaltenen
centripetalen zwischen dem Hypoglossus und Cervicalnerven-
zweigen vorfindlichen Bogenfasern habe ich mich sehr viel
beschäftigt, und bin zu dem bestimmtesten Resultate gelangt:
dass sie von einem der drei oberen Cervicalnerven herrüh-
rende, gegen das centrale Ende des Hypoglossus verlaufende
Fäden sind, welche, nachdem sie eine kürzere oder längere
Strecke an diesen angelegt, oder auch in dessen Scheide ein-
geschlossen aufwärts gezogen sind, zur peripherischen
Verbreitung wieder abgehen. In einem Falle sah ich
ein von dem vordersten Aste des ersten Cervicalnerven ab-
gehendes Fäden so unter einem mit der Convexität nach
abwärts gerichteten Bogen ansteigen und sich 1 Centimeter
unter dem Canalis hypoglossi in den Stamm des Zungenfleisch-
nerven einsenken, dass ohne weitere Nachforschung Niemand
daran gezweifelt hätte: es laufe der Wurzel jenes Nerven
entlang direkt in die Medulla oblongata, bis ich endlich fand, dass ein anscheinend unmittelbar aus dem Stamme des Hypoglossus abtretendes Fädchen, welches sich zum Musc. rect. capit. antic. minor begab, nichts anderes war, als das von dem Hypoglossus wieder abgelöste Ende eben jenes Cervicalzweiges. Andere Male sah ich ein centripetal verlaufendes Fädchen, welches sich in den Descendens umgebogen, oder sich vom Hypoglossus wieder abgelöst hatte, um in den Musc. rect. capit. antic. major einzutreten.

Aus dieser Darlegung wird es ohne Weiteres verständlich sein, dass weder davon die Rede sein kann, dass die mit dem Hypoglossus in Beziehung tretenden Cervicalzweige diesem sensitive Elemente beimischen, noch auch, dass sie der Art ihrer peripherischen Verbreitung nach überhaupt gemischter Natur sein können.

c. Die Verbindung mit dem Vagus.

Wenn man sich daran erinnert, wie der Stamm des Hypoglossus, ehe er sich unter einem Bogen nach vorn wendet, schief über den inneren Umfang des Vagus, sich mit ihm kreuzend und an ihn durch Zellgewebe angelöhet, hinwegzieht, dann muss man schon vorweg diese als die günstigste Stelle einer etwaigen Verbindung bei der Untersuchung ins Auge fassen. Hier geschieht sie denn auch nach Angabe mancher Zergliederer wirklich durch ein oder mehrere Fäden, nach Cruveilhier1) bisweilen selbst durch Vermittelung eines wahren Plexus. Dieser Beobachter ist der Ansicht, dass die Verbindung so geschehe, dass sich Hypoglossuselemente in den Lungenmagennerven einsenken, für welchen sie motorische Verstärkungsfäden darstellen sollen.

Ich habe auf die Erkenntniss dieser Verbindung grosse Sorgfalt und viele Zeit verwandt und gefunden, dass dieselbe häufig gar nicht einmal angedeutet ist, andere Male aber zu bestehen nur scheint. Man kann sich an manchen Praparaten recht gut davon überzeugen, dass Fäden aus dem

Vagus, namentlich an der Stelle, an welcher der Hypoglossus den inneren Umfang dieses Nerven verlässt, wirklich in jenen eintreten, aber nur — um wieder von ihm ab in den Stamm, von welchem sie gekommen, zurückzukehren.

Wir haben also auch von dieser Seite her keine genügenden Anhaltspunkte, dass dem Hypoglossus von der Peripherie aus sensitive Bestandtheile einverleibt werden.

Nachdem wir weder im Ursprung, noch in den Beziehungen des Hypoglossus zum Sympathicus, zu den Cervicalnerven und zum Vagus einen Aufschluss erlangt haben über die Quelle der thatsächlich von ihm abgehenden sensiti venZweige, so kann diese nur in der einzig noch übrigen Kommunikation des Hypoglossus mit dem Ramus lingualis Trigeminus und dem Ganglion sublinguale gesucht werden.

Vor Allem muss bemerkt werden, dass diese Verbindung zum Zeugnisse ihrer tiefen physiologischen Bedeutung, niemals fehlt, dass sie aber in einer morphotisch wechselnden Art realisiert wird.

Bei weitem in der grösseren Mehrzahl der Fälle findet man die Kommunikation so hergestellt, 1., dass ein dickeres, odet
einige feinere Fäden aus dem Stamme des Lingualis da abtreten, wo er im Begriffe ist, in die Zungenäste auseinander zu fallen, um sich unter einem mit der Convexität nach vorn gerichteten Bogen zum Stamme des Hypoglossus oder zu einem seiner äusseren Aeste zu begeben; 2) ein dünneres Fäden aus dem vorderen Rande des Ganglion submaxillare ausgeht, welches, sich an die directen Lingualiszieügen anlegend, eben jenen Weg verfolgt.

Von diesem regelmässigen Typus finden nun zweierlei Abweichungen statt, indem einerseits nicht selten der ganze Ramus anastomoticus aus dem genannten Knoten hervorgeht, und andererseits derselbe, ohne das Ganglion zu berühren, ausschliesslich aus dem N. lingualis entspringt. So sehr es nun allen Anschein hat, dass bei der ersteren Abweichung von einer Verbindung zwischen Nerv. Lingualis und Hypoglossus nicht die Rede sein könne, so belehrt doch eine sorgfältigere, durch die Anwendung der Lupe und der concentirten Essigsäure unterstützte Zergliederung, dass es sich hier nur um ein einfaches Durchtreten der meisten Lingualiselemente durch die Masse des Ganglion submaxillare handelt, ähnlich wie man gar nicht selten findet, dass der direkte motorische Zweig des Tensor tympani oder der Nervus spinosus die Substanz des Ganglion oticum durchsetzt.

Der wie immer konstituirte Ramus anastomoticus nervi lingualis cum hypoglosso ist gemeinhin ein Stämmchen von der Dicke ⅛ Linie und einem bogenförmigen Verlaufe. Fast unnahmslos sieht man aus der Convexität des Bogens einzelne Fäden abgehen, welche theils vom Hypoglossus herrührende, theils vom Lingualis abgetretene Bestandteile sind, die sich für eine kürzere oder längere Strecke ihres Verlaufes an den anastomotischen Ast nur angelegt haben, um wieder abzugehen zur peripherischen Verbreitung in der Zunge.

Davon, dass die ganze Anastomose in Zweige zur Zunge sich auflöse, wie Valentin¹) meint, habe ich mich nie überzeugen können, sondern stets gefunden, dass unter allen Um-

¹) Hiru- und Nervenlehre S. 419.
stünden ein Theil des anastomotischen Fadens seinen Weg central gegen die Hypoglossuswurzel fortsetzt.

Eine andere Frage aber ist die: geht die Anastomose vom Hypoglossus zum Lingualis oder Ganglion sublinguale, oder von diesen zum ersteren Nerven, und welche Bedeutung hat sie schliesslich?

Die meisten Beobachter scheinen sich zur Ansicht hinzu-neigen, dass die Anastomose aus Hypoglossuselementen gebildet sei, und dem Unterkieferknoten motorische Fasern zuführe.

Wenn man sich durch die Analogie mit den übrigen Sinnesganglien, welche eine motorische Wurzel nur von einer Seite her empfangen, aber auch nicht will leiten lassen, so dürfte man andererseits doch sehr in Verlegenheit sein zu erklären, welche Bedeutung diejenigen Fädchen der Anastomose haben, welche mit dem Ganglion, wie so häufig, gar nicht in Verbindung treten, sondern in direkter Fortsetzung mit dem Stamme des Lingualis einerseits und des Hypoglossus andererseits stehen.

In einer höchst ungezwungenen Weise dagegen erklärt sich die ganze, sonst räthselhafte Anordnung mit der Annahme: dass die, sei es nun direkt oder durch die Vermittlung des Ganglion submaxillare an den Hypoglossus tretenden Fädchen, als von dem Lingualis herrührend, eine sensitive Bedeutung haben, und dass sie in oder an dem Stamme des Zungen-
fleischnerven bis zu den Stellen zurücklaufen, an welchen es ihre Bestimmung ist, sich in der Peripherie zu verbreiten.

a. Motorische Aeste.

b. Sensitive Zweige.

Obgleich wir nach den bisher gewonnenen und im Voranstehenden niedergelegten Ansichten diese Zweige in Wahrheit

Die sensitiven Zweige des Zungenfleischnerven des Menschen

nicht als dem Hypoglossus eigene, sondern nur als ihm vom Ramus lingualis des Quintus beigemischte und von ihm wieder abgetretene Bestandtheile betrachten müssen, und so sehr wir sie daher konsequenter Weise nicht beim Hypoglossus aufführen sollten, so erschien es doch für diese Arbeit zur näheren Motivirung durchaus notwendig.

Unter die zu meiner Kenntniss gekommenen Angaben von Hypoglossusrzewigen, welche wohl nicht anders denn als sensitive gedeutet werden können, gehören folgende von Valentin gemachte Eröffnungen. Der Zungenfleischnerv entsendet nach diesem Beobachter:

α. Obere Gefässzweige, eine Reihe, die theils zur Hirnschlagader, theils zur Drosselvene gehen (Hirn- und Nervenlehre S. 518).

β. Untere vordere Gefässzweige. Sie treten an dem vorderen und inneren Theile des Zungenfleischnerven theils aus, theils ein (was soll dies heissen? L.), stehen unter einander und mit den Verbindungsästen mit dem herumschweifenden Nerven in zahlreichster Gellechtvereinigung und setzen sich in die den Anfang der Hirncarotis umstrickenden Geflechte fort (S. 519).

γ. Die Zweige für die Zungenschlagader, ein Hauptast, der aber unmittelbar nach seinem Ursprunge noch mehr Geflechtästen aus dem Zungenfleischnerven aufnimmt (S. 522).

δ. Ein Zweig für die Unterkieferdrüse entspringt mit 1—3 Wurzeln aus der äusseren Fläche des Zungenfleischnerven, geht nach oben und vorn unter und nach innen von der Sehne des zweibäuchigen Kiefermuskels empor, tritt mehrfach gespalten von unten her in den vorderen Theil der Unterkieferdrüse, verzweigt sich in ihr vielfach, und anastomosirt hierbei mit ihren Zweigen aus dem fünften Nervenpaar (S. 522).

Von diesen durch andere Beobachter nicht bestätigten und zum Theil höchst eigenthümlich formulirten Angaben Valentins konnte ich nach zahlreichen Untersuchungen nur eine, nämlich die sub α. aufgeführte, die Gefässzweige zur Drosselvene betreffende, richtig finden.

Bei der Allgemeinheit jener Mittheilung kann man es übri-

Es erscheint praktisch, die Nerven nach den Stellen ihres Abganges zu betrachten, als:

Hier aber müssen wir zunächst eine Betrachtung des bezüglichen anatomischen Gebietes vorausschicken.

Diese Öffnungen sind es, durch welche kleine Venen aus den genannten Knochenabschnitten in grössere Venen des Canalis hypoglossi heraus, und feine arterielle Zweige, sowie Nervenelemente von da aus in den Knochen hinein treten.

In einem von Henle 1) untersuchten Präparate der Götting. anatomischen Sammlung mündete der Canalis condyl. posterior in den Canalis hypoglossi herein.

Es wird Niemandem entgehen, welche Wichtigkeit die

1) Bemerkungen über den Bau der normalen Menschenschädel 1852. S. 15.
Kenntniss jenes Venenkränzes um den Stamm des Hypoglossus bei seinem Eintritte in den Canalis condyl. ant. für eine naturgemässe Deutung mancher pathologischen Erscheinungen gewinnen kann. Es ist nicht daran zu zweifeln, dass Ueberfüllungen jenes Venenkränzes störend auf die Leitung des Hypoglossus einwirken müssen. Wenn es z. B. nicht in A brede zu stellen ist, dass bei Betrunkenen die Venen des Kopfes überfüllt sind, so wird man nicht umhin können, bei jenen den famosen Zungenschlag vom Drucke des Circellus venosus auf den Stamm des Zungenfleischnerven wenigstens zum Theil abzuleiten u. dgl. m.

In den Canalis hypoglossi tritt von aussen her eine Arterie. Es ist das oberste Ende der Art. pharyngea ascendens, welches als ein Gefässchen von 1/2 Linie Dicke am Ausgange jenes Kanales sich spaltet und sodann in feinerer Verzweigung sich sowohl an den Wänden jener mit dem Zungenfleischnerven in nächster Beziehung stehenden Venen verliert, als auch durch die kleinen Oeffnungen im Canalis hypoglossi zur Knochensubstanz, sowie zu der nächst dem Eingange in den Kanal befindlichen Dura mater gelangt. Es hat das Gefässchen durchaus die morphologische Dignität eines Ramus spinalis.

Die aus dem Stamme des Zungenfleischnerven meist an der Stelle seines Austrittes aus dem Canalis hypoglossi abgehenden Nervenzweigehen sind bald einzelne sehr dümm, oder einickeres, aber jedenfalls nur 1/4 Linie starkes Fädchen, welche alsbald in Reiserchen zerfallen. Die Nervchen haben eine doppelte Bedeutung, indem sie einerseits in den Wänden des Sinus occipitalis und des Circellus hypoglossi verbreiten, und andererseits durch die kleinen Oeffnungen an der Innenfläche des Canalis hypoglossi neben Blutgefässchen in die Diploc der Schuppe des Hinterhauptbeines, des Körpers und der Gelenksfortsätze jenes Knochens gelangen. Diese Knochenzweigehen, welche man leicht nebst den Blutgefässchen mit der Pincette aus jenen kleinen Oeffnungen herausziehen kann, haben durchschnittlich nur eine Breite von 0,028 mm. und sind aus nur 6—8 Nervenröhrchen zusammen-
Die sensiblen Zweige des Zungenfleischnerven des Menschen. 81

gesetzt. Die gleichzeitige Beziehung jener Nervenzweige zu
Knochen und zu Venen wird ihre grosse morphologische Ver-
wandtschaft mit den Rami sinuvertebrales ¹) der Spinalnerven
auf den ersten Blick erkennen lassen.

b. Sensitive Zweige, welche aus dem Stamme des Hypoglossus abtreten, mehr oder weniger tief unterhalb des Canalis hypoglossi.

Während man von den so eben sub a. beschriebenen Nerv-
chen und ihren Beziehungen bisher auch nicht eine Ahnung
gehabt hat, so kann man die Kenntniss der im Folgenden
zu beschreibenden Nervchen auf die vage Angabe Valen-
tin's, welcher (S.518) „Gefässzweige (des Hypoglossus) zur
Drosselvene“ namhaft macht, vielleicht beziehen.

Ohne Ausnahme finde ich 1—2 Centimeter unter dem Canalis hypoglossi aus dem hinteren Umfang des Zungenfleisch-
nerven ein \(\frac{1}{3} \) Linie starkes, oder 2—3 feinere Fädchen so
unter spitzen Winkeln abgehen, dass es durchaus den Ein-
druck hat, als gehen sie aus centripetal verlaufenden Fa-
sern hervor. Die Zweige wenden sich nach rückwärts und
verlieren sich in dem inneren Umfang der Wandung der Ven.
jugul. int.

Ich habe mich öfters davon überzeugt, dass ein oder das
andere feinste sympathische Zweigchen aus dem Gangl. cerv.
icae supremum sich an jene Venennervchen anlegt, um sich
gleichzeitig mit ihnen zu verbreiten.

Die Präparation dieser Nerven gehört ohne Frage zu den
schwierigsten und zeitraubendsten neurologischen Arbeiten.
Man muss mit der grössten Sorgfalt die untere Wand des Canalis hypoglossi abtragen, und dann von der inneren Seite
her dem Zug des Zungenfleischnnerven unter sauberer Präpa-
ration aller in das Gebiet fallender und namentlich vom Gangl.
cervic. supr. herrührender Zweigehen mit grösster Aufmerk-
samkeit folgen. Dass zur Controle gegen die Verwechslung
mit Zellstofffäden oder feinen, nicht injicirten Blutgefässen

¹) Vgl. meine Schrift: Die Nerven des menschlichen Wirbelkanales.
Tübingen 1850.

Muller's Archiv, 1866.
das Mikroskop in Anwendung gebracht werden muss, bedarf wohl kaum einer besonderen Bemerkung.

Erklärung der Abbildung.

Die untere Wand des Canalis hypoglossi wurde mit einem Theil des Proc. condyl. entfernt.

Aus dem Stamm des Hypoglossus geht ein Nervchen g. hervor, welches sich verzweigend theils in den Knöchen, theils in die Wändungen der Venen des Sinus occipitalis geht.
Über die Micropyle der Fischeier und über einen bisher unbekannten, eigenthümlichen Bau des Nahrungsdotterreifer und befruchteter Fischeier (Hecht).

Von

K. B. Reichert in Breslau.

I. Über die Micropyle der Fischeier und über die Eihüllen derselben im Allgemeinen.

(Hierzu Taf. IV. Fig. 1—4.)

Am zweiten Osterfeiertage erhielt ich durch die Güte des Herrn Prof. Bruch dessen Abhandlung „über die Befruchtung des thierischen Eies und über die histologische Deutung desselben" (Mainz, Ostern 1855), aus welcher ich ersah, dass der Verf. bereits im Herbst 1854 an den reifen Eiern der gemeinen Forelle die Micropyle beobachtet hatte. Mehrere Wochen später erschien auch die briefliche Mittheilung Bruch’s über denselben Gegenstand in der Zeitschrift für wiss. Zool. (Bd. VII. p. 172). Es trafen mich diese Mittheilungen bereits in voller Beschäftigung mit der Micropyle, die ich während meiner Untersuchungen über die Entwicklung der Fische bemerkt hatte. Ich sah sie zuerst beim Hecht, und deutete sie so wie Bruch, obschon ich keine Kenntniss von seiner Entdeckung hatte, auch nicht wusste, dass Doyère die Micropyle bei Syngnathus beobachtet hatte. Seitdem habe ich die Micropyle bei allen hier zu Markte kommenden Cyprinoiden (Cyprinus Carpio, Carassius; Leuciscus Dobula, rutilus, erythrophthalmus; Chondrostoma Nasus,Abramis etc., Tinea Chry-
sitis etc.), ferner beim Wels und beim Kaulbarsch leicht wiederfinden können. Bei *Perea fluviatilis* habe ich sie bisher vergebens gesucht. Dass die Micropyle der Fischeier so lange sich der Beobachtung entzogen hat, ist wohl dem Gebrauch des Mikroskops bei Untersuchung der Fischeier zuschreiben. Bei Anwendung der Lupe giebt sich die Micropyle auffällig genug durch einen spiegelnden Flecken der Eihüllen in der Nähe der Keimstelle des Dotters, wie schon Bruch bemerkt, zu erkennen. Diese spiegelnde Fläche ist besonders deutlich an reifen Eiern der Cyprinoiden, deren Eihülle eine sammtartige Oberfläche besitzt, die an der bezeichneten Stelle fehlt; sie wird übrigens auch beobachtet, wenn eine solche sammtartige Oberfläche nicht vorhanden ist, da die trichterförmige Eingangsstelle der Micropyle die geeignete Fläche zur Spiegelung bei gewissen Beleuchtungen darbietet. Werden reife Hechteier unter Wasser beobachtet, in Folge dessen die Hülle des Eies sich erweitert und ein wasserriches Fluidum zwischen ihr und dem Dotter sich ansammelt, so markirt sich die Micropyle als ein kreisförmig begrenzter, durch seine grössere Durchsichtigkeit vor der Umgebung sich auszeichnenden Flecken von $\frac{1}{6} - \frac{1}{8}''$ im Durchmesser, der in seinem Mittelpunkte eine weissliche, mehr undurchsichtige Stelle besitzt. Das Aussehen erinnert dann ausserordentlich lebhaft an das des Keimbläschens bei Hühnereiern, welches durch die Dotterhaut durchschimmert. Daher möchte ich kaum bezweifeln, dass bereits v. Bär die Micropyle bemerkt habe.

Die Beschreibung der Micropyle bei den Fischeiern, wie ich sie gefunden, macht es notwendig, auf die Beschaffenheit der Eihüllen näher einzugehen. Die Struktur und Textur der Eier ist durch die Aufmerksamkeit, welche die Micropyle neuerdings erregt hat, eine Tagesfrage geworden. Mit ihr ist wohl zugleich das dringende Bedürfniss hervorgetreten, die oft so komplizirten Hüllen des reifen Eies nach Genese und Beschaffenheit zu sondern und mit entsprechenden Namen zu belegen. Leider ist die Genesis selbst in Betreff des primitiven Eies noch eine Kontroverse, in Betreff der Eihüllen sogar ein noch mit geringen Erfolgen bebautes
Ueber die Micropyle der Fischeier etc.

Feld. Da künstliche Zusammenstellungen den Fortschritten in der Auffassung und Beurtheilung natürlicher Entwicklungsverhältnisse stets sehr hinderlich gewesen sind, so möchte es geraten sein, vom obigen Unternehmen einstweilen abzu-
teilen, oder wenigstens vor endgültigen Entscheidungen sich zu bewahren. Gleichwohl können und müssen schon gegen-
wärtig mit Joh. Müller und Leuckart nach den Umständen, unter welchen sich die verschiedenen Hüllen des Eies
bilden, zwei oder drei Kategorien unterschieden und zur Ver-
meidung von Verwirrungen bei der weiteren Bearbeitung des
Stoffes als Richtschnur festgehalten werden. Demgemäß hätte
man die primitive Hülle des Eies von den beiden anderen
Formen von Eihüllen, die erst secundär um die erstere sich
bilden, zu sondern.

Die primitive Hülle des Eies, für welche der Name „Dot-
terhaut“ ausschliesslich zu reserviren wäre, fehlt ursprünglich
wenigstens, was neuerdings auch von Leuckart (Ueber die
Mikropyle und den feineren Bau der Schalenhaut etc.; Müll.
Arch. 1855, p. 104)¹ in Betreff der Insekteneier hervorgehoben
will, keinem Eie. Sie ist stets strukturlos, umgibt zunächst
den Dotter, wenigstens den Bildungsdotter und das Keim-
bläschen, und repräsentirt nach meinen Erfahrungen die Zel-
lenmembran derjenigen Eierstockszelle, die sich zum Eie aus-
bildet. Ob sie zugleich auch einen von mir sogenannten Nah-
grundsdotter umhüllen kann, ist eine Frage, die zur Zeit sich
nicht sicher beantworten lässt. Eine Substanz, welche „Nah-
grundsdotter“ genannt werden darf, muss neben dem Bildungs-
dotter in der primitiven Eibülle, also innerhalb der Dotter-
haut sich gebildet haben und später bei der Entwicklung des
befruchteten Eies nur als Nahrungssubstanz verwendet wer-
den. Für den sogenannten Nahrungsdotter der Eier von be-
schuppten Amphibien und Vögeln ist das erste und wich-
tigste Kriterium, — da die zweite Eigenschaft auch an-

¹) Bei Absendung des Manuskripts war mir nur der im zweiten
Hefte des Müllerschen Archivs (1855) enthaltene Theil der Abhand-
lung Leuckart’s bekannt.
deren Bestandtheilen des Eies zukommen kann —, durch H. Meckel's Beobachtungen über die Bildung des Hühner-Eies zweifelhaft geworden. Bestätigen sich die Beobachtungen dieses Forschers, so würden sowohl die sogenannte Dotter- substanz der Vögeleiher (Schwann's Zellen der Dottersubstanz und der Dotterhöhle), als auch die sogenannte Dotterhaut diese Namen nicht mehr beibehalten können. Dagegen habe ich bei Fischeiern mich nicht überzeugen können, dass der daselbst vorkommende Nahrungsdotter in gleicher Weise, wie nach den Mittheilungen H. Meckel's bei den Vögeleiern, sich bilde; die fragliche Substanz scheint hier wirklich innerhalb der Dotterhaut zu entstehen.

auf aufmerksam, dass nur die Eikapseln Systeme von Poren oder Röhren besitzen, nicht aber die Schalenhäute.

Obige Unterscheidungen der Eihüllen nach den Verhältnissen, unter welchen sie entstehen, können, wie schon angedeutet, nur bestimmte Gesichtspunkte für weitere Untersuchungen und speziellere Distinctionen liefern, die aus ihren chemischen und morphologischen Eigenschaften zu entnehmen sein werden. Von geringerem Belange hierbei ist die Lagegerungsweise der verschiedenen Eihüllen übereinander, sofern uns die Geschichte ihrer Bildung nicht bekannt ist. Sind alle drei Kategorien von Eihüllen vorhanden, so liegt zu Tage, dass der Bildungsdotter zunächst die Dotterhaut umgiebt, dass die nächsten Schichten den Eierstockshüllen und die oberschlichsten den Eileiterhüllen angehören. Liegen aber nur zwei Arten von Eihüllen vor, so ist aus der Lagerungsweise allein nicht zu erschliessen, welche Eihüllen man vor sich
habe. Ist die Dotterhaut erhalten, so können mit ihr sowohl Eierstock- als Eileiter-Hüllen gepaart sein; ersteres findet sich beim Frosch, auch bei den Fischen, letzteres bei *Ascaris mystax.* Es könnte aber auch geschehen, dass die Dotterhaut bei starker Ausbildung der secundären Eihüllen sich der Beobachtung entzieht oder vielleicht schon vor Beginn der Entwicklung des Embryo wirklich schwindet, und die vorliegenden Ei-Umhüllungen wären dann zu den secundären zu zählen. Bei allen diesen Schwierigkeiten ist nicht einmal in Betracht gezogen, dass die beiden Formen von secundären Eihüllen selbst wiederum aus differenten Schichten bestehen können. Liegt endlich nur eine einzige Eihülle vor, die auch unmittelbar den Bildungsdotter umgeben mag, so ist auch diese nicht einmal in allen Fällen auf die Dotterhaut zu deuten, da beim Schwinden der Dotterhaut eine homogen geformte Haut, die sich später im Eifollikel oder in den Eileitern um sie gebildet hat, eine solche Lage erhalten kann. Ob wir dabin gelangen werden, die verschiedenen Eihüllen in allen Fällen nach dem chemischen Verhalten und der Textur zu unterscheiden, lässt sich noch nicht mit Bestimmtheit voraussagen. Auf eine eigenthümliche, von J. Müller hervorgehobene Beschaffenheit der Eierstockshüllen des Eies der Fische gegenüber den im Oviduct gebildeten Eischalen wurde aber hingewiesen. Auf der andern Seite finde ich, dass die Eileiter-Hülle von *Ascaris mystax,* welche im Profil betrachtet durch optische Täuschung ein radial gestreiftes Aussehen hat und auch so von Meissner dargestellt worden ist, bei genauerer Untersuchung auf der ganzen Oberfläche dicht gedrängt nebeneinanderstehende Grübchen besitzt; — ein Texturverhalten, das auch an Eihüllen der Fische der Borkenkäfer vorkommt, die im Eifollikel sich gebildet haben.

An den reifen Fischeierern, die ich auf die Beschaffenheit der Micropyle untersucht habe, konnte ich mit Sicherheit zwei Eihüllen unterscheiden; beide stammen aus dem Eifollikel und beide umgeben den Bildungsdotter zugleich. Die nach innen gelegene zeichnet sich bei allen untersuchten Fischen durch die punktierte, chagrinartige Zeichnung aus, worauf bereits C. Vogt (Embryol. des salmones;
p. 9) aufmerksam gemacht hat. Die sowohl an der Inner-
als an der Aussenfläche der Membran sichtbaren, dunkeln
Pünktchen sind oft unmessbar fein, so bei *Leuciscus erythroph-
thalmus*. Beim Hechtei treten sie deutlicher hervor; bei den
Eiern von *Cyprinus carpio* sind sie am auffallendsten. Aubert
bemerkt (Zeitsch. für wiss. Zoolog. Bd. V, p. 94), dass die
Punkte beim Hechtei eine grosse Regelmässigkeit in ihrer
Anordnung darlegen, indem sie „an den Kreuzungspunkten
symmetrischer, sich schneidender Kreislinien, sich schneidender Kreislinien liegen."
Beim Hecht zeigen die Punkte allerdings gewöhnlich eine lineare
Anordnung in krummen Linien, die in kleineren Bezirken pa-
allel nebeneinander hinziehen. Ob die Linien einem Kreise
angehören, lässt sich kaum mit Sicherheit ermitteln. Selten,
oft gar nicht, sah ich vollkommene Kreise; man hat immer
Kreisabschnitte vor sich, welche dann an eine Gruppe ande-
er Kreisabschnitte anstossen, deren Zug eine andere Richtung
hat; in dieser Beziehung schien mir eine grosse Unregel-
mässigkeit obzuwalten. Bei den Eiern anderer Fische tritt
die lineare Anordnung der Punkte unter normalen Verhält-
nissen kaum hervor; bei *Cyprinus carpio* liegen die Punkte
ziemlich regelmässig nach allen Richtungen etwa \(\frac{1}{600} - \frac{1}{1000} \) von einander entfernt. Dagegen kann in Folge optischen Be-
trugs eine jede punktirte Haut stellenweise gestreift erschei-
nen. Es geschieht dieses jedes Mal, wenn eine krumme
Fläche, mag sie einer kegelförmigen Erhebung oder einer
trichterförmigen Vertiefung, einer erhabenen Längsfalte oder
dennd einer Randfalte des Präparates angehören, in das
mikroskopische Bild aufgenommen wird; es addiren sich hier
die in einer Richtung auf der krummen Fläche aufeinander
folgenden Punkte zu einer Linie. Man erblickt dann sternför-
mige Figuren, ein- oder zweiseitig gefiederte Zeichnungen,
und an einer Randfalte oder bei einer Ansicht auf die Dotter-
kugel im Profil scheint die Eihülle durch ihre Dicke hindurch
radiär gestreift zu sein. Joh. Müller hat in einer Anmer-
kung zu den Remakschen Mittheilungen über die Beschaffen-
heit der Eihüllen (Müll. Arch. 1854, p. 256) auf diesen opti-
schen Betrug aufmerksam gemacht; auch Aubert hat sich
Ueber die Micropyle der Fischeier etc.

ferner, dass sie einen geschichteten Bau besitzt, was auch Remak an Eiern, die drei Monate lang in einer Mischung von doppeltchromsaurem und doppelschwefelsaurem Kali gelegen hatte, bemerkte. Die Dicke der punktierten Haut schwankt zwischen $\frac{1}{130}''$ — $\frac{1}{200}''$.

Es mag nunmehr die Frage aufgeworfen werden, welche Bedeutung die chagrinartig gezeichnete Eihülle der Fische habe? Sie umhüllt unmittelbar den Dotter, sowohl den Bildungs- als den Nahrungsdotter. Alle meine Bemühungen noch eine andere Eihülle an ihrer Innenfläche aufzufinden, sind gescheitert. Bei der Beschreibung der Micropyle habe ich einer glashellen Schicht zu gedenken, die an der Innenfläche der punktierten Haut in der Nähe der Micropyle sich befindet. Dieselbe erstreckt sich aber nicht als Hülle über den ganzen Dotter hinweg. Die punktierte Haut könnte also entweder die Dotterhaut selbst sein, oder eine secundäre Hülle, die im Eifollikel entweder um die ursprüngliche Dotterhaut sich absetzte oder von der Membrana granulosa herzuleiten wäre, wobei vorausgesetzt würde, dass die Dotterhaut entweder geschwunden sei oder vorläufig sich der Beobachtung entziehe. Die kleinsten und jüngsten Eier der Fische besitzen eine glashelle, homogene Hülle, ohne Punktirung und von nicht messbarer Dicke; sie darf als Dotterhaut angesehen werden. Mit der Vergrösserung der Eichen verdickt sich zugleich die Dotterhaut, und, wenn dieselbe, z. B. beim Kaulbarsch, auch nur die Dicke von $\frac{1}{300}''$ hat, so wird an ihrer Oberfläche bereits die punktierte Zeichnung wahrgenommen. Bei Eiern des Kaulbarsches von $\frac{3}{4}$ mm im Durchmesser, hat die punktierte Haut bereits eine Dicke von $\frac{1}{300}''$ und zeigt die Beschaffenheit, welche oben beschrieben wurde. Zu keiner Zeit der Entwicklung der Eier lässt sich eine Erscheinung wahrnehmen, aus welcher zu schliessen wäre, dass die Verdickung der ursprünglichen Eihülle durch Absonderungsschichten von aussen her, von dem Epithelium des Eifollikels, herbeigeführt werde. Da ferner das punktierte Ansehen der Eihülle erst mit der Verdickung sichtbar wird, so muss gefolgt werden, dass die chagrinartig gezeichnete Eihülle der reifen Fischeier
nicht die ursprüngliche Dotterhaut sei, sondern eine sekundäre Eihülle, die aber durch Ablagerung von Verdickungsschichten des Eies nach aussen um die Dotterhaut sich gebildet hat; dafür spricht auch ihr geschichteter Bau.

1) Ich habe mich dafür ausgesprochen, dass die Pünktchen der chagriuartig gezeichneten Eihülle der optische Ausdruck von Ausmündungsstellen von Röhrchen sein können, obschon eine radiäre Streuung durch die Dicke der Eihülle hindurch nicht bemerkbar sei. Dies kann und wird geschehen, wenn das Lichtbrechungsvermögen der Füllungsmasse dieser Röhrchen und das der Umgebung nicht verschiedenen ist. Bei der Beschreibung des Baues des Nahrungsdotters beim Hechtei werde ich eine Substanz zu besprechen haben, die nachweislich von viel stärkeren Röhren durchsetzt wird, und die am frischen Ei gleichfalls nur die Ausmündungsstellen markirt. Ich habe ferner beobachtet, dass die gallertartige Eihülle von Rana temporaria im von Wasser aufgequollenen Zustande von unmessbar feinen Pünktchen übersät ist, und vermuthe aus dem Verhalten der Zoospermien beim Eindringen in diese Substanz, was bereits Bischoff beobachtet hat, dass sie die optischen Ausdrücke von Ausmündungsstellen von Röhrchen darstellen, obschon sich die Röhrchen selbst beim Durchzuge durch die Hülle nicht nachweisen lassen; die Zoospermien dringen in diese Substanz zunächst nur ein, wenn der Saame mit Wasser verdünnt mit dem Ei in Berührung kommt, und wenn darauf die gallertartige Hülle aufzuquellen beginnt; die Aufquellung findet ohne Wasser nicht statt, und die Befruchtung bleibt ans. Das Eindringen der Zoospermien hält ferner gleich dem Schritt mit der von aussen nach innen vorschreitenden Aufquellung, und die Zoospermien sind dann radiär und zuweilen auch in solchen Entfernungen von einander gestellt, als ob sie in den, den Pünktchen entsprechenden Röhrchen gleichsam, vielleicht auch wirklich aufgesogen wären. In das Innere des Eies, also durch die Dotterhaut hindurch, sah ich kein Saamenkörperchen eindringen; sie halten still an der Grenze der Dotterhaut. Verschweigen darf ich übrigens nicht, dass die Pünktchen nach der Aufquellung der gallertartigen Hülle zu sein für das Hindurchtreten der Saamenkörperchen erscheinen; sie werden vielleicht vor der Aufquellung grösser sein, doch lässt sich dann Nichts beobachten.
übertrifft sie die punktierte Haut sehr bedeutend an Dicke und ist durch die leicht sichtbaren, radiären Kanälen ausgezeichnet. Ob diese Kanälen mit den in der punktierten Haut vermuteten Röhrenchen offen kommunizieren, ist nicht zu ermitteln gewesen. Die Kanälen der äusseren Eihüllen sind an Zahl viel geringer, als die Punktechen der chagrinartig gezeichneten Eihülle; sie scheinen ausserdem, wie J. Müller anführt, ebenso wie an der Aussenfläche, so auch an der Innenfläche mit einer trichterförmigen Erweiterung zu enden. Bestände also ein kontinuirlicher Zusammenhang, so müssten die weiteren Kanälen der äusseren Eihülle plötzlich in eine Anzahl der feineren Kanälen der inneren Eihüllen übergehen. Uebrigens spricht gegen einen solchen Zusammenhang die ziemlich leichte Trennbarkeit beider Eihüllen.

Bei anderen Fischen hat die zweite Eihülle eine andere Beschaffenheit. An reifen, aus der Bauchhöhle herausgetretenen Eiern des Hechtes findet sich nach aussen von der punktierten Haut eine vollkommen durchsichtige, homogene, glashelle Schicht von 1/270" Dicke. Sie ist so durchsichtig, dass sie sehr leicht übersehen werden kann und erst durch einen lichten Saum, mit welchem die punktierte Haut gegen die umgebende gefärbte Flüssigkeit und gegen anrückende Körperchen sich abgrenzt, auf ihre Existenz aufmerksam gemacht. Doch hat schon Aubert (a. a. O.) hervorgehoben, dass die punktierte Haut, wenn sie einige Zeit in Wasser, namentlich in besamtlem Wasser gelegen, sich an vielen Stellen in zwei Härte trenne, deren äusserste sehr dünn, fein granulirt (?) und unregelmässig erhoben sei, während die innere, dickere mit feinen, radientförmig gestellten Querstreifen versehen sein soll. Nach meinen Beobachtungen lässt sich die erwähnte Schicht an jedem frisch unter Wasser oder Jodwasser beobachteten Eie wahrnehmen; sie erscheint dann auch niemals granulirt, sondern so klar und durchsichtig, wie das umgebende Wasser. Die Eihülle ist von zäher Konsistenz. An Eiern, die in Chromsäure oder Salpetersäure (2%) gelegen haben, lässt sie sich leichter von der punktierten Haut
abtrennen; im frischen Zustande des Eies habe ich ihre Abtrennung von der punktierten Haut nicht bewirken können.

Eine ähnlich beschaffene zweite Eihülle beobachtete ich an reinen Eiern des Kaulbarsches, des Döbel, der Schleye und anderer Cyprinoiden, mit dem Unterschiede, dass nicht selten, wie z. B. beim Schley, an gewissen, nicht näher zu bezeichnenden Stellen eine Struktur hervortritt, welche bei anderen Cyprinoiden über die ganze zweite Eihülle sich erstreckt. Auch auf diese Struktur der Eihüllen bei den Fischen hat zuerst J. Müller hingewiesen. Bei *L. erythrophthalmus* und *C. Nasus* sah ich die in Rede stehende Bildung am ausgezeichnetsten. Die Eihülle ist auf der ganzen Oberfläche samtartig durch die Anwesenheit von kleinen cylindrischen Stäbchen mit abgerundeten Enden, die ziemlich dicht gedrängt und senkrecht oder radiär gestellt sind (Taf. IV Fig. 1). Sie haben ein fettähnliches, mikroskopisches Ansehen und sind von so zäher Konsistenz, dass sie bei Zerrungen sich fadenförmig ausziehen. Bei nicht übermässiger Zerrung bleiben sie an der inneren Eihülle haften; die an diese Hülle zunächst angrenzende Partie des Stäbchens zieht sich fadenförmig aus und geht weiterhin in ein knopfförmiiges Ende über; das Präparat nimmt sich so aus, als ob mit Köpfchen versehene, fadenförmige Zoospermien mit ihren Schwänzchen sich radiär gegen die Eihülle gestellt hatten (Fig. 1 Tab. IV). Die Länge der Stäbchen schwankt zwischen $\frac{1}{300}''$ und $\frac{1}{250}''$, die Breite zwischen $\frac{1}{655}'' - \frac{1}{500}''$. An noch unreifen Eiern der Plötze überzeugte ich mich, dass die Stäbchen mit ihrer Basis in eine homogene, glashelle Schicht eintanzen und nur mit den abgerundeten Enden frei hervorragten. Diese glasrhelle Schicht ist wohl dieselbe, welche beim Hechtei allein als zweite Eihülle erscheint, und die bei anderen Cyprinoiden nur stellenweise durch Gruppen von Stäbchen durchsetzt wird. J. Müller betrachtet die Stäbchen als Ausläufer der punktierten Haut, die er für die Dotterhaut hält. Auch ist der Verfasser der Ansicht, dass die Stäbchen nur eine weitere Ausbildung von Fortsätzen seien, die an der chagrinartig gezeichneten Eihülle das Ansehen der Pünktchen bewirken; es
Ebenso unentschieden muss ich die Antwort in Betreff der beiden anderen Formen der behandelten zweiten Eihülle lassen, obgleich die innige Adhäsion derselben an der punktierten Haut für eine gleichartige Entstehung mit dieser spricht.

Es bleibt mir noch übrig eine Erscheinung zu berühren, die alle von mir untersuchten reifen Fischeier, mit Ausnahme derjenigen mit sammtartiger Eihülle, an der freien Oberfläche zeigen: ich meine das facettierte Ansehen. Beim Barsch liegt in der Mitte einer jeden etwa sechseckigen Masche des Netzes von 125" im Durchmesser, wie J. Müller angegeben, das trichterförmig erweiterte äussere Ende der Röhrenchen. Wenn man ein Eifollikel des Barsches zum Bersten bringt, und das Ei aus dem entstandenen Riss allmälig heraustritt, so bemerkt man, dass die Zellen der Membrana granulosa aus den Facetten sich herausziehen. Eine jede Facette wird grade so, wie es häufig bei den Insekten-Eiern vorkommt, von einer Zelle der Membr. granulosa ausgefüllt, und die Grössen beider entsprechen sich; es sieht genau so aus, als ob eine jede Zelle in die respektive Facette sich eingedruckt hätte. Die gefelderte Zeichnung an der Oberfläche der Fischeier lässt sich auch da wahrnehmen, wo, wie z. B. beim Hecht, nach aussen die mehr gallertartige, homogene und äusserst pellucide zweite Eihülle vorhanden ist. Es scheint, dass auch C. Vogt die hierauf bezüglichen Erscheinungen bei Coregonus Palaea gesehen habe. Der Verfasser erwähnt (a. a. O. p. 9), dass an dem unversehrten Eie von Coregonus Palaea, bei starken Vergrösserungen und günstiger Belichtung, auf der Eihaut eine Anzahl kreisförmiger Ringe sichtbar seien, die sich gleichsam zu einem Netzwerk vereinigen. Aubert bemerkt (a. a. O. p. 95), dass beim Hecht stellenweise die Pünktchen der chagrinarzig gezeichneten Haut zu unregelmässigen Vierecken zusammenfiessen und giebt davon zugleich eine Zeichnung. Weder die Zeichnung, noch die Beschreibung passt zu dem, was ich an der Oberfläche der Eihüllen des Hechtes, Barsches etc. sehe. Die facettierte Zeichnung am Hechtei macht sich dann bemerkbar, wenn man das unversehrte und nicht weiter gepräste Ei, nachdem es eine Quantität Wasser auf-
genommen, unter sehr schwacher Jodlösung beobachtet und dabei den Focus über die convexe Oberfläche hinwegbewegt. Die Grösse der Facetten entspricht auch hier der Grösse der Zellen in der Membr. granulosa, die sich in dieselben einbetten. Grade die Art und Weise, wie sich die Zellen in den Gruben der Facetten eindrücken, lässt es mir wahrscheinlich erscheinen, dass diese zweite Eihülle als ein Absonderungsprodukt der Membrana granulosa betrachtet werden könnte. Die mechanischen Verhältnisse, unter welchen das Ei im Ei-Follikel sich vergrössert, erlauben wohl die Voraussetzung, dass die Zellen der Membr. granul. ähnliche Eindrücke auch auf diejenigen Eier machen, welche eine zweite sammartige Eihülle besitzen, wenn auch hier aus leicht zugänglichen Gründen die facettirte Zeichnung nicht sichtbar wird.

Was nun die Mikropyle betrifft, so spricht sich darüber Bruch folgender Maassen aus. Die Mikropyle ist ein ziemlich langer, der Dicke der Eihaut (?) entsprechender Kanal von $\frac{1}{6} - \frac{1}{6}'$, der die Eihaut senkrecht von aussen nach innen durchbohrt. Dieser Kanal ist an seinen beiden Mündungen am breitesten; in der Dicke der Haut verengert er sich bedeutend, so dass seine Weite hier an der engsten Stelle nicht über 0,002 - 3", oft weniger beträgt. Beide Eingangsöffnungen sind von einander verschieden; die äussere ist weit und geschweift trichterförmig; die innere ist auch trichterförmig, endet jedoch auf der inneren Fläche der Eihaut mit einem sehr scharf ausgeschnittenen Rande, so dass der Eingang in den Kanal hier schroffer und plötzlicher erscheint. Meine Beobachtungen weichen in mehreren wesentlichen Punkten von diesen Angaben ab. Die Untersuchungen lassen sich nicht gut an einer vom Dotter vollkommen angefüllten Eihülle anstellen; man muss entweder, wie schon Bruch bemerkt, das betreffende Stück der Eihaut abschneiden und vom Dotter befreien, oder den Moment abwarten, in welcher die Dotterkugel in Folge des Eintritts von Wasser von der Eihaut sich entfernt hat. Man bemerkt dann, bei der Ansicht dieser Gegend im Profil, dass die Eihüllen sich etwas abflachen, dann aber eine trichterförmige Einstülpung nach der Höhle der
Ueber die Micropyle der Fischeier etc.

Eihaut machen, so dass an der Innenfläche der letzteren eine konische Papille hervortritt, die selbst mit der Loupe an der freigelegten Eihaut zu unterscheiden ist. Die Micropyle ist also nicht bloss ein kanalartiger Durchbruch durch die Dicke der Eihüllen, die wohl kaum bei den in Rede stehenden Fischen einen Durchmesser von \(\frac{1}{5} - \frac{1}{6}' \) haben möchten; die Eihüllen selbst formen sich zur Micropyle, indem sie eine, nach dem Inneren des Eies konisch vorspringende Einstülzung machen (Fig. 3). Durch diesen Vorsprung zieht ein einfacher, trichterförmiger Kanal von aussen nach innen, und dieser Kanal wird zu einem grossen Theile von den ein- gestülpnten Wandungen der Eihäute selbst, zu einem kleineren nur von den gleichsam durchbrochenen Wandungen der- selben begrenzt. Die Begrenzung der Höhle oder des Kanals in dem Vorsprung korrespondirt nicht mit der äusseren konischen Form des letzteren; sie ist vielmehr die eines einfachen Trichters (Fig. 3), an welchem passend der Eingang, der Grund und der Hals und hiernach drei Theile der Micropyle überhaupt unterschieden werden müssen. Der Eingang des Trichters ist nach aussen, das Ende des Halses gegen das Innere des Eies gerichtet.

Der Eingang (a) in die Höhle der Micropyle ist geschweißt trichterförmig; er erscheint einfach dadurch gebildet, dass namentlich die punktierte Eihülle in der bezeichneten Form gegen das Innere des Eies sich hineinstülpnt. Da, wo dieser Theil des Kanales an den mittleren Theil oder den Grund des Trichters anstösst oder in denselben übergeht, erhebt sich mehr oder weniger deutlich eine nach dem Binnenraum etwas vorspringende, ringförmige Leiste. Seine grösste Weite hat bei den verschiedenen Fischen etwa einen Durchmesser von \(\frac{1}{6} - \frac{1}{6}' \); seine Tiefe ist gleichfalls verschieden; sie steigt indess kaum über \(\frac{1}{6}' \). Textur und Dicke der punktierten Eihülle bleiben in diesem Theile der Micropyle ganz unverän- dert. Die äussere Eihülle dagegen schwindet allmälig, je mehr sie sich dem mittleren Theile der Micropyle nähert und nur in der schwach erhobenen, ringförmigen Leiste an der Grenze nimmt sie etwas an Dicke zu, um damit zugleich auf-
zuhören. Hat die äussere Eihülle die sammtartige Beschaffenheit, so hören die Stäbchen an der äusseren Oeffnung der Micropyle fast gänzlich auf; nur die homogene, dünne, glasige Schicht, in welche die Stäbchen auf der Oberfläche des Eies eingesenkt sind, geht in den trichterförmigen Eingang hinein, um dann in der bezeichneten, erhabenen Leiste zu enden (Fig. 4). Hier und da finden sich noch zerstreut einzelne Stäbchen in ihr vor. Die Länge dieser Stäbchen nimmt aber von aussen nach innen allmälig ab, so dass sie zuletzt nur als Kugelchen erscheinen (Vergl. Fig. 4). Besteht die äussere Eihülle nur aus einer homogenen, pelluciden Schicht, so zeigt sich die Veränderung in der allmälig Abnahme ihrer Dicke; im Uebrigen ist das Verhalten derselben ähnlich, wie das der homogenen Grundsubstanz der sammtartigen, äusseren Eihülle.

Der mittlere Theil der Micropyle (b) enthält den sogenannten Boden ihres trichterförmigen Kanales. Der Hohlraum hat ungefähr die Umgrenzung eines abgestumpften und abgerundeten Kegels, von dessen Spitze der Hals des Trichters abgeht (Fig. 1—4). Derselbe wird nur von der punktierten Haut umgeben, und an seiner Bildung ist diese Eihülle nicht nur mit ihrer Einstülpung, sondern auch mit der Dicke ihrer Wandung betheiligt: die punktierte Eihülle nimmt nämlich ganz allmälig an Dicke ab, so dass nur noch etwa der dritte Theil für den Durchbruch des Halses übrig bleibt. Der Boden des trichterförmigen Kanales ist etwa 1/60—1/70″ lang; die grösste Breite beträgt etwa 1/60″.

Der dritte und innerste Theil der Micropyle (c) enthält als Höhle den Hals des Trichters. Derselbe stellt sich als ein fast ganz cylindrischer Kanal dar, der den Rest der punktierten Haut radiär durchbricht. Seine Länge beträgt etwa 1/300—1/250″, die Breite 1/600—1/600″. Der Hals des trichterförmigen Kanals behält in den meisten Fallen dieselbe Breite durch die ganze Länge bei; nur zuweilen schien es mir, als ob er etwas verjüngt auslief. Ich habe die Höhle der Micropyle so dargestellt, wie wenn sie sich frei in die Höhle der Eihüllen öffne; es ist dieses sehr wahrscheinlich, allein

Aus obiger Darstellung ergiebt sich, dass der Kanal der Micropyle bei den von mir untersuchten Fischen nicht, wie es Bruch von Coregonus Palaea beschreibt, mit zwei trichterförmigen Öffnungen versehen ist, sondern die Form eines einfachen Trichters besitzt, dessen dünner Theil, der Hals, gegen das Innere des Eies sich wendet. Dagegen kann unter gewissen Umständen der Schein einer inneren trichterförmigen Öffnung entstehen. Die nach dem Inneren des Eies konisch hervorspringende Micropyle ist auf ihrer freien Fläche, also an der Innenfläche der punktierten Eihülle, von einer weichen, glashellen, eiweissartigen Schicht bekleidet (Fig. 2—4 g), die an der Basis des konischen Vorsprungs am dicksten ist und von hier aus sowohl gegen die Spitze des Kegels als auch weiterhin an der Innenfläche der punktierten Haut, in der Um-
gebung der Micropyle, sich allmäßlig verdünnt. Als ich nun zur genauerer Untersuchung der Micropyle eine derartige Falte schlug, dass die Innenfläche der punktierten Haut nach aussen lag und der Kanal der Micropyle gerade durch den Rand der Falte ging (Fig. 2), so schoben sich beim Druck des Präparates mittelst des Deckplättchens zwei Wälle vor, die die innere Öffnung des Micropylent-Kanals zu den Seiten begrenzten. Diese Wälle erhoben sich stärker oder traten mehr zurück und veränderten ihre Form, je nachdem der Druck verstärkt oder gemässigt wurde und in eine zerrrende Wirkung überging. Es betheiligt sich an der Bildung dieser Wälle nur die oben beschriebene, nachgiebige Eiweisschicht an der freien Fläche der Micropyle. Die Entstehung derselben wird leicht begreiflich, wenn man erwägt, dass durch die Faltenbildung die durch Einstülpung der Eihülle gebildete, äussere Abtheilung der Micropyle vollständig ausgeglichen wird und demnach die daselbst stärker angehäufte, eiseeraarte Schicht am linearen Rande der Falte sich wallartig erheben muss. Unter diesen Umständen kann der Schein einer trichterförmigen inneren Öffnung des Micropylent-Kanals entstehen; aber es ist auch nur ein Schein, wie ein Blick auf die naturngetrene Abbildung eines solchen Präparats ohne weitere Erläuterungen deutlich zu erkennen giebt. Es scheint übrigens nicht, dass Bruch ein solches Präparat vor Augen gehabt hat, da nach ihm die innere, trichterförmige Öffnung mit einem sehr scharf ausgeschnittenen Rande endigen soll. Sicher aber ist, dass der Kanal der Micropyle bei den von mir untersuchten Fischeiem niemals trichterförmig nach innen sich öffnet.

Die optischen Erscheinungen, unter welchen sich die Micropyle dem Mikroskopiker darstellt, sind sehr verschieden, jenachdem dieselbe von der Aussen- oder von der Innen-Fläche der Eihüllen oder im Profil und von der Seite betrachtet wird, ob man den Focus mehr auf ihren Kanal oder auf die freie Fläche ihrer Wandung gerichtet hat, oder endlich nach der Beschaffenheit der Eihüllen. Die Deutungen der vorkommenden Erscheinungen sind nicht schwer, sobald man
sich von dem Bau der Micropyle genügend unterrichtet hat, und hierzu dienen vor Allem die Bildung von Falten oder Durchschnitten, die mir gleichfalls einige Male gelungen sind. Von der Fläche, namentlich von der Aussenfläche betrachtet, markiren sich besonders die verschiedenen Durchschnitten des Micropylen-Kanals in Form von parallelen Kreisen (Fig. 1). Der kleinste, aber am kräftigsten kontourirte und in der Mitte gelegene Kreis gehört dem Halstheile des trichterförmigen Kanals an; um denselben läuft eine ziemlich scharf gezeichnete Kreislinie, die den Boden des Trichters in seinem Durchschnitt wiedergiebt; dann folgt gewöhnlich ein mehr granulirt gezeichneter Ring, der von der erhobenen Leiste am Uebergange des Einganges zum Boden des Trichters gebildet wird; den Schluss formiren ein bis zwei kreisförmige, leichte Schatten, die vom äusseren Rande des Micropylen-Kanals und vom reflektirten Lichte an den Wandungen der äusseren Abtheilung desselben herstammen. Bei der bedeutenden Tiefe des trichterförmigen Kanals treten die verschiedenen kreisför- migen Zeichnungen in einem und demselben Focalabstande weder alle zugleich, noch alle gleich deutlich hervor. Die Punkten der inneren Eihülle ordnen sich an dem in Rede stehenden mikroskopischen Bilde der Micropyle mehr oder weniger deutlich in strahligen Linien um den innersten Kreis.

II. Die Struktur des Nahrungsdotters reifer und befruchteter Hechteier.

Hierzu Tafel II. und III.

Die Struktur des Nahrungsdotters reifer und befruchteter Hechteier, die ich jetzt zu beschreiben habe, findet sich in schwachen Audeutungen auch bei einigen anderen Fischen, so beim Kanlbarsch, doch nirgend, nach meinen bisherigen Erfahrungen, so ausgeprägt und so auffallend als beim Hecht, daher ich mich in meinen Mittheilungen auf diesen Fisch beschränke. Werden reife unbefruchtete oder befruchtete Hechteier in Wasser, gleichviel ob samenhaltiges oder samenfreies, gelegt, so erweitert sich, wie bei den meisten Fischeiern, die Eihülle beträchtlich, und es bildet sich zwischen ihr und dem
Inhalt, den ich allgemein die Dotterkugel nennen will, eine Lücke, die sich mit sehr wasserreichem Fluidum anfüllt. Beim Zusatz von Salpetersäure schlagen sich darin weissliche Flocken nieder; das Fluidum ist also nicht reines Wasser, sondern enthält eine geringe Menge Eiweiss gelöst. Schon beim reifen, unbefruchteten Eie lässt sich dann bemerken, dass die Dotterkugel, wie bei beschuppten Amphibien und Vögeln, aus zwei ihrer Bedeutung nach ganz verschieden Bestandtheilen besteht, für die ich nach dem von mir zuerst gemachten Vorschlage (Beiträge zum heutigen Zustande der Entwickelungsgesch. Berlin 1843 p. 17) die Namen „Bildungs- und Nahrungs-Dotter“ beibehalten werde (Taf. I. Fig. 1. a. n.).

Veber die Micropyle der Fischeier etc.

1/40" Oeltröpfchen wahrgenommen. Sie liegen zerstreut einfach oder zu mehreren neben- und übereinander besonders zahlreich in der Gegend, wo der Nahrungsdotter von der Bildungsdotterschicht bekleidet wird; an der freien Oberfläche des Nahrungsdotters sind sie ursprünglich und der Mitte des Bildungsdotters gegenüber oft gar nicht zu finden. Wenn die Bildungsdotterschicht beim Uebergange in die erste Furchungskugel, welche hier als ein Kugelabschnitt auftritt, sich auf einen kleineren Bezirk der Oberfläche des Nahrungsdotters zurückzieht, so werden die unter ihr gelegenen Oeltröpfchen ebenfalls ganz einfach mechanisch und nicht, wie man vermutet hat, in Folge anderer geheimnisvoller Bewegungsmittel auf einen kleineren Raum zusammengedrängt. Man trifft daher die Oeltröpfchen später in mehrfacher Uebereinanderschichtung zwischen dem Embryo und dem Nahrungsdotter vor (Taf. IV Fig. 1. k). Außer den Konturen, die den Oeltröpfchen angehören, sieht man auf der ganzen Oberfläche des Nahrungsdotters zahlreiche Kreislinien von ganz anderem mikroskopischen Habitus. Die Notiz über ihre Grösse im frischen Zustande des reifen Eies ist mir verloren gegangen; die Kreise sind aber meist viel kleiner, als die kreisförmigen Kontouren der Oeltröpfchen. In manchen Gegenden haben sie alle eine ziemlich gleiche Grösse; an anderen Stellen wederum wechseln grösseere und kleinere Kreise entweder ganz unregelmässig mit einander ab, oder die kleineren Kreise überwiegen und enthalten grösseere eingestreut. Die in Rede stehenden mikroskopischen Bilder am Nahrungsdotter treten dem aufmerksamen Beobachter sogleich entgegen und können nicht weiter verwechselt werden; denn die kreisförmigen Kontouren der Oeltröpfchen mit ihrem Fettglanz unterscheiden sich zur Genüge von jenen Kreislinien, die zwar bestimmt und scharf gezeichnet sind, jedoch keine Spur von einem Fettglanz besitzen. Im Uebrigen aber zeigt sich der Nahrungsdotter vollkommen klar und homogen; außer den beschriebenen Bildern ist Nichts an ihm wahrzunehmen. Die zuletzt erwähnten Kreise liegen stellenweise ziemlich dicht aneinander; in anderen Gegenden lassen sie kleinere oder
größere Zwischenräume zwischen sich; auch dichter zusam-
menliegende, unregelmässige Gruppen werden durch leere
Interstitien von einander getrennt; die grössten leeren Zwi-
schenräume finden sich an demjenigen Pole des Eies, welcher
der Bildungsdotterschicht gegenüberliegt. Auf den ersten
Blick scheint es, als ob die beschriebenen Kreise die opti-
schen Ausdrücke von lichten, durchsichtigen Bläschen sind,
die in bezeichneter Weise die Oberfläche des Nahrungsdotters
überziehen; ja man wird sie für Zellen halten wollen, da sie
zuweilen eine dunklere Stelle, wie einen Kern, gewahren
lassen. Wir werden später sehen, dass die Kreise optische
Ausdrücke von feinen an der Oberfläche sich öffnenden Röhren
sind, welche den Nahrungsdotter durchziehen, aber in ihrem
Verlaufe am frischen Dotter, wegen der grossen Durchsichtig-
keit und wegen des mangelnden Unterschiedes des Licht-
Brechungsvermögens der Füllungsmasse und der Umgebung
der Röhrchen, nicht erkannt werden. In der herausgepressten
freien oder mit Wasser gemischten Dottermasse treten ver-
schiedene Bläschen und Kügelchen auf, die auch von Aubert
(a. a. O.) gezeichnet worden sind. Ihre künstliche Bildung ist
unvermeidlich in einer Masse, die aus Eiweiss, Fett und
Wasser gemischt wurde. Aubert macht auch auf gewisse
Bewegungen der Dottermasse aufmerksam, die er mit den
Eckerschen Dotterbewegungen in Verbindung bringt, und
von welchen er zugleich die Ortsveränderungen der Fetttröpf-
chen abzuleiten geneigt ist. Ueber die Ortsveränderung der
Oelträpfchen habe ich mich bereits ausgesprochen; die sonst
bemerkbaren Bewegungen an der gestörten und durcheinander
gemischten Dottermasse scheinen mir zu Adhäsions-, Diffu-
sions-, Verdunstungs- und chemischen Erscheinungen gerech-
net werden zu müssen.

Wird die Dotterkugel durch Chromsäure (20/o), durch eine
schwache Lösung von Salpetersäure oder durch Weingeist
erhärret, so treten die Struktur-Verhältnisse des Nahrungsdotters deutlicher zu Tage. Da die nunmehr zu beschreibende
Struktur des Nahrungsdotters andeutungsweise bereits am fri-
schen Eie sichtbar ist und bei den verschiedensten Erhärtungs-
Ueber die Micropyle der Fischeier etc.

mitteln stets auf gleiche Weise sich zu erkennen giebt, da endlich auch die Beschaffenheit derselben von der Art ist, dass die künstliche Entstehung durch die bezeichneten Mittel sich in keiner Weise ableiten lässt; so darf man den Gedanken nicht aufkommen lassen, als ob die betreffende Struktur vielleicht durch die Erhärtung selbst herbeigeführt worden sei. Nach der Erhärtung ist die Dotterkugel in toto gewöhnlich zu undurchsichtig für die mikroskopische Untersuchung. Um sie durchsichtiger zu machen, wende ich Essigsäure oder schwache Kalilösung an; Glycerin hat sich mir als unzweckmässig erwiesen. Essigsäure habe ich am meisten gebraucht, doch muss durch ihre Einwirkung die Dotterkugel nicht zu durchsichtig geworden sein, in welchem Falle, gerade so wie beim frischen Ei, die Strukturverhältnisse des Nahrungsdotters entweder sehr undeutlich werden oder wohl auch sich ganz der Beobachtung entziehen. An einer nicht zu durchsichtig gemachten Dotterkugel erkennt man dann leicht mit Hilfe des Mikroskops, dass der ganze Nahrungsdotter radiär von dunklen und hellen Streifen durchzogen wird. Lässt man das Auge über die Oberfläche desselben schweifen, so gewahrt man bald die auf der freien Oberfläche des Nahrungsdotters mehr zerstreut, unter der Bildungsdotterschicht oder unter dem sich entwickelnden Embryo dagegen zahlreich und dicht aufgeschütteten Fettkörperchen, desgleichen jene lichten, kreisförmigen Flecke, die wir als die einzigen Andeutungen der inneren Struktur des Nahrungsdotters an frischen Eiern kennen gelernt haben. Diese Flecke werden da, wo Fettkörperchen liegen, von diesen bedeckt. Ein Durchschnitt durch den Nahrungsdotter lässt das radiär gestreifte Verhalten im Inneren desselben schon mit unbewaffnetem Auge und namentlich ganz gut bei Anwendung der Loupe erkennen. Zu solchen Durchschnitten sind besonders die im Weingeist erhärteten Eier und Embryonen zu empfehlen; sie haben eine zäh-feste Konsistenz, während die Chromsäure und Salpetersäure die Substanz bröcklich machen. Schon bei Anwendung der Loupe kann man sich überzeugen, dass die an den Durchschnittsflächen sichtbaren Streifen von einem Centrum im In-
nern des ungefähr kugelförmigen Körpers ausgehen und nach der Oberfläche desselben hinziehen.

1. Die Streifenzüge gehen von der ganzen Peripherie der Nahrungsdotterkugel, scheinbar gleich Radien konvergierend, zu einer mittleren Region in derselben.

2. Diese mittlere Region liegt nicht genau in der Mitte der Kugel, sondern der oberen Fläche derselben etwas genähert.

3. Aus allen Längs-, Quer- und Horizontal-Schnittchen lässt sich entnehmen, dass diese Region oder das Scheitelfeld, nach welcher die Streifenzüge konvergierend verlaufen, eine gewisse Ausdehnung nach den Hauptdimensionen der Dotterkugel besitzt. Am auffallendsten ist die Ausdehnung in der Längsaxe; die bezeichnete Region beginnt in einiger Entfernung vom vorderen Pole und endigt in gleicher Weise auch hinten. Ist die Längsaxe in vier Theile getheilt, so umfasst diese Region etwa die mittleren beiden Theile (Fig. 6, 8, 9). Ihre Ausdehnung in der Richtung vom Rücken nach der Bauchfläche hin ist nicht so bedeutend; sie nimmt etwa das mittlere Drittheil des betreffenden Durchmessers ein (Fig. 3 u. 9). Am wenigsten ausgeprägt ist die Dimension dieser Region in der Richtung der Queraxe (Fig. 6, 8).

4. In einigen Fällen lief die Scheitel-Region der Streifenzüge am hinteren Pole des Nahrungsdotters in zwei Schenkel aus (Fig. 8 der Taf. II).

5. Wenn man die unmittelbar an der Schnittfläche oder in einem tieferen, scheinbaren Durchschnitt des Kugelsegmentes gelegenen Streifen oberflächlich übersicht, so scheinen sie alle gleich Radien gegen den Mittelpunkt der Kugel hin-

6. Die Streifenzüge verlaufen selten geradlinig; öfters haben sie eine langgezogene S-Form; am häufigsten bemerkt man, dass das scheinbar centrale Ende der Streifen mit einer flachen Krümmung gegen die Scheitelregion ausläuft und sich daselbst in die Tiefe zu verlieren scheint (Vergl. Fig. 2, 6, 7, 8, 9). Die Bogen gegenüberliegender Streifen greifen im Scheitelfelde öfters ineinander.

7. Die Streifung ist im Allgemeinen etwas gröber an dem vorderen Kugelsegment; konstant aber ist sie feiner am hinteren Pole und zuweilen auch an der hinteren und unteren Fläche des Nahrungsdotters (Vergl. d. Figg. f).

den Zügen derselben entsprechend bald lichter, bald dunkel und schwach granulirt gezeichnet sich darstellt. Diese Zeichnung erweckt zunächst die Ansicht, dass man es mit einem faserigen Gefüge zu thun habe. Alle Versuche jedoch Fasern durch Maceration oder durch mechanische oder chemische Mittel darzustellen, scheitern vollkommen. Die Substanz trennt sich in beliebig geformte Stücke nach allen Richtungen. Bei den im Weingeist erhärteten Dottern muss man schneidende Instrumente anwenden; die in Salpetersäure oder in Chromsäure erhärteten Eier zerbröckeln in bezeichneter Weise selbst bei leisen Berührungen. Welche Struktur der Substanz die streifige Zeichnung hervorruft, das lässt sich am besten anschaulich machen, wenn man feinere Schnittchen des Nahrungsdotters zur Beobachtung wählt, die nahezu senkrecht die radiären Streifen getroffen haben. In Fig. 12 ist ein solches Schnittchen dargestellt. Dasselbe zeigt sich sofort als eine von Öffnungen durchbrochene Substanz. Wo der Schnitt die Streifenzüge senkrecht getroffen hat, sind die Öffnungen vollständig kreisförmig; wo man es mit schrägen Schnittflächen zu thun hat, treten elliptische Figuren hervor. Aus dem Verlauf der Streifenzüge ergiebt sich, dass es nicht möglich ist, ein Schnittchen von grösserer Dimension zu gewinnen, an welchem nur kreisförmige oder elliptische Öffnungen sichtbar würden. Die Begrenzung der Öffnung ist scharf konturirt, aber auch bei starken Vergrösserungen nur einfach linear. Niemals gelingt es durch Druck oder chemische Mittel eine besondere Schicht von der Dottersubstanz, welche die Öffnung begrenzt, zu isoliren; die Substanz des Nahrungsdotters, in welcher sich die Öffnungen befinden, bildet auch unmittelbar deren Begrenzung. Da nun die Schnittchen aus jeder beliebigen Gegend des Nahrungsdotters in der bezeichneten Weise gefertigt stets dasselbe Verhalten zeigen, so folgt, dass wir es hier mit einer Substanz zu thun haben, welche von zahlreichen Kanälen durchbrochen wird; und leicht ist es dann, sich weiter zu überführen, dass die erwähnten lichten Streifenzüge die Bahnen dieser Kanälen bezeichnen und die dunkleren, graulirten Züge von der zwischen den Kanälen
gelegenen, also intertubulären Substanz des Nahrungsdotters herrühren. Diese Kanälchen haben demnach jenen allgemeinen Verlauf, welchen die Streifenzüge auf der freien Fläche und auf dem Durchschnitt der Halbkugeln zu erkennen geben. Am hinteren Pole des Embryo, wo die Streifen feiner sich darstellten, sind es auch die Kanälchen, die hier zugleich etwas dichter gedrängt stehen. Desgleichen sind alle Kanälchen in der Scheitelregion etwas feiner, erweitern sich dann allmählich in ihrem Zuge nach der Oberfläche der Kugel hin, um alsdann unmittelbar an der Oberfläche selbst in jener Zone, wo die Streifung unmerklich wird, gewöhnlich ziemlich plötzlich sich wieder zu verdünnen (Fig. 11). Wo die Kanäle sich verdünnen, nimmt in gleichem Maasse die Grundsubstanz an Masse zu. An der Oberfläche der Kugel ist letzteres am auffallendsten; die vermehrte Grundsubstanz verdeckt die peripherischen Enden der Kanälchen an dicken Schnittchen, und so entsteht daselbst die scheinbar streifenlose oder von Kanälchen freie Schicht der Grundsubstanz. An den Durchschnittsflächen der Halbkugeln kommen durchschnittene Kanälchen nur sparsam vor. Häufiger sieht man bei den mit Essigsäure mässig durchsichtig gemachten Halbkugeln, sowohl bei Betrachtung der Durchschnittsfläche als der freien Oberfläche, die durchschimmernden, scheinbar geraden oder schrägen Durchschnitte der Kanälchen, und darauf beziehen sich grösstentheils die kreisförmigen oder elliptischen Kontouren, die sich an den beigefügten Zeichnungen befinden. Die weitesten Kanälchen der durch Essigsäure etwas aufgequollenen Dotterkugel haben einen Durchmesser von etwa $\frac{1}{100}$"; die kleinsten besitzen eine Breite von $\frac{1}{400}$". Schliesslich habe ich hier noch hinzuzufügen, dass namentlich an dem vorderen Pole der Nahrungsdotterkugel einzelne Kanälchen auch ohne die erwähnte Verdünnung gegen die Oberfläche hinziehen.

Für die genauere Kenntniss der Struktur des Nahrungsdotters ist, von der Genesis abgesehen, die Beantwortung zweier Fragen von Wichtigkeit: wie endigen die Kanälchen und worin besteht ihre Füllung? Auf die zweite Frage weiss ich keine bestimmte Antwort zu geben. Sicher ist, dass die
Kanälchen mit einer tropfbar flüssigen Substanz gefüllt sein müssen, die viel Wasser und darin eine geringe Menge Eiweiss gelöst enthält, da man in ihnen nur hier und da flockige Niederschläge wahrnimmt. Da ferner, wie schon ange- deutet worden und später noch näher zu erweisen sein wird, die Kanälchen frei an der Oberfläche der Kugel sich öffnen, so stehen sie in offener Kommunikation mit dem Fluidum, welches den Dotter umspült. Es muss daher vorausgesetzt werden, dass dasselbe Fluidum auch den Inhalt der Kanälchen bilde, worauf auch die geringen Nieder- schläge bei den in Weingeist und Salpetersäure erhärteten Eiern hindeuten.

Hinsichtlich der zweiten Frage sind die Endigungen der Kanälchen in zwei Gegenenden aufzusuchen: an der Oberfläche der Kugel und im Centrum derselben, in der sogenannten Scheitelgegend der Kanälchen.

Das Verhalten der Endigung der Kanälchen an der Oberfläche der Nahrungsdotterkugel ist leicht und mit Sicherheit zu verfolgen; die Kanälchen endigen hier einfach, ohne trichterförmige Erweiterung, mit einer Öffnung. Schon bei Benach- rachtung der freien Flächen an den oben besprochenen, halbkugeligen Präparaten gelingt es, von der angedeuteten Endigung der Kanälchen sich zu überzungen. Indem man den Focus über die konvexe Fläche allmählich fortbewegt, bemerkt man zunächst die besprochenen, kreisförmigen Konturen, welche ich bereits als die Orificia der Kanälchen bezeichnet habe. Die Verbindung oder Beziehung dieser kreisförmigen Konturen zu den Kanälchen tritt an solchen Präparaten gleichwohl anfangs nicht so deutlich hervor, weil die Präparate etwas zu dick sind und dennoch bei ihrer Durchsichtigkeit in das mikroskopische Bild eine grössere Anzahl höher und tiefer gelegener Kanälchen aufnehmen, weil ferner die peripheri- schen Enden der Kanälchen ziemlich plötzlich auffallend an Breite abnehmen, und endlich vor Allem, weil die meisten Kanälchen nicht in grader Linie, sondern schwach gekrümmt auslaufen. Dennoch wird der geübte Mikroskopiker sich bald zurecht finden und das Auslaufen der Kanälchen in die Ori-

Müller's Archiv. 1856.

8
ficia namentlich in solchen Fällen kaum übersehen können, wann die Kanälchen eine grössere Weite auch bis an ihr Ende beibehalten und mehr gradlinig gegen die Oberfläche hinziehen. (Vgl. Fig. 10.) Alles jedoch wird deutlich und klar, sobald man sich ein Schnittchen mittlerer Dicke aus der oberflächlichen Schicht der Dotterkugel etwa in der Art verfertigt, wie es aus der beigefügten Figur leicht zu entnehmen ist. (Fig. 11.) Man hat hierbei besonders auch darauf zu achten, dass der kleine Kugelaabschnitt, wenn er mit der einen Schnittfläche auf dem Objekträger liegt, die gegenüberliegende Schnittfläche, so wie die freie Oberfläche des Präparates der mikroskopischen Untersuchung zu gleicher Zeit leicht zugänglich sind. Damit die Konturen der Kanälchen und ihrer Orificia schärfer hervortreten, ist es zweckmässig, die durchsichtig machenden Agentien zu vermeiden. Die freie Oberfläche eines solchen Schnittchens hat ein unregelmässig gefeldertes oder facettiertes Ansehen, welches von grösseren oder kleineren Grübchen herrührt. Die grösseren Vertiefungen sind gewöhnlich von unregelmässiger Begrenzung und rühren von den Eindrücken her, welche die Fetttröpfchen bei der Erhärtung des Dotters gemacht haben. Die kleineren Grübchen sind zahlreicher auf der Oberfläche verbreitet; nicht selten befinden sich mehrere im Grunde eines grösseren Grübchens. Sie sind kreisförmig oder elliptisch begrenzt, wenn sie eine schrägere Stellung gegen den Beobachter haben. Dass man es zunächst mit Vertiefungen an der Oberfläche des Nahrungsdotters zu thun habe, zeigt alsbald die nähere Untersuchung der Schnittränder; diese nämlich sind an allen denjenigen Stellen, wo der Schnitt durch die kreisförmigen Figuren hindurchgeht, dem entsprechend ausgeschnitten. Rich- tet man nun seine Aufmerksamkeit auf die Kanälchen, so sieht man ein jedes derselben seinen Verlauf gegen ein solches kleines Grübchen nehmen. Gemeinbin scheinen die Kanälchen in einiger Entfernung von dem Grübchen aufzuhören, wenn man beide Theile zugleich im Focus hat. Dieses wird aus dem Verlauf der Kanälchen begreiflich; man braucht nur den Focus zu verändern, dann schwindet der entferntere Theil.

Nachdem ich die Bedeutung jener auch an den frischen Dottern sichtbaren Ringe, die sich wie Konturen von lichten Bläschen ausnehmen, dargelegt habe, muss ich noch hinzufügen, dass diese Oeffnungen der Kanälchen bereits von Dr. Aubert gesehen, aber falsch gedeutet und zu anderen, ihnen
ganz fremdartigen Bildungen verwendet worden sind. In den von C. Vogt und nach demselben auch von Aubert (De prima systematis vasorum sangui feror. etc. 1853.) angenommenen Lamina haematogenea (Couche hématogène) beschreibt der Verfasser „cellulas dispersas pellucidas nucleo gaudentes“, die nichts anderes als jene Öffnungen der Kanälchen gewesen sein können, da sie in der bezeichneten Gegend sichtbar sind, und da die Zellen des Embryo, welche zu Blut werden, ursprünglich Kerne enthalten.

1. Die Kanälchen besitzen kein normales Ende in der Scheitel-Region. Da die Kanälchen gegen das Centrum der Dotterkugel allmählich sich verdünnen, so kann man nur hoffen, an dünnere Schnittchen sich über die angegebene That­sache zu unterrichten. Ein solches Querschnittchen aus jener Gegend ist in Fig. 13 d. Tab. III. so dargestellt, wie es bei zweihundertfacher Vergrößerung gesehen wird. Unberachtet der Konvergenz der Kanälchen überwiegt im Präparat die Grundsubstanz, da die Kanälchen in bezeichnetner Gegend sich ziemlich bedeutend verdünnt haben. Man beobachtet ferner, dass hin und wieder Kanälchen quer oder auch etwas schräg durchschnitten sind und sich als kreisförmig oder elliptisch begrenzte Lumina darstellen. Wo der Schnitt parallel dem Zuge der Kanälchen fortging, da erscheinen dieselben mit einem mehr oder weniger zugespitzten zentralen Ende. Genauere Untersuchung lehrt jedoch, dass dieses Ende nur scheinbar ist; denn man erkennt bei starker Vergrößerung mit Sicherheit, dass das centrale Ende ein gewöhnlich elliptisch begrenztes, offenes Lumen hat. Aus welchen Gegenden und in welchen Richtungen auch die Schnittchen verfertigt werden, überall kehrt dasselbe Bild mit einigen leicht zu begreifenden Veränderungen wieder. — Auch an keiner an-

3. Die nach dem Scheitelfeld hinziehenden Kanälchen wenden sich in einer, von der bisherigen Bahn abweichenden Richtung und in einem flachen Bogen, der seine Konvexität der gegenüber liegenden Halbkugel zuwendet, in die Tiefe, um sich dann jeder sicheren Verfolgung zu entziehen. An vielen Stellen scheint es ferner, dass die auf die bezeichnete Weise gebildeten Bogen der Kanälchen gegenüberliegender Halbkugeln teilweise in einander greifen. (Fig. 8 etc.) An mehreren Figuren ist der so eben beschriebene Verlauf der Kanälchen im Scheitelfelde zu erkennen. Um sich von dieser Thatsache zu überzeugen, muss man dickere Schnitten oder Halbkugeln beobachten und mit dem Focus die Kanälchen von der Scheitelfläche nach der Tiefe verfolgen. Die Menge von Kanälchen, die unter diesen Umständen aus verschiedenen scheinbaren Durchschnittsfächen zu gleicher Zeit in das mikroskopische Bild treten, macht es unmöglich, den weiteren Verlauf der Kanälchen jenseits der bogenförmigen Krümmung zu übersehen.

So weit gehen die sicheren Thatsachen, und es fragt sich nunmehr, ob dieselben ausreichen, um den vollständigen Verlauf der Kanälchen, der sich nun einmal nicht darstellen und verfolgen lässt, festzustellen; meine Antwort fällt bejahend aus. Die Beobachtung hatte gezeigt, dass die Kanälchen keine andere Endigung besitzen, als die an der Oberfläche der
Nahrungsdotterkugel mit freien offenen Mündungen; sie lehrte ferner, dass die Kanälchen im Scheitelfelde nirgend von einem halben Durchschnitt zu dem gegenüberliegenden binübertreten, sondern mit einem gegen diesen gewendeten, ziemlich flachen Bogen weiter in der Tiefe sich verlieren: unter solchen Umständen bleibt keine andere Wahl als die Annahme, dass die Kanälchen zu derselben Halbkugel, von der sie ausgegienen, irgendwo auch wieder zurückkehren. Da der von ihnen gebildete Bogen ziemlich flach ist und der zurückkehrende Schenkel nicht gleichzeitig mit dem centripetalen zu überschreiten war, so müssen die zu einem Bogen gehörigen Schenkel verhältnismässig weit auseinander liegen; daraus lässt sich wahrscheinlich machen, dass die allgemeine Kurve der Kanälchen parabolisch sei. Und weiter geht aus der Untersuchung hervor, dass der Scheitel der Parabel eine andere Richtung verfolgt, als diejenige, welche der eine zu ihr gehörige, grade sichtbare Schenkel innehat; und wir folgern daraus, dass die beiden zusammengehörigen Schenkel eines parabolisch verlaufenden Röhrens nicht in einer Ebene liegen, sondern wie die zu einer Spirale gehörigen Kreisschnitte in zwei verschiedenen, hier, wie es scheint, unter einem ziemlich spitzen Winkel im Scheitel zusammentreffenden Ebenen fortziehen. Daraus wird erklärbart, warum die vollständige Bahn eines Kanälchens bei Untersuchung von Halbkugeln sich nicht auf ein Mal übersehen lässt; es wird auch begreiflich, dass es mir bisher bei allen Bemühungen nicht gelingen wollte, ein Schnittchen zu verfertigen, das den ganzen parabolischen Verlauf eines Kanälchens blossgelegt hätte; es stimmt endlich hiermit überein, dass die Kanälchen, wie früher bemerkt wurde, bei ihrem Verlauf in verschiedenen Schichten sich gewöhnlich unter spitzen Winkeln kreuzen.

Der Bau des Nahrungsdotters beim Hecht lässt sich nunmehr nach obigen Mitteilungen in folgenden Worten kurz zusammenfassen.

Die Nahrungsdotterkugel besteht aus einer, im frischen Zustande sehr durchsichtigen, homogenen, eiweissartigen Grundsubstanz von zäher Beschaffenheit, die von zahl-
Ueber die Micropyle der Fischeier etc.

reichen, im Allgemeinen parabolisch geformten und mit einer wässrigen Eiweisslösung gefüllten Kanälchen oder Röhrenchen durchsetzt wird. Die Schenkel der Kanälchen endigen mit offener Mündung frei an der Oberfläche der Kugel, vorn oder hinten, rechts oder links, an der Rücken- oder Bauchfläche derselben. Die Öffnungen erscheinen deshalb in Form von kreisförmi

g begrenzten lichten Flecken, die sich auf dem ersten Anblick wie pellucide Bläsen ausnehmen. Die zusammengehörigen Schenkel eines parabolischen Kanälchens verlaufen nicht in einer, sondern in zwei am Scheitel unter einem spitzen Winkel zusammentreffenden Ebenen. Sämtliche Scheitel der Röhren liegen ungefähr im Centrum der Kugel, in der sogenannten Region des „Scheitelfeldes“, welches seine grösste Ausdehnung in der Längsaxe, die kleinste in der Horizontaleaxe besitzt; oftmals greifen hier die Scheitel gegenüberliegender Kanälchen teilweise in einander. Jedes Kanälchen beginnt an der Oberfläche der Kugel gemeinsin

Ueber die Entwicklung der Kanälchen habe ich bisher keine Beobachtungen machen können. In Betreff ihres Verhaltens während der Entwicklung des Embryo's kann ich mittheilen, dass sie mit der Verkleinerung des Nahrungsdotter von der Oberfläche her sich verkürzen, dass aber auch noch in einem bis auf ein geringes Quantum verzehrten Dotter1) sich Spuren derselben nachweisen lassen.

1) Da, wo der Embryo mit den Anlagen des Wirbelsystems auf dem Nahrungsdotter ruht und wo zugleich auch die ersten grossen Gefässstämme verlaufen, wird der Nahrungsdotter frühzeitig schnell verzehrt, so dass der Embryo sehr bald wie in eine Rinne eingebettet liegt.
Einer so auffallenden und merkwürdigen Struktur, wie sie der Nahrungsdotter des Hechteies besitzt, muss auch eine bestimmte Bedeutung und Leistung entweder für das zu befruchtende Ei, oder für den sich entwickelnden Embryo zugesprochen werden. Um diese Leistung festzustellen, gehört unbestritten eine genauere Kenntnis aller der Umstände und Verhältnisse, unter welchen sich die Wirksamkeit der Kanälehen äussert, als wir sie bis jetzt haben. Vor Allem wird es wichtig sein, Fische mit einer ähnlichen Struktur des Nahrungsdotters aufzusuchen, um einerseits das Charakteristische in dieser Struktur beurtheilen zu können, und um andererseits eine nähere Einsicht in die Unterschiede zu gewinnen, welche diese Fischeier während der Befruchtung und Entwicklung vor anderen darbieten. Wenn ich dennoch auf die aufgeworfene Frage jetzt schon mich einlasse, so geschieht es hauptsächlich aus dem Grunde, um Gesichtspunkte für spätere Untersuchungen anzudeuten. Bei Beantwortung der Frage werde ich zunächst darauf eingehen, was der Nahrungsdotter vermöge seiner Struktur leisten kann und dann untersuchen, ob irgend welche Erscheinungen während der Befruchtung und Entwicklung des Hechteies mit diesen Leistungen in Verbindung zu bringen sind. Der Nahrungsdotter des Hechteies ist seiner Struktur nach ein schwammiger Körper, durchzogen von zahlreichen kapillären Röhren. Vermöge dieser Eigenschaft wird derselbe Flüssigkeit und darinsuspendirte Körperchen in sich aufnehmen und beherbergen. Da die Röhrenchen mit Flüssigkeit gefüllt sind, so wird ein anderes Fluidum aus der Umgebung nur dann in sie eintreten, wenn dessen Affinität zu den Wandungen der Röhrehen stärker ist, als die des Inhaltes, oder, wenn der Nahrungsdotter Kontraktilität besitzt, durch welche das Lumen der Röhrehen erweitert und verengt würde. Letzteres ist mir nicht wahrscheinlich. Ich habe zwar früher bemerkt, dass die Oberfläche des Nahrungsdotters nicht selten auffallende Erhebungen und Vertiefungen zeige; allein dieselben sind dann unveränderlich und scheinen daher mit der Bildung des Nahrungsdotters gegeben. Wichtiger ist eine andere Eigenschaft,
die der Nahrungsdotter durch seine Struktur erhält. Es liegt
nämlich zu Tage, dass der flüssige Inhalt der Röhren durch
die offenen Mündungen mit den umgebenden Flüssigkeiten
eine Diffusion einleiten wird, dass also Stoffe aus der Un-
gebung des Nahrungsdotters entfernt, andere an dieselbe ab-
gegeben und allmäßlieh eine Ausgleichung zwischen den sich
berührenden Fluida herbeigeführt werden kann.

Die zweite Frage ist nun die, ob und wie diese Leistun-
gen der Kanälchen sich am ganzen Dotter und dem sich ent-
wickelnden Ei zu erkennen geben oder verwerthet sind. So-
bald das reife Ei in reines oder saamenhaltiges Wasser geleg-
wert, tritt eine Quantität des letzteren zwischen Dotter und
Eihaut, so zwar, dass namentlich die Eihaut zugleich sich
auflösend ausdehnt. Diese Erscheinung wird durch die An-
nahme verständlich, dass zwischen Dotter und Eihaut eine
Substanz sich befindet, die eine besondere Affinität zum Was-
sen besitzt und sich darin leicht löset. Die Kanälchen des
Nahrungsdotters mit der Füllungsmasse scheinen hierbei zu-
ächst nicht betheiligt zu sein, da der Nahrungsdotter sonst
auflösend sich vergrössern müsste, was nicht der Fall ist,
und weil obiges Phänomen auch bei reifen Fischeiern beob-
achtet wird, deren Nahrungsdotter keine tubuläre Struktur
wahrnehmen lässt. Später aber muss sich zwischen dem ein-
getretenen Fluidum und dem Inhalt der Kanälchen eine Diff-
usion einleiten und in Folge dessen eine solche Ausgleichung
zwischen beiden Fluida erzielt werden, dass, wie bereits mit-
getheilt wurde, kein bemerkbarer Unterschied zwischen der
Flüssigkeit in der Umgebung des Dotters und dem Inhalte
der Kanälchen hervortritt. Durch diese Ausgleichung werden
die Kanälchen des Nahrungsdotters mit einem sehr wasser-
reichen Fluidum gefüllt, und die nothwendige Folge davon
ist dann weiter, dass der ganze Dotter, dessen Hauptmasse
der Nahrungsdotter ausmacht, spezifisch leichter wird. Und
in der That in dieser Beziehung zeigt sich ein Unterschied
zwischen den Eiern des Hechte und denen anderer Fische,
welche keine Kanälchen im Nahrungsdotter haben. Der Dot-
ter des Hechtees scheint in dem Fluidum der Eihaut-Kapsel
mehr zu schwimmen, als auf dem Boden fest zu ruhen; er senkt sich allerdings auf den Boden der Kapsel, wie die Dotter anderer Fischeier, aber während letztere sich fester auf den Boden stützen, ist der Stützpunkt des Hechtdotters äußerst labil; die geringste willkürliche oder unwillkürliche Er- schütterung verrückt denselben und ruft schwankende Bewegungen des Dotters hervor. Dieser Umstand ist von grossem Werthe zum Verständniss der sogenannten Rotationen des Hechtdotters, die so vieles Aufsehen gemacht haben, und auf die ich an einem anderen Orte zurückkomme.

Wenn nun der Dotter von der Umhüllungshaut umwachsen ist und der Nahrungsdotter in die Rumpfhöhle des Embryo aufgenommen wird, so fragt sich endlich auch hier, ob die tubuläre Struktur des Nahrungsdotters von dem sich nunmehr entwickelnden Embryo verwerthet wird. Dieses glaube ich bejahen zu dürfen. Ich gehe hierbei von der Thatsache aus, dass, wo immer der Inhalt der Kanälchen in Berührung mit einem anderen Fluidum gerath, nothwendig Diffusionen sich einstellen werden, sofern die bezüglichen Stoffe Affinität zu einander besitzen, und dass dabei Substanzen aus der Umgebung des Nahrungsdotters theilweise entfernt und in den
Räumlichkeiten der Kanälchen zurückgehalten werden können. Sobald der Nahrungsdotter in die Rumpfhöhle des Embryo aufgenommen ist, befindet er sich in inniger Berührung mit den Leibeswänden und den sich bildenden und gebildeten Organen in der bezeichneten Höhle. Es ist nicht weiter zu bezweifeln, dass von den embryonalen Gebilden daselbst fortwährend Stoffe ausgeschieden werden, und dass daher wenigstens zur theilweisen Entfernung derselben die Kanälchen des Nahrungsdotters beitragen werden. Dieser Umstand oder vielmehr diese Leistung erscheint um so beachtungswerther, wenn man erwägt, dass in der Natur in der auffallendsten Weise auch sonst grade für die Entfernung und Isolirung der Absonderungsprodukte des eng eingeschlossenen Embryo's gesorgt ist. (Amnios, Allantois, Nabelblase.) Gegen diese Leistung des tubulären Nahrungsdotters dürften sich Bedenken erheben, die darauf fussen, dass wahrscheinlich bei sehr vielen Fischen die Entwicklung des Embryo ohne eine solche Vorsorge von Statten gehe. Dieser Einwand kann zwar die nun einmal nicht zu umgehende Leistung der Kanälchen nicht beseitigen, aber er lässt es zweifelhaft erscheinen, ob dieselbe in der Oekonomie des Embryo's beim Hecht besonders verrechnet sei. Um diese Frage zu entscheiden, müsste man die Entwicklungsgeschichte einer grösseren Anzahl von Fischeiern, von welchen ein Theil die Kanälchen in Nahrungsdotter besitzt, ein anderer derselben erlangelt, zum Vergleich vor sich haben und auf diesem Wege übersuchen können, ob bei den Fischeiern mit tubularem Nahrungsdotter eigen tümliche Entwicklungsverhältnisse vorkommen, die sich mit der bezeichneten Leistung ihres Nahrungsdotters in Verbindung bringen lassen. Mir stehen auf der einen Seite die Entwicklungsgeschichte des Hechteies, auf der anderen die mehrerer Cyprinoiden (des Döbels, der Plötze etc.) zum Vergleich zu Gebote. Hiernach glaube ich zwei Erscheinungen aus der Entwicklung des Hechteies zu Gunsten der Ansicht, dass die Kanälchen des Nahrungsdotters in der Oekonomie des sich entwickelnden Embryo's verrechnet seien, namentlich machen zu können. Ich habe nämlich die Beobachtung ge-

Die Erklärung der hierzu gehörigen Abbildungen befindet sich am Ende des folgenden Aufsatzes.
Über die Müller-Wolff'schen Körper bei Fischembryonen und über die sogenannten Rotationen des Dotters im befruchteten Hechtie.

Sendschreiben an den Herrn Geheimen Rath, Prof. Dr. Joh. Müller.

Von

K. B. Reichert.

I. Die Müller-Wolff'schen Körper der Fische.

(Hierzu Fig. 5—9 der Taf. IV)

Meine Bemühungen, die ersten Anlagen der Müller-Wolf'schen Körper mit ihren Ausführungsgängen, wie sie durch Sonderung aus dem Bildungsdotter hervorgehen, in toto wahrzunehmen, sind bisher gescheitert. C. Vogt, der zwar den gemeinschaftlichen Ausführungsgang der Müller-Wolff'schen Körper gesehen und denselben Ureter genannt hat, dem aber die Drüse selbst unbekannt geblieben ist, beschreibt gleichwohl ausführlich die erste Anlegung der bleibenden Nie der Fische unmittelbar aus dem Bildungsdotter, obwohl die bleibende Niere ursprünglich nicht vorhanden ist und über-
haupt nicht unmittelbar aus dem Bildungsdotter hervorgeht (a. a. O. p. 177–180). Der Verfasser lässt den Bildungsdotter unter der Wirbelsäule in zwei über einander liegende Schichten sich trennen, von welchen die untere zum Darm, die obere vorn und hinten anschwellende Schicht zur bleibenden Niere sich verwandelt. (Vgl. Fig. 136, 140 etc.) Dann bildet sich zuerst deutlich der Ureter (Ausführungsgang der Wolff'schen Körper) aus, dessen wenig erweiterte Stelle dicht über der Urogenital-Öffnung mit der Allantois (!) verglichen wird, obgleich das wichtigste Kriterium für die Allantois die Vasa umbilicalia sind. An dem Ureter bilden sich aus den restirenden Zellen des Bildungsdotters die bleibenden Nieren, deren lockere Zellen anfangs von dem vorbeiströmenden Blut der wandungslosen (?) Aorta öfters mitgerissen werden sollen.

Bei den von mir untersuchten Fischembryonen, welche, bei Vergleichung der Mitteilungen und Zeichnungen C. Vogt's aus der Entwicklung des Coregonus Palaea mit dem, was ich bei ihnen sehen konnte, sich keineswegs ungünstiger für Beobachtungen verhalten können, liess sich die erste Anlage der Müller-Wolff'schen Körper mit ihren Ausführungsgängen in toto, wie ich bereits bemerkt habe, nicht mit Sicherheit verfolgen. Bei Froschembryonen genügt es, die Umhüllungshaut abzutrennen, und die erste Anlage, grade so, wie sie durch Sonderung unmittelbar aus dem Bildungsdotter hervorgeht, liegt offen zu Tage. Mit Leichtigkeit kann die Anlage mit der Lupe und nach der Präparation mit dem Mikroskop beobachtet werden. Bei den Fischembryonen sind die Verhältnisse viel ungünstiger, weil die Masse des Bildungsdotters sehr gering ist, weil die Bildungsdotrterzellen wegen der Durchsichtigkeit sich sehr leicht der Beobachtung entziehen, weil ferner die ganze Bauchhöhle von dem voluminösen Nahrungsdotter erfüllt ist, und endlich, weil grade an der Stelle, wo die Anlage des eigentlichen drüsigen Theiles der Müller-Wolff'schen Körper sichtbar sein sollte, zu gleicher Zeit die Anlage der Brustflosse hervorwuchs. Ueber die Gegend, wo die Müller-Wolff'schen Körper als Anlagen aus dem Bildungsdotter sich absondern müssen, kann freilich nicht der
und vorn stört wiederum die Anlage der Brustflosse. Sehr lange habe ich gezweifelt, ob die am letzten Orte markirte Stelle auch auf die Anlage der Müller-Wolff'schen Körper zu beziehen sei, da an demselben Orte auch die Brustflosse hervorwächst. Der weitere Fortgang der Entwicklung löste alle Zweifel, da nach innen und hinten der Brustflosse die Drüsenkanälchen erkannt wurden.

Zur Erläuterung der Lage, allgemeinen Form und Struktur der Müller-Wolff'schen Körper und der Ausführungsgänge habe ich einen kleinen Döbel (Cyprin. Dobula) gewählt, der bereits seit mehreren Tagen die Eihüllen durchbrochen hatte, dessen Nahrungsdotter bereits verzehrt ist, und dessen Primitivorgane in der ersten Entwickelungsform bereits vollendet vorliegen. Das Fischchen hatte eine Länge von 9 mm., eine Höhe von etwa 1 mm. und ist in Fig. 5 der Tafel IV. bei etwa 40facher Vergrößerung gezeichnet, wobei zur Vereinfachung der Zeichnung die Gefässe und die linear zu den Seiten und auf dem Rücken angeordneten Pigmentflecke weggelassen sind. Auch die Figuren 6, 7, 8 und 9 beziehen sich auf dieses Stadium der Entwicklung. Der eigentlich drüsige Theil der Urnieren liegt jederseits unmittelbar hinter der Wurzel der Brustflosse, die in der Zeichnung nach vorn übergelegt ist, ferner unterhalb desjenigen Theiles des Wirbelsystems, welcher von obenher die Rumpfhöhle deckt (Fig. 8), desgleichen zu beiden Seiten der Cardia des Magens (Fig. 7) und endlich oberhalb der Leber und rechterseits auch oberhalb der ausserordentlich grossen Gallenblase (Fig. 5, 6, 8).\(^1\) An der inneren und unteren Fläche zieht jederseits der Ductus Cuvieri zum Vorhof

1) Die Gallenblase war bei den von mir untersuchten Fischen sehr frühzeitig zu beobachten, sobald nur die Leber in den Umgrenzungen klarer hervortritt. Die von C. Vogt in Fig. 87, 88, 89, 91 etc. gezeichneten Fischchen befinden sich so ziemlich in demselben Entwicklungsstadium, wie das von mir abgebildete Fischeben; sie sind sogar noch älter. Gleichwohl soll an ihnen nach dem Verfasser keine Gallenblase vorzufinden gewesen sein, wogegen bei diesen Fischen ein grosser Oeltropfen gezeichnet und beschrieben ist, der die Leber mehr von vorn und unten begrenzt. Eine Verwechslung der Gallenblase
Über die Müller-Wolffschen Körper bei Fischembryonen etc.

Des Herzens; beide Wolffschen Körper werden durch die Aorta von einander getrennt (Fig. 8). In der bezeichneten Lage sind die Urnieren schon äußerlich mit der Lupe zu erkennen, sobald die gewöhnlich sie verdeckenden Brustflossen entfernt werden; sie markirten sich alsdann jederseits durch eine langleiche Erhabenheit, die öfters durch zahlreichere Pigmentflecke ausgezeichnet ist. Die Müller-Wolffschen Körper haben eine abgeplattete rundliche Form, die nach hinten in den Ausführungsgang ausläuft. Der größte Durchmesser betrug bei dem in Rede stehenden Fischchen etwa 1/12". Mit Hilfe des Mikroskops erkennt man deutlich die Drüsenkanälchen, die in Form von Schlingen oder Schleifen rosettenartig um den nach hinten hervortretenden Ausführungsgang angeordnet sind. Sie haben eine bedeutende Breite; bei gelindem Druck beträgt der Durchmesser etwa 1/50". Man unterscheidet an ihnen die Tunica propria, welche von rundlichen, 1/410" grossen Drüsenzellen ausgekleidet wird. Beim Druck auf die Drüse lösen sich die Schleifen auf, und man erhält einen längeren Gang, so dass es mir wahrscheinlich wurde, es möchten sehr viele, wo nicht alle Schlingen durch Windungen eines einzigen Kanälchens gebildet sein. Erweiterte Stellen der Drüsenkanälchen, sowie parenchymatische oder gesondert und isolirt liegende Glomeruli, wie bei den nackten Amphibien, habe ich nicht auffinden können. Die Ausführungsgänge der Urnieren stellten sich als eine nur wenig erweiterte Fortsetzung der Drüsenkanälchen selbst dar, die sich nach hinten aus dem Knäuel derselben gleichsam herauswindet. Sie lassen sich in ihrem Verlaufe zu beiden Seiten der unter dem Wirbel-

mit einem Oeltropfen ist leicht möglich, aber auch umgekehrt. Auf die mehr vorgerückte Lage des Oeltropfens ist bei der Unterscheidung wenig Gewicht zu legen, da die Gallenblase, namentlich um die Zeit, wenn noch etwas Nahrungsdotter daselbst vorhanden ist, sehr leicht in ihrer Lage verändert wird, und häufig genug mehr vor die Leber hingedrängt erscheint. Am sichersten wird man durch Durchschnitte sich vor Verwechselungen bewahren, und in Grundlage von Beobachtungen an Durchschnittechen habe ich die Deutung des fraglichen Körpers an den von mir gezeichneten Fischchen gemacht.
stamm fortziehenden Blutgefäße noch ziemlich deutlich bis in die Gegend der Schwimmblase verfolgen (Fig. 5 und 6), dann entziehen sie sich der Beobachtung in Folge des starken Schattens, den die mit Luft angefüllte Schwimmblase macht. Auch hinter der Schwimmblase sind die gesondert verlaufenden Ausführungsgänge der Urnieren gewöhnlich nicht deutlich zu sehen, indem die Blutgefäße hier störend einwirken. Dagegen tritt immer der schon früher erwähnte, gemeinschaftliche Theil (a) beider Ausführungsgänge markiert genug hinter dem Rectum hervor. Es war meine Absicht, durch Beobachtung von Querdurchschnitten des Embryo dasjenige über den Verlauf der Ausführungsgänge zu ergänzen, was bei seitlicher Betrachtung desselben nicht wahrzunehmen war. Zwei von diesen Querschnitten sind in den Abbildungen (Fig. 8 und 9) wiedergegeben. Der Querschnitt in Fig. 8 hat auf der rechten Seite mehr die Urnieren selbst, auf der linken dagegen die Gegend, wo sich der Ausführungsgang entwickelt, getroffen. Die Fig. 9 gibt die Zeichnung eines mehr nach hinten gelegenen Querschnittes, der so ziemlich mitten durch die Schwimmblase ging. Man sah zwischen Schwimmblase und Wirbelstamm nur Andeutungen der Lumina von durchschnittenen Blutgefäßen und Ausführungsgängen der Müller-Wolffschen Körper. Zugleich aber konnte man sich auf das Unzweideutigste überzeugen, dass die später bleibenden Nieren noch gar nicht vorhanden sind.

Bei Fischchen von 18 mm Länge lag an derselben Stelle zu den Seiten der Cardia eine ähnliche röthlich-braune, zuweilen auch ins Gelbe (Fett) übergehende Masse, welche, wie ich glaube, neuerdings für die Thymus gehalten worden ist; Drüsenkanälchen waren in ihr nicht mehr vorzufinden. Die bleibenden Nieren waren vollständig ausgebildet, von der Grösse abgesehen. Jedenfalls ergibt sich aus den mitgetheilten Beobachtungen, dass die Urnieren ziemlich schnell und zeitig hinschwimmen; denn meine selbst erzogenen Fischchen erreichten bereits eine Länge von 11 mm. und hatten etwa 14 Tage nach dem Auskriechen bei mir gelebt. Da die Fischchen sehr schnell wachsen, so würden sie vielleicht schon nach wenigen Tagen die Grösse erlangt haben, bei welcher ich bereits an freien Fischchen die angelegte, bleibende Niere vorfand.

II. Die sogenannten Rotationen des Dotter des befruchteten Hechtei.

wurden. Zuweilen, namentlich in späterer Zeit, beschrieben die Oeltröpfchen unregelmässige Spirallinien. Cilien hat Aubert nicht gesehen. Inzwischen ist der Verfasser der Ansicht, dass doch wahrscheinlich solche Cilien die Ursache der Bewegung seien, da Bischoff Cilien am Dotter des Kanincheneies beobachtet habe und auch bei vielen anderen Thieren die Rotationen der Embryonen durch Cilien bewirkt würden.

mässig abgeplatteten Boden der Eihülle erhebt, sondern auf
demselben ruht. Desgleichen ist der Raum, welchen das Oel-
tröpfchen bei der Bewegung des Dotters durchwandert, oft
bedeutend grösser, als der Spielraum beträgt, der für die Be-
wegungen der ganzen Dotterkugel in der engen Eihülle dar-
geboten wird. Die Bewegungen des Hecht dotters sind also
auch keine Rotationsbewegungen in dem letzteren Sinne.
Um nun den Modus der Bewegungen des Hecht dotters
genauer zu bestimmen, muss ich näher auf die Erscheinungen
bei der Bewegung eingehen. Der Bildungsdotter nimmt im
Allgemeinen stets die oberste Stelle der Dotterkugel ein, aber
die Ebene, unter welcher er sich dem Beobachter bei den
Bewegungen des Dotters entgegenstellt, ist eine verschiedene.
Der Bildungsdotter nämlich neigt sich regelmässig ganz all-
mälig nach abwärts in der Richtung, welche die sich stets
gradlinig bewegende Dotterkugel eingeschlagen hat. Dabei
nähert er sich der elastischen Eihülle und berührt dieselbe
etweder unmittelbar, oder es geschieht dieses durch einen
anderen, mehr hervortretenden Theil der Dotterkugel. Dar-
auf tritt momentan ein Stillstand ein, und die Bewegung der
Dotterkugel kann in einfachster Weise wieder in dieselbe oder
doeh nahe zu derselben gradlinige Bahn zurückkehren, wobei
sich der Bildungsdotter wieder ganz allmälig erhebt, seinen
höchsten Punkt erreicht, um auf die entgegengesetzte Seite
sich abwärts zu neigen und sich dem entgegengesetzten Pole
zu nähern. Die hier stattfindenden Erscheinungen an der sich
bewegenden Dotterkugel sind dann dieselben, wie vorhin. In
vielen anderen Fällen geht die Bewegung der Dotterkugel
nicht in derselben Richtung zurück, sondern in einer anderen
aber immer gradlinigen und zwar auf zweifache Weise. Ent-
weder bildet die neue Richtung einen einfachen Winkel mit
der vorausgegangenen, oder die Dotterkugel schlägt die neue
Richtung mit einer kleinen drehenden Bewegung ein; die Nei-
gungen des Bildungsdotters bei Fortgang der Bewegung blei-
ben dieselben. Wirkliche kreisförmige oder elliptische Bah-
nen habe ich nicht beobachtet; die Hauptrichtungen in der
Bewegung sind immer gradlinig, aber der Wechsel der Rich
tungen, nach erfolgter Berührung der Dotterkugel mit der Eihülle, kann gleichfalls unter einem Winkel oder zugleich mit einer kleinen drehenden Bewegung vor sich gehen. Die Bahn der Bewegung ist also eine einfache Linie, wenn der Dotterkugel sich nur in einer Richtung hin und her bewegt, oder sie beschreibt eckige Figuren, deren Winkel durch die bezeichnete drehende Bewegung an der Berührungsstelle die Dotterkugel mit der Eihülle gleichsam abgerundet wird, in Folge dessen der Schein einer kreisförmigen, elliptischen etc. Linie hervortreten kann.

Aus den mitgetheilten Erscheinungen ergiebt sich wohl unzweideutig der Modus der Bewegungen der Dotterkugel des Hechteies. Die Dotterkugel wälzt oder rollt sich nach irgend einer Richtung auf dem Boden der Eihülle; es kommt aber nicht zu einer vollkommenen Rotation, sondern die rollende Bewegung wird unterbrochen durch die Berührung der Dotterkugel mit der sehr elastischen Eihülle, in Folge dessen die Dotterkugel abgestossen wird und ihre rollende Bewegung nach einer anderen Richtung fortsetzt, bis sie in derselben Weise auch darin unterbrochen wird, und so fort. Bei Ermittelung der Ursachen dieser Bewegung müssen natürlich zwei Momente auseinander gehalten werden: nämlich das Schwanken und Rollen der Dotterkugel auf dem Grunde der Eihüllen-Kapsel, und die Richtung der Bewegungen und der Oscillationen, nachdem die Dotterkugel zu schwanken und sich zu rollen begonnen hatte. Das letztere Moment in der Bewegung der Dotterkugel bietet keine Schwierigkeiten für die Beurtheilung der Ursachen; denn es liegt zu Tage, dass die Richtung, in welcher die sich wäelzende Kugel bewegt wird, ganz und gar abhängig ist von dem Winkel, unter welchem der, die sehr elastischen Eihüllen berührende Theil der Dotterkugel anschlägt und abgestossen wird. Eine genaue Berechnung dieser Richtungen im speziellen Fall ist nicht ausführbar, da sich die Form der Eikapsel, besonders aber der Dotterkugel, welche oft mehr einem gestreckten Sphäroid gleicht und nicht selten Erhebungen auf der Oberfläche besitzt, nicht bestimmen lassen. Die zweite Frage betrifft
die Ermittelung der Ursachen, durch welche die Dotterkugel in die rollende Bewegung verfällt. Alles, was den Schwerpunkt der Dotterkugel verrückt, giebt offenbar die Veranlassung zu einer rollenden Bewegung derselben. Dieses kann theils dadurch geschehen, dass in der Kugel selbst die Masse sich anders um den bisherigen Schwerpunkt, der unterstützt war, vertheilt, theils dadurch, dass von aussen her irgend ein Anstoss auf die Kugel erfolgt. Zu Verrückungen des Schwerpunktes auf die zuerst bezeichnete Weise bietet die Entwicklung des Bildungsdotters schon beim Beginn des Furchungsprozesses hinlängliche Gelegenheit dar. Aber auch äussere Veranlassungen, Erschütterungen, Stösse sind kaum zu vermeiden, und die Wirkung derselben auf die Schwankungen der Dotterkugel des Hechteies habe ich öfters beobachtet, habe selbst willkürlich durch Stösse an das Ei die Bewegungen beschleunigen, die Richtung derselben theilweise bestimmen können. Man kann jedoch mit vollem Recht fragen, warum die befruchteten Dotterkugeln anderer Fische, die auch ziemlich frei und umgeben von Flüssigkeit in der Eihülle liegen, bei denen ferner dieselben Veranlassungen für Verrückung des Schwerpunktes vorhanden sind, in solche Oscillationen nicht, wenigstens nicht so leicht und so anhaltend verfallen? Hier ist nun der Ort auf die eigenthümliche, von mir aufgefunde, tubuläre Struktur hinzuweisen, durch welche der Nahrungsdotter des Hechteies vor anderen Fischeiern sich auszeichnet. Durch die mit dem Fluidum der Umgebung gefüllten Röhrchen des Nahrungsdotters muss das spezifische Gewicht der Dotterkugel in ihrem Medium geringer ausfallen, als wenn bei demselben Volumen die Röhrchen fehlen, und ein weißartige Substanz ihre Stelle einnimmt. Im letzteren Falle befinden sich die Dotterkugeln derjenigen Fische, bei welchen gewöhnlich keine anhaltenden Bewegungen beobachtet werden; die Dotterkugeln ruhen fester auf dem Grunde, der Schwerpunkt ist nicht so leicht zu verrücken. Anders ist es beim Hechteie. Die Unterstützung der Dotterkugel ist bei dem geringen, spezifischen Gewicht so leicht veränderlich, sie ist so labil, dass die geringsten Veranlassungen den Schwer-
punkt zu verrücken im Stande sind. Ist dann einmal die Dotterkugel im Rollen begriffen, so wird unter den bezeichnenten Umständen durch die fortdauernnden Stösse von Seiten der sehr elastischen Eihülle die Bewegung auch leicht sich unterhalten lassen.

durch die schwingenden Cilien eingeleiteten Bewegungen der Embryonen zu wirklichem oder scheinbaren Rotationen führen, das hängt von mancherlei Umständen ab, auf die ich hier nicht näher eingehen will.

Erklärung der Abbildungen auf Taf. II. und III.

Die Figuren 1, 3, 4, 6, 7, 8, 9, 10 sind bei 40facher, die Figuren 2 und 5 bei 100facher, die Fig. 11, 12, 13 bei 200facher Vergrößerung gezeichnet. Es ist ferner in der Figur 1—10 mehr auf den optischen Ausdruck der Struktur des Nahrungsdotters im Hechtei, wie dieselbe bei durchfallendem Lichte und bei der bezeichneten Vergrößerung sich zu erkennen gibt, als auf den, obigen Vergrößerungen entsprechenden Umfang der Nahrungsdotterkugel Rücksicht genommen.

Allgemeingültige Bezeichnungen.

v. Vorderer Abschnitt des Nahrungsdotters.

b. Hinterer Abschnitt des N.

t. Rechte Seitenhälfte d. N.

f. Li. Liene Seitenhälfte d. N.

l. Ober- oder Rücken-Hälfte d. N.

o. Untere oder Bauchhälfte.

s. Scheitelfeld der Kanälchen.

f. Region der feineren Streifung und feineren Kanälen im N.

k. Oeltröpfchen.

b. Nahrungsdotterkugel.

z. Die oberflächliche Schicht der Nahrungsdotterkugel, welcha bei schwächerer Vergrößerung meist streifenlos erscheint.

Taf. II. Fig. 1. Ansicht der Schnittfläche eines befruchteten Hechteies beim Beginn des Furchungsprozesses. Das El ist wahrscheinlich in der Richtung der Längsaxe senkrecht durchschnitten; nähere Bezeichnungen der einzelnen Regionen des Nahrungsdotters sind um diese Zeit noch nicht möglich.

a. Bildungsdotter.

k. Die zahlreich zwischen Bildungs- und Nahrungsdotter angehäuf- ten Oeltröpfchen.

Fig. 2. Ansicht der freien Fläche eines hinteren Kugelssegments vom Nahrungsdotter. Hier und da liegen Oeltröpfchen darauf, die in ihrer Form und in ihrem mikroskopischen Habitus in Folge von Zersetzung durch die Erbärgungsmittel verändert worden sind. Die Zeichnung ist so gemacht, dass besonders auch die in der Tiefe des Präparates sich zelgenden, scheinbaren Durchschnitte der Kanälen, so
wie die Konvergenz der Kanälchen nach dem Scheitelfelde hin hervortreten.

Fig. 3. Ansicht von der Schnittfläche desselben Kugelsegments. Der Schnitt ist in Richtung der Queraxe senkrecht etwa durch die Mitte des Nahrungsdotters geführt. Auch hier sind zahlreiche, theils wirkliche, theils scheinhare Durchschnitte der Kanälchen sichtbar.

Fig. 4. Ansicht von der freien Fläche des vorderen Kugelsegmentes von einem Nahrungsdotter, auf welchem ein in der Entwicklung schon ziemlich vorgeschrittener Embryo, — die Bläschen für die inneren Theile des Bulbus oculi waren deutlich zu unterscheiden — sich befand. In der Mitte der Figur markiren sich zum Theil wirkliche Öffnungen, zum Theil nur scheinhare Durchschnitte von Kanälchen.

b. Eine ländliche Vertiefung auf der oberen Fläche des Nahrungsdotters, worin der Embryo, hier das Kopfstück, lag.

Fig. 5. Ansicht von der freien, unteren Fläche des Nahrungsdotters. Auch bei dieser Zeichnung ist vorzugsweise der in der Tiefe sichtbare Zug der Kanälchen nach dem Scheitelfelde hin berücksichtigt.

Fig. 6. Ansicht von der Schnittfläche des unteren Kugelsegmentes, dessen freie Fläche in Fig. 5 dargestellt st. Der Schnitt ist horizontal durch die Mitte der Nahrungsdotterkugel geführt. Das Scheitelfeld erstreckt sich ziemlich weit nach vorn hin; in ihm zeigen sich die Lumina von mehreren durchschnittenen Kanälchen.

Fig. 7. Ansicht von der freien oberen oder Rückenfläche des in Figg. 5 und 6 dargestellten Nahrungsdotters. In der Mitte zieht durch die Längsaxe ein lichterer Streifen (c), der Furche angehörig, in welcher der Embryo eingebettet liegt. In ihr sieht man diejenigen Streifen, welche den mehr oberflächlich gelegenen Kanälchen entsprechen; zu den Seiten tritt das Bild der mehr in der Tiefe gelegenen Kanälchen hervor. Nach hinten weicht die Furche links ab, entsprechend der Lage des Embryos.

Fig. 8. Ansicht von der Schnittfläche des oberen Kugelsegmentes von denselben Präparat. Das Scheitelfeld läuft nach hinten in zwei Arme aus. Hier, wie auch in Fig. 6, 7 etc., ist das Ineinandergreifen der Kanälchen im Scheitelfelde gut zu übersehen.

Fig. 9. Ansicht von der Schnittfläche des rechten Kugelsegmentes, welches durch einen Schnitt in der Richtung der Medianebene des Embryos gewonnen wurde.

e. Embryo.

Fig. 10. Ansicht von der freien Fläche desselben Präparates. In der Mitte zeigen sich die Öffnungen der Kanälchen, welche frei an der Oberfläche liegen.

Fig. 11. Ein kleines Segment der Nahrungsdotter-Kugel, an welchem die peripherischen Enden der Kanälchen, so wie deren offene Mündungen an der Oberfläche zu übersehen sind.
Über Müller-Wolffschen Körper bei Fischembryonen etc.

m. Freie Oberfläche des Nahrungsdotters mit den kreisförmigen Öffnungen der Röhrenchen.

t. Röhrenchen des Nahrungsdotters; p. ihr peripherisches Endstück.

g. Grundsubstanz des Nahrungsdotters.

Fig. 12. Ein dünnes Schnittchen vom Nahrungsdotter, in welchem die Kanälchen im Scheitelfelde quer, weiterhin schräg und schliesslich in der Richtung der Längsaxe durchschnitten sind.

g. Grundsubstanz d. N.

q. Schräg und q. quer durchschnittene Kanälchen.

Fig. 13. Ein feines Schnittchen des Nahrungsdotters aus der Region des Scheitelfeldes. Sämtliche Enden der Kanälchen im Centrum sind künstlich — durch den Schnitt — gemacht. Die Bezeichnungen sind aus den Figg. 11 und 12 verständlich.

Erklärung der Abbildungen auf Tafel IV.

Die Figuren 1, 2, 3, 4 gehören zur Abhandlung über die Micropyle der Fischeier.

Die Figuren 1 und 2 sind bei 200facher Vergrösserung gezeichnet.

Die Figuren 3 und 4 sind schematisch gehalten.

Die Figuren 5—9 dienen zur Erläuterung der Müller-Wolffschen Körper bei Fischembryonen.

Allgemein gültige Bezeichnungen für die Figuren 1—4.

a. Eingangsräum der trichterförmigen Höhle der Micropyle; äussere Abtheilung der M.

b. Boden der trichterförmigen Höhle der Micropyle; mittlere Abtheilung der M.

c. Hals der trichterförmigen Höhle der M.; innere Abtheilung der M.

d. Sammtartige, äussere Eihülle der Fischeier.

e. Punktierte und eigrainartig gezeichnete; innere Eihülle der F.
f. Aeussere, homogene, eiersaartige Eihülle der Fischeier.

g. Eiweissschicht in der Umgebung der Micropyle an der Innenfläche der Eihüllen

h. Stäbchen der sammtartigen Eihülle.

Fig. 1. Flächenansicht von der Micropyle-Stelle der Eihülle bei Leuciscus erythrophthalmus.

Der innere Kreis gehört dem Halse der Micropyle an, der zunächst angrenzende Kreis und der ringförmige Schatten zum Boden.
derselben; der breite und lichteste Ring nach aussen entspricht dem Eingangsräum der trichterförmigen Höhle in der Micropyle.

h. In kolbenförmige Fasern ausgezogene Stäbchen.

Fig. 2. Ansicht einer wirklichen Falte der Eihüllen mit der Micropyle von demselben Fische. Die Innenfläche der Eihüllen nimmt den Rand der Falte ein.

Fig. 3. Schematisch gehaltener, senkrechter Durchschnitt der Micropyle-Stelle von Cyprinus Dobula.

s. p. Saamenkörperehen, den Eingangsräum und den Boden der trichterförmigen Höhle, nicht aber ihren Hals anfüllend.

Fig. 4. Schematisch gehaltener, senkrechter Durchschnitt durch die Micropyle-Stelle der Eihüllen von Cyprinus Dobula.

Von den Figuren 5—9 sind die Figuren 5 und 9 etwa bei 40 Vergrösserungen gezeichnet.

Allgemeine gültige Bezeichnungen.

m v. M ü l l e r - W o l f f'sche Körper:
a. Ihr Ausführungs gang und äussere Öffnung hinter der Afteröffnung
b. Gallenblase.
c. äussere Hülle des Embryo.
d. Chorda dorsalis.
e. Darm und Magen.
f. Rücken- und Schwanzflosse.
g. Schwimmblase.
h. Brustflosse.
i. Leber.
j. Centralnervensystem.
k. Ohrlabyrinth.
l. Wirbelsystem.
m. Aorta.

Fig. 5. Ein bereits mehrere Tage von den Eihüllen befreiter lebender Embryo des Döbel (Cyprinus Dobula), von 9 Mm. Länge. Um die Müller-Wolff'schen Körper in ihrer Lage zu übersehen, ist die Brustflosse (k) nach vorne zurückgeschlagen; die drei Abtheilungen des Herzeos (Vorhof, Ventrikel, Bulbus aortae) sind durch sie hindurch. Man sieht die rechte Seite des Fischchens.

o. Das Ohrlabyrinth mit zwei, radiär gestreiften Krystallen.

Fig. 6. Der Müller-Wolff'sche Körper mit Umgebung aus demselben Embryo; 170 mal vergrössert.

p. Schlund.

Fig. 8. Ansicht von einem wirklichen Querdurchschnitt des Fischchens aus der Gegend der Müller-Wolff'schen Körper. Auf der
Ueber die Müller-Wolf'schen Körper bei Fischembryonen etc. 143

rechten Seite hat der Schnitt mehr die Müller-Wolf'schen Körper selbst, auf der linken mehr dessen Ausführungssteg getroffen.

Fig. 9. Ansicht von einem wirklichen, feinen Querdurchschnittchen desselben Fischchens aus einer mehr nach hinten gelegenen Stelle. Die Schnitte haben so ziemlich die Mitte der Schwimmbiase getroffen.

sv. Die durchschnittenen Primitiv-Bündel der Muskulatur des Wirbelsystems; man kann darin noch keine weitere Anordnung der einzelnen Muskelpartieen erkennen. Wohl aber markiren sich in der Muskulatur jederseits zwei der Längsaxe des Embryo entsprechend verlaufende Septa, (u) durch welche die Muskulatur in eine Rücken-, Banch- und mittlere Abtheilung getrennt wird.
Ueber fötales Drüsengewebe in Schilddrüsegewebe etc.

Ueber fötales Drüsengewebe in Schilddrüsengeschwülsten.

Von

DR. THEODOR BILLROTH.

(Hierzu Taf. V. A.)

Die Entwicklungsweise der Schilddrüse und die Metamorphosen, welche das fötale Gewebe derselben durchläuft, um diejenige Form zu erreichen, welche sie im ausgebildeten Zustande zeigt, sind erst durch die Untersuchungen Remaks in das gehörige Licht gestellt.

Von dem Studium über die Entwicklungsgeschichte der Pseudoplasmen zu eignen Untersuchungen über die normale Entwicklung mit besonderer Rücksicht auf Histogenese hingeleitet, habe ich die Angaben Remaks über den betreffenden Punkt bei Hühner- und Natterembryonen, so wie bei frischen menschlichen Fötus verschiedenen Alters vollständig bestätigt gefunden. Es ist meine Absicht, durch die folgende Mittheilung zu zeigen, in welchem Umfange sich diese Resultate für die pathologische Histologie der Schilddrüsengeschwülste verwerten lassen.

Der Entwicklungsgang der Schilddrüse macht scheinbar einen merkwürdigen Umweg, um zu der späteren Form zu gelangen. Man sollte denken, es sei am einfachsten, die einzelnen Follikel aus einzelnen abgeschlossenen Zellhaufen entstehen zu lassen; dies ist jedoch nicht so, sondern die einzelnen Blasen entstehen durch Abschnürung aus radial in der ersten Schilddrüsenanlage gestellten aus Zellen zusammengesetzten Cylindern. Die auf diese Weise entstehende Anzah
Ueber fœtales Drüsengewebe in Schilddrüsengeschwülsten. 145

von Drüsenblasen reicht jedoch nicht aus, sondern die Zellenschicht, welche die Wand der einzelnen Blasen zusammensetzt, verdickt sich, bildet Fortsätze, kolbige Anhänge; in diesen entwickelt sich ein Hohlraum und der Fortsatz schnürt sich als neue Blase ab. Die Bildung des Hohlräums in dem Fortsatz ist oft unabhängig von dem Hohlraum der Mutterblase; er kann entstehen während die partielle Anhäufung der Wendezellen noch keinen Vorsprung bildet und es entsteht dann die eine Blase in der verdickten Wand der andern — so habe ich wenigstens die Beschreibung Remak's verstehen zu müssen geglaubt, der diesen letzten Vorgang vorzugsweise bei der ersten Bildung der Schilddrüsenblasen beim Hühnchen beobachtete; ich muss gestehen, dass ich dort einen solchen Entwicklungsang nicht grade so klar gefunden habe; um so deutlicher jedoch in einer hier zu beschreibenden Geschwulst der glandula thyreoidea.

Müller's Archiv. 1866.
Die mikroskopische Untersuchung der entleerten Flüssigkeit zeigte nur feine Moleküle, feinste Fetttropfen und sehr viel gelbes, körniges Pigment, keine Pigmentkristalle; die einzelnen mit aus den Canälen herausheschwemmten Gewebsetzten waren zum Theil amorphe Klumpen oder destuirtes unkenntliches Gewebe, zum Theil boten sie jedoch dasselbe mikroskopische Verhalten, wie die nachher bei der Sektion vorgefundenen Geschwulstmassen. Es zeigte sich bei derselben, dass das Cystoid der linken Schilddrüse (denn als solches stellte sich die Geschwulst schliesslich heraus) ziemlich tief in die Brusthöhle hineinragte, und dass ein Theil desselben aus soliden Massen bestand, in welchen sich hier und da noch kleine Cysten erkennen liessen; auch der grössere Cystenraum hatte verschiedene Scheidewände, die jedoch jetzt alle durch die Verjauchung durchbrochen waren. — Die Kon sistenz der Geschwulstmassen war elastisch weich, ihre Farbe auf dem Durchschnitt gelblichweiss mit kleinen Apoplexien älteren und jüngeren Datums durchsetzt; ein weisslicher, kör niger Brei liess sich von der Schnittfläche abstreichen. Die mikroskopische Untersuchung desselben zeigte die verschiedensten Formen von Zellen mit theils homogenem, theils fein körnigem, fettigem Inhalt, viele mit deutlichen Kernen versehen, die sich durch Theilung vermehrten, andere jedoch kernlos, mattglänzend. Bei weitem den Hauptbestandtheil bildeten theils grössere Kugeln, theils Cylinder, welche aus Zellen zusammengesetzt waren und häufig einen deutlichen Hohlraum zeigten. Die peripherische Schicht dieser Kolben, Cylinder und Kugeln von verschiedenster Form und Grösse wurde aus deutlich cylindrischen Zellen zusammengesetzt, die jedoch in ihrem Contour sich so deutlich einzeln markirten, dass sie höchst wahrscheinlich von keiner strukturlosen Membran umschlossen waren. Die meisten dieser Gebilde hatten ähnliche Formen wie die in Fig. 1, 2, 3 dargestellten. (Vergrösserung 350. Die Kerne sind in den Zellen nicht gezeichnet, weil sie ohne Wasser- oder Essigsäure-Zusatzzelten deutlich waren.) Es lag auf der Hand, dass wir es hier mit Neubildung von Drüsengeweben zu thun hatten und zwar
Über füttales Drüsengewebe in Schilddrüsengeschwülsten. 147

nicht mit der gewöhnlichen s. g. Hypertrophie der Schilddrüse, sondern einem eigentümlichen Gewebe, welches manche Analogien mit den Cystosarcomen der Brustdrüse und den Cystoiden des Hodens hatte. (s. "zur Entwicklungsgeschichte des Hodencystoids" Virchow's Archiv Bd. VIII. Heft 4.)

Wenn es auch bekannt war, dass die Entwicklung der Schilddrüse auf ähnliche Weise vor sich geht, wie diejenige der Drüsen mit einem Ausführungsgang, so überraschte es mich doch, die embryonalen Formen hier so schön ausgebildet zu finden, dass sie fast bessere Beobachtungsobjekte bildeten, als die Schilddrüse von Embryonen. Die geringen Übrigen, anscheinend normalen Gewebes in der erkrankten linken Hälfte (die rechte Hälfte war ganz gesund und nicht vergrössert), liessen auch nicht erkennen, wie die embryonalen Gewebselemente sich aus den normalen Follikeln hervorholen mochten; ich musste mich daher begnügen, die Fortbildung des neugebildeten Gewebes in sich zu verfolgen.

Die Anlage der embryonalen Drüsenschläuche und Drüsenblasen war in soliden, aus Zellen bestehenden Kolben (5) und sprossenartigen Fortsätzen (2, 3) gegeben, in denen sich die Höhling theils von dem Canal des Muttergebildes aus erstreckte (2), theils für sich isolirt entstand (3). Diese zuweilen zipfelartigen Fortsätze, wie sie Remak nennt, sind oft ausserordentlich klein, und können aus einer Reihe hintereinander liegender Zellen bestehen, an welcher ein ebenfalls nur aus einem Zellenkranz bestehendes Bläschen hängt (6). Wie die isolirt entstehenden Hohlräume zu Stande kommen, lässt sich nicht entscheiden; in den nicht mehr von Zellen erfüllten Raum tritt eine flüssige oder schleimige homogene Substanz, welche entweder durch den Zerfall der mittleren Zellen oder durch eine Art von secretorischer Thätigkeit der Zellen selbst entsteht, und letztere auseinander drängt; ich glaube, dass die meist spaltartigen Formen dieser neugebildeten Höhungen mehr auf eine solche Diastase der Zellen hindeutet. Neben dieser Vermehrung der Drüsen- elemente durch Sprossen kam noch ein davon scheinbar differenter Entwicklungsgang vor: die Wundzellen der Drüsen-
blasen wucherten nämlich an einer Stelle excessiv, und che
hierdurch eine Hervorragung gebildet wurde, entstand schon
in der Mitte dieser Zellenmasse ein neuer Hohlraum (4), so
dass die Bildung einer neuen Blase allerdings in der Mutter-
blase vor sich ging. Ich kann jedoch diesen Vorgang nichts
als etwas so sehr Differentes von dem Vermehrungsprocess
der Drüsenglieder durch Sprossen betrachten, sondern sehe
es nur als ein sehr frühzeitiges Auftreten des Hohlraums in
der Sprossenanlage an.

Wie in den Drüsengeschwüsten überhaupt selten, so er-
reichten auch hier diese embryologischen Elemente nie ihre
vollständige Entwicklung, sondern gelangten nur bis zu ge-
wissen Stufen und fielen dann einer fettigen oder colloid-
Metamorphose anheim; zu einer Degeneration dieser Elemente
 durch immer neue Unregelmässigkeiten des Zellenwachstums
und der Zellenvermehrung, wodurch dann höchst merkwür-
dige Formen von Drüsenzylindernden entstehen können, wo jede
(Epithelial-) Zelle in eine Mutterzelle verwandelt ist, wie
man dies zuweilen an Brustdrüsengeschwüsten sieht, kam
es hier nicht.

Ausser der Fettmetamorphose der einzelnen Gebilde, die
nichts Bemerkenswerthes darbot, war es hauptsächlich die
colloide Degeneration, welche in ihnen Platz griff. Man be-
gegnete nicht selten grossen, blassen, mattglänzenden Kugeln
mit einer centralen unregelmässigen Höhlung wie in den Drüs-
senblasen, die durchaus den Eindruck von Colloidkugeln mach-
ten (7); concentrische Schichtung zeigten sie jedoch niemals;
ich habe leider vergessen, sie mikrochemisch zu prüfen. Zu
diesen Kugeln liessen sich die mannichfachsten Uebergangs-
formen auffinden, wo vom Centrum aus nach der Peripherie
zu die Zellen immer mehr zu verschmelzen schienen, und
sich in eine gleichmässig homogene Substanz verwandelten (8),
so dass eine solche Colloidkugel offenbar nicht einer einzel-
nen Zelle, sondern einem ganzen Zellencomplex, einer Drü-
senblase entsprach. Ich halte den Nachweis dieses Vorgangs
deshalb für wichtig, weil er auch auf die Entwicklung der
Cysten aus diesen Gebilden schliessen lässt, was sich freilich
an dieser Geschwulst nicht weiter verfolgen liess, da sie in ihrem unversehrten Theil nur äusserst sparsam Cysten enthielt.

Meine früher zur Zeit meiner Studien in Wien angestellten Beobachtungen an Strumen sind zu lückenhaft, als dass ich irgend einen Anhaltspunkt geben könnte, in wie weit die obigen Befunde, die noch am meisten mit denen von Wedl übereinstimmen, sich auch auf andere Schilddrüsengeschwülste ausdehnen. In einem früher von mir beschriebenen Carcinom der Schilddrüse (Deutsche Klinik. 1855 No. 16) fand ich keine embryonalen Drüsenelemente, habe jedoch schon darauf aufmerksam gemacht, dass sie dort vermutlich ebenso vorkommen könnten wie in Geschwülsten der Drüsen mit Ausführganfängingen.

Ich kann nicht unterlassen, hier noch zu erwähnen, dass auch in Eierstockgeschwülsten wahrscheinlich ähnliche Gebilde wie die beschriebenen vorkommen, was ich mit um so grösserer Bestimmtheit behauptete, als ich noch vor Kurzem bei einem frischen kaum viermonatlichem weiblichem menschlichem Fötus die Entwicklung der Graafischen Follikel durch Abschnürung von langen cylindrischen Schläuchen aufs Unzweifelhafteste beobachtet habe.

Berlin, October 1855.
Ueber Tastkörperchen und Muskelstruktur.

Von

FRZ. LEYDIG.

(Hierzu Taf. V. B.)

Die Tastkörperchen wurden bekanntlich von Meissner und R. Wagner aufgefunden, eine Entdeckung, welche als das bedeutendste histologische Ereigniss des Jahres 1852 begrüssst wurde. Die Existenz der neuen Organe konnte bald von den verschiedensten Seiten bestätigt werden und van Kempen dürfte kaum Anhänger gewinnen, wenn er in seinem 1854 erschienenen Traité d'anatomie descriptive et d'histologie speciale bezüglich der Tastkörperchen behauptet, sie seien Kunstprodukte, entstanden durch gekreuzte Fasern, an deren Seite die Nervenschlinge liege. Aber was den feineren Bau angeht, so haben die Forscher, welche vom Dasein der Tastkörperchen überzeugt sind, sich noch keinesweges einigen können, im Gegentheil die Ansichten stehen sich geradezu schroff gegenüber. Denn während die genannten Entdecker die Tastkörperchen vorzugsweise nervös sein lassen, behaupten Andere und unter diesen z. B. Kölliker die bindegewebsige Natur derselben und wie natürlich verringern sie damit die Bedeutung der Körperchen und mässigen den Werth der Entdeckung. Nach R. Wagner und Meissner, und namentlich der Darstellung des letzteren zufolge entsteht ein Tastkörperchen dadurch, dass die Nervenfasern der Papillen innerhalb einer gleichartigen Substanz, die von einer homogenen zarten Haut umgrenzt wird, sich büschelförmig oder handförmig in schmale, nicht doppelt contuirte Endäsle auflösen.

Wäre es ausgemacht, dass, wie Külliker will, die Nerven der Papillen entweder in Schlingen oder frei enden, ohne in die Tastkörperchen einzutreten, so könnte allerdings von der nervösen Natur der Tastkörperchen fernherhin keine Rede mehr sein. Allein wie lauten denn eigentlich die Angaben im Hinblick auf diese Frage? In der ersten Auflage des
Handbuchs der Geweblehre sagt Kölliker, dass die Enden der Nervenröhrchen in den Papillen der Hand „Schlingen“ seien, die „mit aller Bestimmtheit“ gesehen wurden. Doch will Kölliker es Niemand verwehren, auch „an freie Endigungen zu glauben“ und hat nebenbei die Liebenswürdigkeit, Hrn. R. Wagner, der gesehen haben wollte, dass die Nerven in die Tastkörperchen eindringen, zu bedeuten, dass der selbe in dieser Sache ein entscheidendes Wort gar nicht mitreden dürfe. (!) In der zweiten Auflage desselben Buches einige Jahre später ist Kölliker, vielleicht in Folge „neuerdings wiederholter Untersuchungen“ duldsamer geworden, er verabschiedet schon halb und halb die Schlingen, ohne sie ganz „zurückzunehmen“, da er sie ja früher „mit aller Bestimmtheit“ gesehen zu haben glaubt; er spricht sich jetzt bezüglich des eigentlichen Endes der Nervenröhrchen dahin aus, „dass in der ungeheuren Mehrzahl der Fälle die Nervenfasern in der halben Höhe der Tastkörperchen oder gegen die Spitze zu dem Blick sich entziehen, d. h. mit einem Male blasser werden, wie abgebrochen enden, so dass es scheint, als ob dieselben frei ausgehen.“ Endlich in der neuesten Mittheilung, als Kölliker an einem Hingerichteten die Hauptpapillen „frisch“ untersucht hatte, äussert er ganz einfach: „das Ende (der Nerven) wurde hier nicht gesehen, indem dieselben meist unbestimmt begrenzt dem Blick sich entzogen.“

Es läuft daher eigentlich das Resumé ans Köllikers Angaben in dem Geständniss zusammen, dass er genau genommen nicht mit Sicherheit wisse, wie die Nerven in den Papillen enden, doch geschehe solches „nie im Innern der Körperchen“, er öffnet sich jedoch wieder ein Hinterpförtchen mit der Bemerkung, dass er ein Enden der Nerven in den Körperchen nicht bestimmt längst wolle.

Da ich selber nie ein Anhören der Papillennerven in Schlingen wahrzunehmen vermag, wohl aber beobachte, dass die Nervenfasern bald näher dem unteren Ende, bald näher der Spitze des Tastkörperchens sich in dasselbe verlieren, so nehme ich an, dass sie auch darin enden. Kölliker hält
verdickte Ende einer Nervenfaser ist, um das herum das Neurilem eine bindegewebige Kapsel formirt, so zeigt auch ein Tastkörperchen des Menschen einen inneren ovalen oder cylindrischen Strang, der aus Nervensubstanz besteht, und in den die Nervenfaser anschwillt. Um den Nervenknopf herum schlägt sich als bindegewebige Hülle das mit den Querkernen versehene Neurilem. Betheiligen sich mehr Nervenfibrillen an der Bildung des Tastkörperchens, so sieht es schon äusserlich, wie eingeschnürt aus, ja wie bereits Nuhn meldet, es kann den Anschein gewinnen, als ob es aus zwei oder mehreren übereinanderstehenden zusammengesetzt sei, was vielleicht damit zusammenhängt, dass jede Nervenfibrille für sich einen Endknopf bildet.

In manchen anderen Fällen kam es mir allerdings auch vor, als ob ein Tastkörperchen durch Verknäuelung der Nervenfibrillen, ungefähr wie Gerlach die Sache sich vorstellt, entstehe, und ich kann auch eine vergleichend-anatomische Beobachtung zu Gunsten dieser Ansicht vorbringen.

Das Froschmännchen nämlich besitzt bekanntermassen die sogenannte Daumendrüse. Die Lederhaut des Frosches bildet sonst nirgends Papillen, 1) aber gerade hier an der Daumen- drüse erhebt sie sich in dicht stehende Papillen, die samt ihrer bräunlich gefärbten Epidermis die Stelle schon für das freie Auge fein-höckrig erscheinen lassen. Die Papillen (Fig. 1) sind einfach kegelförmig und 0,024" hoch. Aus dem Nervengeflecht der Cutis, welches zwischen den Hautdrüsen hin- streicht, zweigen sich in Distanzen Fibrillen ab, um, senkrecht in die Höhe steigend, in die Papillen einzudringen.

Hier entsteht nun ein ovaler, 0,0120" langer Körper, der in Lage und Aussehen (Fig. 1b) nicht geringe Ähnlichkeit mit einem Tastkörperchen hat. Er reicht bis an die Spitze der Papille und wenn es gelingt, die letztere in ihrem relativ wenigst alterirten Zustande sich vorzuführen, so kommt man zur Ueberzeugung, dass das fragliche Gebilde, ein Nervenglomerulus sei. Häufig ist in Folge der Präparation das Bild derartig verändert, dass anstatt der queren und geschlungenen Linien des Nervenknäuels sechs und mehr rundliche Klümpchen, zu einem Haufen zusammengeballt, das Tastkörperchen vorstellen (Fig. 1d). In den Papillen mit Tastkörperchen vermisste ich meist Gefässe und es schien mir, als ob die gefässhaltigen Papillen in gewissen regelmässigen Reihen stehen. Die Bindesubstanz der Papillen ist übrigens am Rande in ähnlicher Weise gezähnelt, wie bei den Papillen des Menschen.

säckchen, die wieder nach innen gefächernd sind, im obersten Theil des Schlundes ganz fehlen, erst gegen den Kropf hin auftreten und nach abwärts immer mehr an Entwicklung zunehmen. Das Plattenepithel des Schlundes erscheint dadurch ausgezeichnet, dass in den Zellen einige Fettpünktchen sichtbar sind, die in der Gegend des Kropfes sehr zahlreich werden. Hätte Berlin den Schlund eines Reiher's vor sich gehabt, so würde ich annehmen, dass er die hier anders als bei der Taube gearteten Drüsen der Schleimhaut für Tastkörperchen genommen habe. In der Ardea cinerea nämlich sind die Drüsen des Schlundes einfache, ovale Säckchen, nur 0,01" lang und können entfernt an Tastkörperchen erinnern, „an die kein Nerv herantritt“. Da indessen bei Berlin keine Rede vom Reiher, sondern nur von Tauben und Hühnern ist, so weiss ich durchaus nicht, was der genannte Autor mit den Tastkörperchen des Schlundes gemeint hat. Dies über die Corpuscule taetus, ich habe mich jetzt noch in etwas über die Struktur der quergestreiften Muskeln zu verbreiten.

Das Studium der Entwicklung und des feinern Baus der quergestreiften Muskeln ist schon wie oft betrieben worden, ohne dass man einen vollständigen Abschluss erzielt hätte und die folgenden Bemerkungen mögen zeigen, dass selbst die gang und gäbe Lehre vom Bau der sogenannten Primitivbündel gar nicht stichhaltig ist. Gewöhnlich heisst es, ein sogen. Primitivbündel bestehe aus der homogenen, mit einzelnen Kernen versehenen Scheide, dem Sarcolemma und dem quergestreiften Inhalt. Letzterer sei wieder zusammenge- setzt aus varikösen Fäserchen, den Fibrillen, die selber Aggregate von kleinen, würzelförmigen Theilchen vorstellen und die Fibrillen seien unter sich verbunden durch eine sie ver- kettende Zwischensubstanz. Man beruft sich dabei besonders auf den Querschnitt der Primitivbündel, wodurch die angenommene Struktur ausser Zweifel gesetzt werde, denn man sehe da die Fibrillen im Querschnitt und die verklebende Zwischensubstanz. Bowman in der Cyclopaedia of anatomy and Physiology Vol. III S. 510 Fig. 290 und Kölliker in seinem Handbuch der Geweblehre 2. Aufl. S. 185 Fig. 92
haben solche Querschnitte geliefert. Diese zwei Figuren sind es gerade, deren Auslegung ich bekämpfe, indem ich beide Autoren im Irrthum befangen sehe. Die Ringelchen nämlich, welche Bowman als Querschnitte der Sarcous elements (der primitiven Fleischtheilchen, die durch lineare Aneinanderlegung Fibrillen erzeugen können) und Kölliker für Querschnitte der Fibrillen hält, sind durchaus nicht Fibrillen oder die Sarcous elements, sondern von ganz anderer Natur. Man betrachte den feinen Querschnitt z. B. eines getrockneten und mit Wasser wieder angefeuchteten Froschmodkels, da nimmt man zwar leicht die vermeintlichen Querschnitte der Fibrillen wahr, aber 1) sind sie durchaus nicht so zahlreich in einem Primitivbündel, wie Kölliker zeichnet, vielmehr fällt gleich auf, dass „die verkittende Zwischensubstanz“ an Masse weit die Zahl der vermeintlichen Fibrillen überwiegt und die Hauptsubstanz bildet, welche innerhalb des Sarkolemma (Fig. 2 a) liegt. 2) Ist das optische Aussehen der Ringelchen hell, scharf conturirt, das Licht gerade so brechend, wie feine durchschnittene Kanäle. Die von Bowman gegebene Abbildung ist hierin sehr naturgetreu, er zeichnet helle Ringe und in denselben einen meist excentrischen dunklen Punkt, gerade so, wie sich feine Zahnkanälichen auf dem Querschnitt präsentiren. 3) Hat der Muskelquerschnitt die Primitivbündel etwas schräg getroffen (und in jedem Präparat bieten sich solche Partien dar), so sieht man, wie die lichten, scharf conturirten Ringelchen sich zu länglichen gezacktrandigen Figuren verlängern, deren Längendurchmesser mit dem des Primitivbündels parallel verläuft, um es kurz zu sagen, das, was die genannten Histologen für die Querschnitte von Fibrillen erklären, sind die Querschnitte von ganz ähnlichen, gezacktrandigen Hohlräumen, wie man sie seit Virchow allgemeiner im Bindegewebe unter dem Namen Bindegewebskörperchen kennt. Behandelt man das Präparat mit Essigsäure, so treten sie zwar scharfer hervor, aber durch Quellung der Zwischensubstanz schliessen sie sich in ganz ähnlicher Art zusammen, wie man an den Bindegewebskörperchen die Erscheinung verfolgen kann und nehmen sich jetzt
als dunkle Punkte und Pünktchenreihen aus. Wichtig erscheint ferner, dass man in diesen länglich-strahligen Gebilden (Fig. 2 c), die auch gleich den Bindegewebskörperchen den Eindruck eines Lückensystems machen können, noch Kernrudimente zuweilen erblickt und zwar am constantesten zunächst der Querfläche des Sarkolemma (Fig. 2 d). Wenn ein Primitivbündel Fett enthält, so scheinen die Fettpünktchen ausschliesslich in diesen gezackten Hohlräumen untergebracht zu sein.

Es wird dem mit unserem Gegenstände vertrauten Leser bereits klar sein, was es hingegen für eine Bewandtniss mit der von Bowman und Kölliker als „verkittende Zwischen- substanz“ angesprochenen Masse hat, welche allerdings zwischen den gezackten Räumen sich befindet (Fig. 2 b). Sie dient nicht zur Verkittung der Fibrillen, sondern sie ist selber die kontraktile Substanz, mit andern Worten die primitiven Fleischtheilchen, oder in der Sprache Anderer: die fibrilläre Substanz. Das ist nicht etwa per exclusionem erschlossen, man sieht vielmehr zweifellos an schräg geschnittenen Präparaten oder auch an rein queren bei Veränderung der Fokaleinstellung, dass die zwischen den beschriebenen, gezacktrandigen Figuren übrigbleibende Substanz die charakteristische Querstreifung hat, d. h. aus den primitiven Fleischtheilchen (sarcous elements) bestehe.

Nach der hier gegebenen Darstellung vom Bau eines sog. Primitivbündels, wovon ich mich wiederbollt an Frosch-, Vogel- und Säugethiernuskeln vergewissert habe, ist demnach die quergestreifte kontraktile Substanz innerhalb eines Sarkolemmaschlauches durchsetzt von einem feinen Kanal- oder Lückensystem, in ganz analoger aber nur viel zarterer Weise, als auch das Bindegewebe von den untereinander zusammenhängenden Bindegewebskörperchen durchbrochen ist. Wozu dieses Lückensystem dienen mag, darf man vielleicht daraus entnehmen, dass die Blutcapillaren der Muskeln bekanntlich nicht über das Sarkolemma hinaus in die kontraktile Substanz eindringen. Die Funktion wird daher dieselbe sein, wie die der Bindegewebskörperchen: die Räume neh-
men das aus den Capillaren des Sarkolemma abgeschiedene Plasma sanguinis auf und leiten es zwischen die Muskelwürfelchen (primitiven Fleischtheilchen).

Es haben die anderwärts von mir über die Muskelstruktur mancher Thiere veröffentlichten Beobachtungen dargethan, dass ein sogen. Primitivbündel aus einer Anzahl von Abtheilungen zusammengesetzt ist, die ich Primitivcylinder genannt habe; dass auch in den Muskeln der höheren Thiere etwas dem ähnliches vorkomme, lehrt die obige Beschreibung, denn offenbar wird die quergestreifte Substanz durch die gezacktrandigen Räume in eine gewisse Anzahl von Längsstreifen geschieden. Die schönen Abbildungen, welche Remak neuerdings über die erste Bildung der quergestreiften Muskeln bekannt gemacht hat¹), zeigen eine ganz merkwürdige Vermehrung der Kerne, so dass mehrere Längsreihen derselben entstehen können. Remak selbst spricht keine Vermutung aus, was aus diesen vielen Kernen werden soll, ich möchte daher im Zusammenhalt mit der erkannten Beschaffenheit des fertigen sogen. Primitivbündels die Meinung äussern, dass die strahligen Räume und ihre Kernrudimente inmitten der quergestreiften Substanz mit den von Remak gezeichneten zahlreichen Kernen in genetischer Beziehung stehen.

Würzburg, Jnli 1855.

Erklärung der Abbildungen.

Taf. V. B. Fig. 1. Zwei Papillen von der Daumendrüse des Froesch, vom Epitel entblösst (nur bei c sind noch einige Reste desselben). Starke Vergrösserung. a. Papille, deren Tastkörpershen b. ziemlich unverändert ist. c. Papille, deren Tastkörperschen d. alterirt erscheint.

Fig. 2. Einige sogen. Muskelprimitivbündel vom Froesch. Starke Vergrösserung. — A. Fläche des Querschnittes. Man sieht scharf conturirte Ringe a, die vermeintlichen Fibrillen der Autoren, in Wahrheit kanaalartige Räume zwischen der kontraktilen Substanz b. — B. Seitenansicht, die kanaalartigen Räume sind gezackrandig, wie Bindegewebskörperchen c, in einigen erblickt man noch einen Kern d.

¹) Untersuch. üb. d. Entwicklung d. Wirbelt. Taf. XI, Fig. 8—14.
Eine kleine Zugabe zu A. Schneider's Beiträgen zur Naturgeschichte der Infusorien.

Von

Dr J. F. Weisse zu St. Petersburg.

(Hierzu Taf. VI. A.)

In seinen oben angegebenen Beiträgen sagt Schneider S. 198 von dem so eben genannten Infusorium: „Auch ein kugelförmiger Ruhezustand findet Statt... Durch Erregung einer Gährung waren die Cysten nicht aus dem Ruhe-
zustande zu erwecken. Unter anderen Verhältnissen habe ich jedoch das Wiederauflieben beobachtet u. s. w. — Schneider gibt aber keine Beschreibung dieses Vorganges, welchen ich hier schildern will, da ich ihn unzählige Male beobachtet habe.

Herr Prof. Cienkowsky hieselbst 1), durch den ich sowohl den Cystenzustand des Chlorogonium, als auch ihre Auferstehung erst vor einigen Monaten kennen gelernt habe, hatte die Gelegenheit, mir ein kleines Stückchen von einem Flässpapier zu geben, auf welchem sich eingetrocknete Chlorogonien-Cysten befanden, welche bereits vor einem Jahre von ihm in Helsingfors eingesammelt worden waren. Obgleich dieses Papierstreifchen, auf welchem ein rostfarbener Anflug deutlich in die Augen fiel, nur einige Linien lang und breit war, erhielt ich doch, nachdem ich es mit einigen Tropfen Wasser übergossen hatte, viele Hunderte wohl erhalte- ner Cysten, welche in grösseren und kleineren Haufen beisammen lagen (Fig. A). Liess ich dergleichen Cysten einen halben Tag im Wasser liegen, so konnte ich ihr Wiederaufleben deutlich beobachten. Der Hergang dabei ist folgender:

Die rostfarbene bis dahin kugelrunde Cyste (Fig. A. 1) 2) verändert allmälig ihre runde Form, indem sie an einem Ende sich ausdehnt und verschmälert, wodurch sie eine eiförmige Gestalt erhält (Fig. A. 2). An der Spitze derselben erscheint nach einiger Zeit eine sehr zartwandige helle Blase, welche sich aus der Cyste hervorstülpt und überaus langsam hervorquillt, indem sie die durchbrochenen Wände der Cyste zur Seite drängt (Fig. A. 3). Unterdessen kann man an dem In-

2) Vergrösserung: 290.

Müller's Archiv. 1856.
halte der letzteren von Zeit zu Zeit leise Ortsveränderungen der in ihm wahrzunehmenden hellen Bläschen bemerken, und es währt nicht lange, so nimmt man auch dunkel angedeutete Einschnürungen wahr, welche sich allmählich tiefer senken und die fein gekörnte Masse viertheilt (Fig. A. 4). Etwa nach Verlauf von einer Stunde werden hie und da zuckende Bewegungen bemerkbar, wodurch zuweilen die Cyste in eine augenblickliche Schwankung gerath, und bald darauf sieht man, wie die zum Theil schon von einander abgeschnürten Individuen sich in die Länge dehnen und an einander hin und her gleiten. Während der Zeit hat sich die oben besprochene Blase mehr ausgedehnt, und bald schlüpft eines der vier Theilsprösslinge (Fig. A. 5) in dieselbe hinein und bemüht sich sie zu sprengen, was ihm allein jedoch nur sehr selten gelingt. Erst nachdem auch die drei anderen Mitbewohner der Cyste sich einzeln in jene Blase hineingedrängt (Fig. A. 6), kann sie ihren vereinigten Anstrengungen nicht länger widerstehen. Schon nach wenigen Sekunden zerreisst sie. Die vier hervorschlüpfenden Individuen (Fig. A. 7) sind in der Regel von fast gleicher Grösse, indessen beobachtete ich einmal, dass ein Paar derselben nur halb so gross, als das andere war. Uebrigens haben diese neugebornen Wesen nicht die entfernteste Aehnlichkeit mit gewöhnlichen Chlorogonien, so dass man sie unter anderen Umständen für Infusorien anderer Art halten würde. Ihre Gestalt ist unregelmässig länglich, ja sie schlüpften zuweilen dreieckig aus der Cyste hervor, können sich nach allen Richtungen hin und her biegen und sind von schmutzig-brunner Farbe. Sobald sie ihren Leib einigermaassen geordnet haben, verlassen sie hastig ihre Geburtsstätte und eilen dem Rande des Tropfens zu, um, mit einem Ende untertauchend, wieder in Kugelform zu erscheinen. In diesem secundären Ruhezustande erblässt allmählich die Rostfarbe des Körpers und schon nach wenigen Stunden sieht man die hellgrünen Thierehen spindelförmig oder zuweilen auch Bodo-ähnlich gestaltet herumschwimmen.

Der ganze Prozess, von der Gestaltsveränderung der run-
den Cyste bis zu dem Freiwerden der Sprösslinge, währt im Durchschnitte zwei volle Stunden; oft braucht man jedoch nicht so lange zu beobachten, weil man nicht selten auf Cysten trifft, welche bereits in ihrer Entwicklung vorgeschritten sind.

St. Petersburg, den 1. Juni 1855.
Beobachtungen über die Fortpflanzung der Polythalamien.

Von

Prof. Max Schultze in Halle.

(Hierzu Taf. VI. B)

Eine grössere Miliolide von $\frac{1}{4}$ Durchmesser, derGattung Triloculina d’Orb. angehörig, ohne Zähne in der Mündung, welche sich an der Wand des Glases kriechend fast bis an die Oberfläche des Wassers emporgehoben hatte, fiel mir unter anderen Milioliden theils durch ihre Grösse, theils dadurch auf, dass sie bereits 8—14 Tage unverrückt in derselben Stellung beharrte. Sie hatte sich, wie viele Polythalamien während des Umherkriechens zu thun pflegen, theil-
Max Schultze:

weise in eine dünne Schicht bräunlichen Schlammes gehüllt, welchen, von der klebrigen Masse der hervorgestreken Fortsätze gesammelt, ich in anderen Fällen auf eine so bedeutende Quantität vermehrt sah, dass die deutliche Erkennung der Form der Schale bei Untersuchungen mit der Lupe vollständig unmöglich wurde. Den Zeitpunkt, von welchem an das Thier sich nicht mehr kriechend fortbewegte, kann ich nicht genau angeben, erst nachdem mir die unveränderte Lage des Thieres einige Tage hindurch aufgefallen, fing ich an dasselbe mit der Lupe fleissig zu mustern, und bemerkte wieder einige Tage später (am 15. Mai), dass kleine runde, scharf begrenzte Körnchen sich aus dem bräulichen Schlammüberzuge lösten, und nach einigen Stunden war die Miliolide von etwa 40 solcher Körnchen, die sich nach und nach immer weiter von einander entfernten, umgeben (Fig. 1 bei 15mal Vergr.). Meine Vermuthung, dass hier von der Mutter geborene Junge vorlagen, bestätigte sich sogleich, als ich die ganze Kolonie mit einem Pinsel vom Glase ab auf einen Objektträger brachte und unter dem Mikroskop betrachtete. Es ergab sich, dass die runden Körperchen junge Milioliden waren, denen ganz ähnlich, die ich auf Tab. II. Fig. 1 meiner oben citirten Schrift abgebildet habe. Dieselben besassen eine bei durchfallendem Lichte blass gelbbraun erscheinende Kalkschale, welche aus einem mittleren kugligen und aus einem an diesen sich anschliessenden röhrenförmigen, in einer nicht ganz vollständigen Kreistour um erste ren gewundenen Theil bestand, ohne Scheidewand im In nern, im Durchmesser 0,027" (Fig. 2, 3 bei 330mal Vergr.). Bald streckten die jungen Thiere aus der vorderen Schalen öffnung ihre contractilen Fortsätze hervor und krochen behend auf dem Objektträger umher. Die eingeschlossenen Theile des Thierkörpers konnten durch die durchsichtige Schale mit grosser Genauigkeit bei stärksten Vergrösserungen wahrgenommen werden, und bestanden aus einer durchsichtigen, äusserst feinkörnigen, färblosen Grundsubstanz, als deren un mittelbare Fortsetzung die hervorgestrekenen Fäden aufzufassen, und in dieser eingebettet aus kleinen scharf contourirten
Kürnchen, Proteinmolekülen, die in Essigsäure erblassen, und Fettkörnchen, zum Theil von ziemlich bedeutender Grösse und eckig, wie die Dotterplättchen der Fischeier 1).

Die letzte Hälfte der röhrenförmigen Windung der Schale wird von dem tierischen Inhalte nicht ganz ausgefüllt, während der centrale Theil dichter gefüllt erscheint (vgl. Fig. 2). Hier sind die Fettröpfchen auch in einer Weise angehäuft, dass die Durchsichtigkeit und Klarheit leidet, daher ein Zerdrücken der Schale und Hervorsprossen des Inhaltes zur speziellern Untersuchung nothwendig ist. Niemals konnte ich, auch wenn eine eigenthümliche Gruppirung des Inhaltes der centralen Kammer entfernt auf ein kernartiges Gebilde im Inneren deutete, nach dem vorsichtigen Zerdrücken einen Kern erkennen, der sich bei Amoeben, Diffugien, Gromien stets so leicht nachweisen lässt, auch wenn bei ganz undurchsichtiger Schale ein Sprengen derselben nothwendig wird. Bei 9 verschiedenen Amoebenarten des süssen Was-

sers, die ich bis jetzt aufgefunden habe, und die sich alle

durch die Art ihrer Bewegung, die Form der hervorgestreck-
ten Fortsätze, die verschiedene Mächtigkeit der äusseren,
glashellen Rindenscbicht, die bei allen Bewegungen stets
den fliessenden Körnchen vorangeschoben wird, scharf unter-
scheiden lassen, sah ich stets einen Kern. Ebenso bei Diff-
flugia proteiformis, acuminata und helix, bei Arcella vulgaris

und mehreren Euglypha-Arten. Bei Diffiiogia proteiformis sind

mir mehrere Male zahlreiche (8—12) Kerne vorgekommen,

wie bei Gromia oviformis im hinteren Theile der Schale ge-
legen. Diese Kerne der Süsswasserrhizopoden erscheinen ent-
weder als homogene, tie und da leicht feinkörnige, zähe,
elastische Kugeln, oder mit einer Anzahl kleinerer Bläschen
oder Kugeln von meist sehr zarten und schwer erkennbaren
Contouren gefüllt, wie ich sie von Gromia oviformis früher
abgebildet habe. Letztere Form scheint eine weitere Ent-
wicklung des Kernes darzustellen als erstere, und findet
sich auch häufig bei anderen Protozoen, wie ich selbst bei
den verzweigten Kernen der grossen Acineten von Operciu-
ria sah, auch Stein bei mehreren Acineten abbildete, und
Wagener und Lieberkühn nach mündlichen Mittheilun-
gen auch bei anderen Infusorien mehrfach beobachteten. Bei
Zusatz verdünnter Essigsäure werden die im Innern der Kerne
enthaltenen Bläschen zuerst etwas deutlicher, und hebt sich
nicht selten eine Membran oder durchsichtige äussere Zone
von dem körnigen Inhalte ab, bei längerer Einwirkung der
Säure schwinden aber die Contouren der inneren Bläschen.

Von solchen Kernen konnte ich weder bei unseren jun-
gen Milioliden noch bei anderen Polythalamien, die ich neuer-
llichst wiederholt darauf untersuchte, bisher eine sichere Spur
entdecken. So wenig ich auch, gestützt auf die Beobachtun-
gen anderer Protozoen, die Anwesenheit solcher Kerne be-
zweifeln möchte, so bleiben doch die von mir früher auf
p. 22 meiner citirten Schrift mitgetheilten wenigen Beispiele
die einzigen sicheren.

Forschen wir nun weiter nach der Entstehung der oben
beschriebenen jungen Milioliden, so scheint es zunächst nach
Beobachtungen über die Fortpflanzung der Polythalamien.

weiteren Aufschlüssen über diese früher beobachteten Kugeln. Ich fand aber nur eine Polythalamie, welche mit solchen Kugeln angefüllt war, welche aber die Frage nach der Bedeutung jener Kugeln in der That ihrer Lösung näher rücken dürfte. Dieselbe gehört einer neuen Species an, die sich ihres Kieselpanzers wegen an die von mir (l. c. p. 61) beschriebene Polymorpha silicea anschliesst, aber die Gestalt einer kleinen Nonionina besitzt, aus $1\frac{1}{2}$ Windungen mit etwa 10 Kammern bestehend, und vorläufig Nonionina silicea genannt werden soll (Fig. 4 lebend mit ausgestreckten Fortsätzen bei durchfallendem Lichte abgebildet, Fig. 6 von vorn gesehen mit der halbmondförmigen doch etwas unregelmässigen Öffnung an der vordersten Kammer, beide bei 72mal Vergr.). Sämmtliche der letzten Windung angehörende Kammern waren mit runden 0,018" im Durchmesser haltenden starklichtbrechenden Kugeln ausgefüllt (eine einzelne in Fig. 7 dargestellt bei 72mal Vergr.), deren in den grösseren Kammern 6—8, in den kleineren 3—5 lagen. Dieselben zeigten bei auffallendem Lichte eine eigenthümlich glänzende Hülle, welche sich bei genauerer Untersuchung mit Hülfe von Säuren und beim Zerdrücken, aus lauter kleinen Kieselpartikelchen zusammengesetzt zeigte. Jeder andere tierische Inhalt der Kammern fehlte. Beim Zerdrücken der Kugeln kam etwas molekuläre organische Substanz zum Vorschein. Nach dem was über die Milioiden mitgetheilt wurde, liegt die Vermuthung sehr nahe, dass wir in diesen Kugeln mit Kieselpanzer die Jungen vor uns hatten, welche aus dem Inhalte der Kammern ähnlich wie die Navicellen in einer Gregarine sich gebildet haben möchten, und dazu bestimmt scheinen, entweder nach dem Platzen der Schale oder durch die grössere Öffnung derselben hervorzuschlüpfen, um dann als centrale erste Kammer durch Anbildung neuer direct in die Form des Mutterthieres überzugehen.

Ist die Deutung der Kugeln als Junge richtig, so ist zugleich für die Genese der Kieselschale dieser Rhizopoden erwiesen, dass dieselbe nicht aus gesammelten Kieselfragmenten gebildet wird, sondern dass das Thier selber die Fähig-
keit besitzen muss, Kieselerde in Form kleiner Körnchen abzusondern. Die Schale unserer neuen Polythalamie besteht ganz, wie bei *Polymorpha silicea*, aus einzelnen grösseren Kieselstückchen und zahllosen kleinen Kieselkörnchen, welche zur Verbindung der grösseren Stücke dienen, und ausgedehnte Partien der Schale ausschliesslich zusammensetzen (vgl. Tab. VI. Fig. 11 loc. cit. u. Fig. 5 der hierzu gehör. Taf.). Bei der Beschreibung der *Polymorpha silicea* sprach ich mich bereits dahin aus, dass die Schale dieser Polythalamie schwerlich allein aus gesammelten Kieselstückchen bestände, wie dies für die ebenfalls kieselschaligen Diffugien des süßen Wassers angenommen worden. Seitdem habe ich *Diff. proteiformis, acuminata* und *helix* zu untersuchen Gelegenheit gehabt und glaube, so bestimmt und häufig auch das Einweben fremder Kieselkörper, wie Sandkörnchen und Bacillarien, in die Schale vorkommt, doch nach der Form der kleinsten Kieselkörperchen annehmen zu müssen, dass auch diese Thiere die Fähigkeit besitzen dergleichen zu secrerniren.

Erklärung der Tafel.

Fig. 1. *Miliola (Triloculina)* von Triest, von zahlreichen Jungen umgeben, an der Wand des Glases festsitzend, bei 15 mal Vergr.

Fig. 2. Junges derselben *Miliola* bei 330 mal Vergr., mit ausgestreckten Fortsätzen.

Fig. 3. Leere Schale einer solchen jungen *Miliola* von vorn gesehen.

Fig. 4. *Nonionina silicea* von Triest, lebend mit ausgestreckten Fortsätzen bei 72 mal Vergr.

Fig. 5. Theile der Kieselschale derselben bei 330 mal Vergr.

Fig. 6. *Nonionina silicea* von vorn, mit der Öffnung an der vordersten Kammer. Vergr. 72.

Fig. 7. Mit einer Kieselhülle versehene Kugel aus derselben *Nonionina*. Vergr. 72.
Ueber das numerische Verhältniss zwischen den weissen und rothen Blutzellen.

Von

DR. ERNST HIRT aus Zittau.

(Hierzu Taf. VII.)

Die erste Schätzung des Verhältnisses der Lymphkörperchen zu den rothen Blutzellen machte bereits im Jahre 1838 Rud. Wagner in seinen Nachträgen zur vergleichenden Physiologie des Blutes (p. 22) bekannt, eine Schätzung, die so oberflächlich sie war, dennoch bis in die neueste Zeit der falschen Meinung, das Verhältniss sei auf 1:6 bis 1:10 festzustellen, als Basis diente. Obwohl schon 1847 Moleschott und Donders dieser Ansicht entgegentreten (Holländische Beiträge, 1. Bd. p. 369), wurde dieselbe doch erst durch die umfassenden Zählungen Moleschott's, deren Resultate er 1854 in der Wiener Wochenschrift Nr. 8 bekannt machte, vollends beseitigt.

Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 175

Innungen und deren Mängel eingehen, und ich will dies, indem ich zugleich meine Art und Weise, die Zählungen vorzunehmen, daneben stelle, um den meinigen da, wo ihre Resultate wesentlich von denen Moleschott's differiren, den grössern Werth der Wahrscheinlichkeit jenen gegenüber zu verschaffen.

Unterscheidung der zu zählenden Blutzellen.

Zuerst und vor allen Dingen sagt uns Moleschott nicht, was er mit seinen acht Zuhörern eigentlich gezählt hat, er spricht stets nur von dem Verhältniss „farbloser“ zu gefärbten Zellen, und es ist daher wohl möglich, da der Begriff farblose Zelle ein so subjektiver, so von verschiedenen Beobachtern verschieden deutbarer ist, dass, da hier neun Beobachter die Zählungen anstellten, mitunter eine zwar farblose, aber nicht granulirte Zelle als Lymphkörperchen mitgerechnet wurde. Ich verweise deshalb einfach auf unsere ersten Zählungen, welche mein Freund Dr. Michael gemeinsam mit mir anstellte, und bei denen wir, da wir uns nur an das „farblos“ und „gefärbt“ hielten, sehr oft in bedeutende Zweifel gerieten, weil der Eine entschieden farblos benannte, woran der Andere noch einen gelblichen Schimmer entdeckte. Die ersten 7 Zählungen unseres Blutes, unter diesen Zweifeln gefertigt, ergaben folgende Resultate:

2–3 Stunden nach dem Frühstück:
Zählung 1, 2 Stunden : V : 2870 = I : 574
8 2, 2½ 8 : III : 1258 = I : 419
8 3, 3 8 : II : 1581 = I : 790
1–3 Stunden nach dem Mittagessen:
Zählung 4, 1 Stunde : VI : 1476 = I : 246
8 5, 2 8 : V : 1647 = I : 329
8 6, 3 8 : V : 1319 = I : 264
8 7, 3 8 : X : 2151 = I : 215

Resultate, welche mit Moleschott's Zählungen sehr nahe übereinstimmen, besonders darum, dass kein so bedeutender Unterschied sich geltend macht zwischen den verschiedenen Zeiten nach der Mahlzeit, wie er bei unseren späteren Zäh-

Eben so wie mir erging es übrigens in Betreff der Unterscheidung der einzelnen Blutzellen Herrn Dr. Uhle und Dr. Wagner in Leipzig, welche im vorigen Jahre eben solche relative Zählungen begonnen und mir ihre dabei niedergeschriebene Protokolle gütigst zur Benutzung überlassen haben. Aus denselben ersee ich für den Anfang dieselbe Unentschiedenheit und Zweifel bei einzelnen Körperchen, ob sie blassgelb, ob sie farblos, ob weiss zu nennen seien, und sie fanden noch viel mehr solcher zweifelhafter Zellen, als wir, da sie mit 600facher Verdünnung (Welcker‘che Verdünnsflüssigkeit) nach Defibrination und nach längerem Stehen des Präparates zählten, und dann plötzlich dieselbe leichte Scheidung wie bei uns, als sie als weisse Zellen nur die zugleich entschieden granulirten (Lymphkörperchen) hinstellten, und Resultate, die, soweit sie mit den ausseren vergleichbar, in jeder einzelnen Zählung mit denselben stimmen. Leider konnten die genannten Herren ihre Zählungen nicht
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 177

fortsetzen und es liegen nur sehr wenige nach jener Schei-
dung der Blutzellen in Lymphkörperchen und nicht granu-
lierte mehr oder weniger gefärbte Körperchen angestellte Un-
tersuchungen vor. Von diesen sind wiederum nur wenige
derselben mit den unsrigen vergleichbar, weil die meisten
mit Thierblut angestellt wurden, ohne Angabe der Zeit nach
dem letzten Fressen. Was aber vergleichbar ist, möge hier
folgen, um den Leser möglichst selbst über das Überein-
stimmende urtheilen zu lassen. Die gefundenen Mittel waren:

1. für Katzenblut 2 Stunden nach der Fütterung : I : 703
 ich fand für mein Blut (s. Z. 49) : I : 780
2. für Ochsenblut im nüchternen Zustande . : I : 1919
 ich fand für mein Blut (s. Z. 8-12) : I : 1761
3. junger Mann von 20 Jahren, 2 1/2 Stunden
 nach dem Frühstück : I : 1586
 ich fand für mein Blut (s. Z. 19-21) : I : 1514
4. junger Mann mit intermittens quotidianna,
 3 Stunden nach dem Frühstück : I : 3372
 ich fand bei intermittens zu derselben
 Zeit (s. Z. 65) : I : 2738

Da nun aber Moleschott nirgends von einer Schwie-
rigkeit der Unterscheidung spricht, nirgends von einem Zwei-
fel, ob farbloser, ob nicht, während er doch eben überall nur
vom Verhältniss „farbloser“ zu „gefärbten“ Zellen redet, so
muss ich Angesichts des so eben Mitgetheilten es für mög-
lich halten, dafs seine 8 Zuhörer, ebenso wie wir im An-
fange, hauptsächlich nur sich an das „farbloser“ und „gefärbt“
hielten; und wenn 8 verschiedene Beobachter zählen, sich
also 8 subjektive Unterscheidungsmeinungen zwischen farb-
los und farbig bilden, dann kann ich nur bewundern, dass
Moleschott's grösste Schwankung zwischen den resulti-
renden Mittelzahlen (bei Knaben von I : 115 bis I : 526) nicht
mehr beträgt, als I : 4,58.

Zählungsmethode.

Was die ganze Zählungsmethode Moleschott’s anbe-
langt, so empfiehlt diese sich sehr durch ihre ansprechende

Müller's Archiv. 1860.

Methode I. Auf das Objektglas (Welcker's Zahlenmikrometer) wurde ein Tropfen Verdünnungsflüssigkeit gebracht, darunter ein wenig Blut (das wieviel lernt man bald nach der entstehenden Farbe bestimmen), frisch aus einer Stichwunde in der Spitze des kleinen Fingers entleert, mit einer silbernen Nadel möglichst genau und gleichmassig verrührt. —

Methode II. In ein zu verschliessendes Gefäss, in welchem sich 3,5 C.C. Verdünnungsflüssigkeit befanden, wurde ein Tropfen Blut, wie er freiwillig von einer frischen Stich-
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 179

wunde im kleinen Finger abtropfte, fallen gelassen, durch tüchtiges Umschütteln die Blutkörperchen möglichst gleich vertheilt, davon ein Tropfen auf das Zahlenmikrometer gebracht und nach nochmaligem Umrühren mit der Nadel erst mit dem Deckplättchen bedeckt. Es wurde so eine circa 90fache Verdünnung erzielt, bei welcher auf jedem Felde des Welcker’schen Zählgitters circa 30–50 Körperchen lagen, eine Verdünnung, die ich nach mehreren Versuchen als die mir zum Zählen bequemste erkannte, und die für meine relativen Zählungen durchaus nicht zu gering ist, indem es bei Benutzung des Welcker’schen Zählgitters auch bei dieser Verdünnung schon grosse Oberflächlichkeit des Zählens voraussetzte, wenn man auf einem Felde sich um mehrere Körperchen verzählen konnte.

Beide Methoden sind einfach und bequem, und dass eben in ihrer Einfachheit kein Vorwurf liegt, das kann nur durch die übereinstimmenden Resultate der Einzelzählungen bewiesen werden, und ich glaube, ich darf dies von meinen Zählungen behaupten.

Vertheilung der Blutzellen.

Die einzelnen Blutzellen liegen bei beiden Methoden streng von einander geschieden, nirgends an einander haftend, was besonders von den granulirten zu erwähnen. Sie zeigen bei beiden Methoden eine sehr gleichmässige Vertheilung über die einzelnen Felder, welche bei M. II. fast noch schöner ist, als bei M. I. Und dass bei meinen Methoden der sich in dünnen Flöckchen ausscheidende Faserstoff keine Lymphkörperchen in sich schliesst, dafür dient als Belag einmal, dass ich mehrfach solche Flöckchen untersucht und nie ein weisses Körperchen in ihnen entdeckte, während die Faserstoffgerinsel bei geronnenem oder deëbrinirtem Blute dieselben haufenweis einschliessen, anderseits aber auch meine Vergleiche zwischen nicht deëbrinirtem und deëbrinirtem Blute (s. unten), welche mit den von Welcker bekannt gemachten annähernd übereinstimmen.
Fingerstichblut.

Welcker's Zählgitter und Zählschraube.

An dieser Stelle nehme ich auch Gelegenheit, meinen herzlichsten Dank hiermit Herrn Dr. Uhle und Herrn Dr. Wagner auszudrücken, welche mit seltener Güte mich unterstützten, mir nicht nur ihre Protokolle und ihren guten Rath zur Verfügung stellten, sondern auch der erstere mir sein Microscope coude von Oberhäuser, an welchem er den Welcker'schen Schiebapparat hatte anbringen lassen, letzterer mir sein Welcker'sches Zählgitter auf eine Reihe von Monaten geliehen haben. Es ist der Welcker'sche Schiebapparat mit seinem Zählgitter oder Zahlenmikrometer, wie er es nennt, eine so praktische Einrichtung, dass man nur einmal damit gezählt zu haben braucht, um einzusehen, wie unbequem und ungenügend daneben die Moleschott'schen vereinzelten 7 Sehfelder dastehen. Ich kann mich hier auf keine genaue Beschreibung derselben einlassen und muss die sich dafür Interessirenden auf des Autors Schilderung.
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 181

nebst Abbildung im Archiv a. a. O. p. 164 bis 167 verweisen, nur das will ich noch hervorheben, dass man bei ihrem Ge-

brauche nach kurzer Uebung dahin gelangt, dass man mit Bequemlichkeit ohne Gehülfen in einer Stunde 6000 Körper-

chen zu durchzählen im Stande ist.

Welcker's Verdünnungsflüssigkeit.

Noch einige Worte über Welcker's Verdünnungsflüssig-

keit, bestehend aus 20 Gr. Kochsalz auf 200 C.C. Was-

ser. Ich habe gleich von Anfang an mich derselben bedient, weil eine gesättigte Salzlösung, wie sie Moleschott be-

nutzt, a priori nur ungünstigen Einfluss auf die Unterschei-
dung der Blutkörperchenarten erwarten lässt, besonders aber auch, weil Herr Dr. Uhle, der verschiedene Versuche mit verschiedenen Verdünnungsflüssigkeiten angestellt hatte, mir dieselbe als die brauchbarste empfahl. Ich kann dem Lobe, welches Welcker derselben ertheilt, nur beistimmen. Wenn man frisches Blut mit ihr verdünnt, so zeigen sich die einzelnen Blutzellen wunderbar hübsch und klar, etwas mehr ver-

kleinert als die normalen erscheinend durch das Verschwinden der centralen Depression, und erst gegen das Ende der Zähl-

ung treten einzelne gezackte und erblasste Formen hervor. Dass nach 24 Stunden ruhigen Stehenlassens die Flüssigkeit über dem Bodensatze noch fast wasserhell erscheint, zur Be-

wahrungr der Behauptung, dass sich keine rothen Zellen auflösen oder ihres Farbstoffs beraubt werden, kann ich auch für mehrere Tage nur bestätigen. Es mögen nun nur noch einige wenige Versuche folgen, die ich angestellt, um darzutun, dass sich auch keine granulirten Körperchen lö-

sen, in ihrer geringen Anzahl gewiss genügend, da es a priori sehr unwahrscheinlich ist, dass sich Lymphkörperchen auflösen würden in einer Flüssigkeit, welche die gefärbten Zel-

len erhält, mit Rückblick auf die bekannte Thatssache, dass in gewöhnlichem Wasser, welches die rothen Zellen unsicht-

bar macht, die granulirten nicht verschwinden.

Für's erste beweisen schon meine 6 Zählungen nach dem Abendessen (s. unten), von denen ich das Blut mit der Ver-
dünngungsflüssigkeit, um meine Augen durch Abendzählungen nicht zu sehr anzugeßen, bis zum andern Morgen stehen gelassen, die so gut stimmen mit denen nach dem Frühstück und Mittagessen, dass sich in der That keine Lymphkörperchen gelöst hatten; sodaun habe ich auch mehrmals sofort bei dem frischen Präparate eine Längsreihe flüchtig überfliegend, um zuerst die Zahl der darauf liegenden granulirten Zellen allein zu bestimmen, und dann erst auf derselben Reihe gefärbte Zellen und Lymphkörperchen gründlich durchzählte; es waren folgende Zählungen: (s. unten)

<table>
<thead>
<tr>
<th>gefärbte Zellen</th>
<th>granulirte Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>flüchtig gezählt</td>
<td>genau gezählt</td>
</tr>
<tr>
<td>Zählung 83.</td>
<td>3336.</td>
</tr>
<tr>
<td>Zählung 86.</td>
<td>4404.</td>
</tr>
<tr>
<td>Zählung 87.</td>
<td>3851.</td>
</tr>
<tr>
<td>Zählung 88.</td>
<td>4501.</td>
</tr>
<tr>
<td>Zählung 89.</td>
<td>3487.</td>
</tr>
</tbody>
</table>

Diese Zählungen beweisen wenigstens, dass sich in einer Zeit von $\frac{1}{4}$ bis $\frac{3}{4}$ Stunden keine Lymphkörperchen auflösen; es mögen sich nun noch 2 Zählungen anreiben, wo ich das den Tag vorher durchzählte Blut 24 Stunden mit der Verdünngungsflüssigkeit stehen liess und dan wieder durchzählte.

Zählung 57. Lebervenenblut.

1. Tag. XIX : 1294 = I : 68
 24 St. später, 2. Tag. XXI : 1942 = I : 92

Zählung 81. Blut nach 30 gtt. tinct. ferr. pom. $\frac{1}{2}$ St.

1. Tag. VIII : 4985 = I : 623
 24 St. später, 2. Tag. VI : 3801 = I : 633

Schwankungen der Moleschott'schen Mittelzahlen und der meinigen.

Abgesehen aber von allen in der Art und Weise meiner Zählungen liegenden Vorzügen möge der Leser selbst gegenüber den Schwankungen der Moleschott'schen einzelnen Mittelzahlen und der meinigen richten, welchen der grössere Werth der Wahrscheinlichkeit zukommt. Bei Moleschott

Welcker's Zählungen farbloser Zellen.

Er hat also im Ganzen 3mal gezählt, 2mal bei kranken Frauen, einmal bei sich selbst, 2mal mit Aderlass, einmal mit methodischem Schröppkopt, und trotzdem, dass er bei Zählung I die rothen Zellen auf noch nicht ganz 2 Millionen pro C. M., also ein ungemein niedriger Stand, bestimmt hat,

Resultate meiner Zählungen.

Die einzelnen Zählungen habe ich zwar in fortlaufender Nummer aufgeführt, doch habe ich jedesmal das Datum bei-
gesetzt, damit man auch die an demselben Tage zu verschiedenen Zeiten angestellten, hier natürlich getrennten Zählungen unter einander vergleichen könne.

So möge man denn die verschiedenen Methoden, die verschiedenen Blutarten und die bei denselben Rubriken oft weit aus einander stehenden Zählungstage berücksichtigen, trotz welcher Verschiedenheiten doch stets übereinstimmende Resultate erzielt wurden. Es bedarf nun noch der Erwähnung, dass die nach links stehenden Zahlen die Summe der direkt gezählten Körperchen angeben, die nach rechts die einfachen Verhältniszahlen; dass die römischen Ziffern den granulirten, die arabischen den gefärbten Blutzellen entsprechen, erhellet von selbst.
Zählungen zu verschiedenen Tageszeiten.

1. Früh nüchtern, 10—12 Stunden nach dem Abendessen.

Z. 8. $24/_{11}$ 54. VI : 11043 = I : 1836 \{ M. I. Bl. v. E. \\
9. $26/_{11}$ 54. IV : 7053 = I : 1763 \} M. I. Bl. v. E. \\
10. $9/_{5}$ 55. III : 5180 = I : 1730 \\
11. $11/_{5}$ 55. III : 4644 = I : 1548 \{ M. II. Bl. v. E. \\
12. $12/_{5}$ 55. III : 5565 = I : 1855 \\
Summa XIX : 33455 = I : 1761

2. $1/_{8}$—1 Stunde nach dem Frühstück.

14. $24/_{11}$ 54. $3/_{4}$, XIII : 8207 = I : 631 \} M. I. Bl. v. E. \\
15. $11/_{5}$ 55. $3/_{4}$, VI : 4063 = I : 677 \\
16. $12/_{5}$ 55. $3/_{4}$, V : 3813 = I : 763 \{ M. II. Bl. v. E. \\
17. $13/_{5}$ 55. $1/_{2}$, VI : 4853 = I : 800 \\
18. $9/_{6}$ 55. $3/_{4}$, V : 3916 = I : 782 \\
Summa XLIII : 29865 = I : 695

3. $21/_{8}$—3 Stunden nach dem Frühstück.

Z. 19. $5/_{11}$ 54. $21/_{8}$ St. III : 4520 = I : 1506 M. I. Bl. v. M. \\
20. $12/_{12}$ 54. 3, II : 2997 = I : 1500 \{ M. II. Bl. v. E. \\
21. $9/_{6}$ 55. $21/_{8}$, III : 4592 = I : 1531 \\
Summa VIII : 12109 = I : 1514

4. $1/_{2}$—1 Stunde nach dem Mittagessen.

Z. 22. $5/_{11}$ 54. 1 St. VII : 2986 = I : 427 M. I. Bl. v. M. \\
23. $12/_{11}$ 54. 1, VIII : 3159 = I : 395 \{ M. I. Bl. v. E. \\
24. $18/_{11}$ 54. 1, V : 1688 = I : 339 \\
25. $19/_{11}$ 54. $1/_{2}$, XIII : 4985 = I : 384 \\
26. $21/_{11}$ 54. 1, XIX : 8962 = I : 472 \{ M. I. Bl. v. G. \\
27. $29/_{11}$ 54. 1, XV : 6979 = I : 465 \\
Summa LXVII : 28759 = I : 429
5. 2 1/2—4 Stunden nach dem Mittagessen.

\[
\begin{align*}
&\text{Z. 28. } 4/11 \quad 54.3/4 \text{ St. III : } 4400 = I : 1467 \quad \text{M. I. Bl. v. M.} \\
&\text{29. } 5/11 \quad 54.3 \quad \text{III : } 5574 = I : 1858 \\
&\text{30. } 6/11 \quad 54.3 \quad \text{II : } 2944 = I : 1472 \\
&\text{31. } 7/11 \quad 54.2 1/2 \quad \text{II : } 2467 = I : 1233 \\
&\text{32. } 10/11 \quad 54.2 1/2 \quad \text{IV : } 4766 = I : 1200 \quad \text{M. I. Bl. v. E.} \\
&\text{33. } 11/11 \quad 54.2 1/2 \quad \text{II : } 2718 = I : 1359 \\
&\text{34. } 12/11 \quad 54.4 \quad \text{V : } 7950 = I : 1590 \\
&\text{35. } 1/6 \quad 54.4 \quad \text{III : } 4919 = I : 1639 \quad \text{M. II. Bl. v. E.} \\
&\text{36. } 2/6 \quad 55.3 \quad \text{IV : } 5725 = I : 1431 \\
\end{align*}
\]

\[\text{Summa XXVIII : } 41463 = I : 1481\]

6. 1/2—1 Stunde nach dem Abendessen.

\[
\begin{align*}
&\text{Z. 37. } 12/6 \quad 55.1/2 \text{ St. IX : } 4105 = I : 456 \quad \text{M. II. Bl. v. E.} \\
&\text{38. } 13/6 \quad 55.3/4 \quad \text{VII : } 4221 = I : 600 \\
&\text{39. } 17/6 \quad 55.1 \quad \text{VI : } 3645 = I : 607 \\
\end{align*}
\]

\[\text{Summa XXII : } 11971 = I : 544\]

7. 2 1/2—3 1/2 Stunde nach dem Abendessen.

\[
\begin{align*}
&\text{Z. 40. } 12/6 \quad 55.3 1/2 \text{ St. IV : } 5303 = I : 1326 \quad \text{M. II. Bl. v. E.} \\
&\text{41. } 17/6 \quad 55.3 1/2 \quad \text{IV : } 4436 = I : 1109 \\
&\text{42. } 20/6 \quad 55.2 1/2 \quad \text{III : } 3756 = I : 1252 \\
\end{align*}
\]

\[\text{Summa XI : } 13495 = I : 1227\]

Um zu sehen, ob der Anfangspunkt des Steigens der Lymphkörperchen sofort nach beendigter Mahlzeit oder erst einige Minuten nachher zu setzen sei, machte ich noch 3 Zählungen je 10 Minuten nach Beendigung des Essens, und erhielt Resultate, welche beweisen, dass binnen dieser 10 Minuten sicher noch keine Zunahme derselben stattgefunden hat.
10 Minuten nach dem Frühstück.
Z. 43. \(\frac{9}{5} \) 55. II : 3799 = I : 1899 M. II. Bl. v. E.

10 Minuten nach dem Mittagessen.
\[Z. 44. \quad 14 \div 55. \quad II : 3438 = I : 1719 \quad \frac{9}{5} \quad 55. \quad III : 4524 = I : 1508 \]
\[\text{Summa V} : 7962 = I : 1592 \]

Aus den vorstehenden Zählungen (Z. 8–45.) construirte ich nun die beifolgende Curve.

Die oben stehenden Zahlen zeigen die Tagesstunden, die an der Seite angeführten die jedesmalige Menge der gefärbten Blutzellen auf ein Lymphkörperchen. Die als „Frühstück, Mittag- und Abendessen“ bezeichneten Stunden (8, 1, 8) bedeuten jedesmal das Ende der betreffenden Mahlzeit, nach welchem sich nach 10 Minuten das Verhältniss auf derselben Höhe, wie vor dem Essen, erhält, worauf das Aufwärtssteigen beginnt. Die stark ausgezogenen Striche bezeichnen die zu den betreffenden Tageszeiten direkt bestimmten Verhältnisse, die unterbrochenen die daraus nothwendig resultirenden Zwischenlinien.

Um aber meine Curve zu prüfen und zugleich zu sehen, ob eine einzeln angestellte Zählung auch stets annähernd das richtige Verhältniss träge, zählte ich noch einige Mal zu Zeiten, welche in die hier unterbrochen gezeichneten Zwischenlinien fielen. Die betreffenden Stunden sind auf den Curven durch Kreuzchen bezeichnet. Ich erhielt Folgendes:

\(1 \frac{3}{4} \) Stunde nach dem Frühstück.
Der Curve nach wäre zu erwarten: I : 1100, ich erhielt:
\[Z. 46. \quad V : 5118 = I : 1023. \quad M. II. \quad Bl. v. E. \]

20 Minuten nach dem Mittagessen.
Das Kreuz an der Curve bezeichnet das Verhältniss: I : 950, ich erhielt:
\[Z. 47. \quad III : 2701 = I : 900 \quad \frac{9}{5} \quad 48. \quad VI : 4971 = I : 828 \]
\[\text{Summa IX} : 7672 = I : 852 \]
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 189

2 Stunden nach dem Mittagessen.
Nach der Curve zu erwarten: I : 1100, ich erhielt:

\[Z. 49. V : 3905 = I : 780. \]

M. H. Bl. v. E.

So, glaube ich, darf ich meine Curve als annähernd richtig bezeichnen, wenn auch vielleicht genaue Zählungen von jeder einzelnen Stunde ihr eine noch etwas modificirte Gestaltung geben dürften.

Dürfen wir das Verhältniss der granulirten Zellen zu den rothen als Ausdruck der Verdauungsthätigkeit ansehen, so würden wir das Maximum der Verdaunung \(\frac{1}{2} - 1 \) Stunde nach Beendigung jeder Mahlzeit anzusetzen haben, während nach \(2\frac{1}{2} - 3 \) Stunden das Verhältniss schon wieder nahe zu dem des nüchternen Zustandes herabgesunken erscheint; und wenn Abends trotz gleich kräftiger Nahrungszufuhr, wie Mittags, doch das Maximum nicht ganz die Höhe des Mittags gefundenen erreicht, so scheint dafür auch Abends ein etwas langsames Sinken von der Höhe statt zu haben. Von grossem Interesse wäre es allerdings, nun mit diesen von mir verzeichneten Verhältnissen die Zahl der absoluten Mengen der rothen Blutzellen zu verschiedenen Tageszeiten in Vergleich zu setzen.

Das ganze Bild der Curve erinnert, wenn auch nicht lebhaft, so doch annähernd an die von Lichtenfels und Fröhlich in ihren Temperatur- und Pulsoberachtungen für die verschiedenen Tageszeiten aufgezeichneten Curven, besonders an die des Pulses im Mittel aus zwei verschiedenen Beobachtungen, Taf. III. (Cf. III. Band der Denkschriften der mathematisch-naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften.)

Zählungen des Blutes aus Milzarterie, Milzvene, Pfortader und Lebervene.

Ernst Hirt:

Alle 3 benutzten Kälber befanden sich in nüchternerem Zustande, sie hatten länger als 12 Stunden keine Nahrung bekommen. Ueberall, wie schon erwähnt, wurde Meth. II. angewandt.

Milzarterie und Milzvene.

D. 9/5 55.
Z. 50. Milzarterie: II 5200 = 1:2600
 51. Milzvene: XXIII: 1701 = 1: 74

D. 24/5 55.
Z. 52. Milzarterie: II 3686 = 1:1843
 53. Milzvene: XXII: 1178 = 1: 54

D. 22/5 55.
Z. 54. Milzarterie: II 4189 = 1:2095
 55. Milzvene: XXII: 1810 = 1: 82
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 191

Pfortader und Lebervene.

Es war von vorn herein zu erwarten, dass ich hier nicht so gut stimmende Resultate erhalten würde, wie bei Milzvene und Milzarterie, da ich bei der bedeutenden Blutleere nicht auf normale Verhältnisse rechnen, bei der Pfortader nicht wissen konnte, ob ich nicht zu viel oder zu wenig übergetretenes Milzvenenblut erhalten würde, bei der Lebervene nicht, ob nicht viel Blut aus der Hohlader sich beigemengt habe. Ich fand Folgendes:
D. \(\frac{4}{5} \), 55.

Z. 56. Pfortader: III : \(2123 = 1 : 708 \)

\(\frac{4}{5} \) 57. Lebervene: XIX : \(1294 = 1 : 68 \)

D. \(\frac{2}{5} \), 55.

Z. 58. Pfortader: V : \(3842 = 1 : 768 \)

\(\frac{4}{5} \) 59. Lebervene: IX : \(2462 = 1 : 274 \)

D. \(\frac{25}{3} \), 55.

Z. 60. Pfortader: XII : \(1168 = 1 : 97 \)

\(\frac{4}{5} \) 61. Lebervene: XXIII : \(1554 = 1 : 67 \)

Zählungen bei Wechselfieber und Leukämie.

An die übrigen Zählungen, dafür sprechend, dass die Milz ein Bildungsorgan für granulirte, weisse Blutzellen sei, schlies- sen sich eng die Fragen an über das Verhalten dieser Zellen in Krankheiten mit Milztumoren. Ich habe nur wenige Zählungen bei Kranken dieser Art machen können; was ich gefunden, folgt. Es sprechen wenigstens diese Resultate sehr gegen die allgemein verbreitete Annahme, welche auch Rokitansky in seinem Lehrbuch d. pathol. Anatomie, 3. Aufl.

Müller's Archiv. 1855.
Ernst Hirt:

Wechselfieber.

Z. 62. VIII : 7720 = I : 965

In der Norm um diese Zeit 1 : 429 zu erwarten.

Nicht defibrinirtes Blut nach Meth. II. gezählt:

Z. 63. III : 5852 = I : 1950

Defibrinirtes Blut nach Meth. I. gezählt:

Z. 64. III : 6672 = I : 2224

Im Normalen zu dieser Zeit zu erwarten circa: I : 1000.

$\frac{6}{\text{5}}$ 55. N.N. 19 Jahr alt; Intermittens seit 6 Wochen. Zur Zeit der Apyrexie geschürft, 4 Stunden nach dem Frühstück. Milz 5″ bis 6″. Nicht defibrinirtes Blut nach Meth. II. gezählt:

Z. 65. II : 5475 = I : 2738

Im Normalen 4 Stunden nach dem Frühstück I : 1500 zu erwarten.

Wir haben also überall zur Zeit der Apyrexie bei Intermittens eine Verminderung der Lymphkörperchen in ihrem Verhältniss zu den gefärbten Zellen um das Doppelte gegen die in der Norm statthabenden Verhältnisse, sicher wenigstens keine Vermehrung derselben, wie Rokitansky (a.a.O.) behauptet, ein Vorkommen, womit auch das von Dr. Uhle bei einer Intermittenzählung (s. oben) gefundene Mittel I : 3372, 3 Stunden nach dem Frühstück, vollkommen übereinstimmt.
Leukämie.

D. 15% 55. Schröpfblut, früh um 1/2 12 Uhr.
Nicht defibrinirtes Blut nach Meth. II. gezählt:
Z. 66. 709 gr.: 2527 r. = I : 3,56
Defibrinirtes Blut nach Meth. I. gezählt:
Z. 67. 378 gr.: 1793 r. = I : 4,74

D. 25% 55. Schröpfblut, früh um 1/2 11 Uhr.
Nicht defibrinirtes Blut nach Meth. II. gezählt:
Z. 68. 540 gr.: 1776 r. = I : 3,29
Defibrinirtes Blut nach Meth. I. gezählt:
Z. 69. 448 gr.: 1474 r. = I : 3,29

Ich will nun hier noch kurz auf die oben mitgetheilten Zählungen hinweisen, wo ich dasselbe Blut nicht defibrinirt und defibrinirt gezählt habe, und auf die sich dabei theils herausstellenden, theils nicht herausstellenden Verluste an granulirten Zellen. Welcker hat in seinem mehrfach citirten Aufsatze in der Prager Vierteljahrsschrift bei seinen „Zählungen farbloser Blutkörperchen“ 2 dahin einschlagende Versuche bekannt gemacht, und es hat derselbe durch die Defibrination bei Versuch I. einen Verlust von 28,1%
„ Versuch II. „ „ „ 19,3% Lymphkörperchen gehabt. Zwei meiner Versuche stehen damit vollkommen in Parallele, der dritte widerspricht:

„ 64. Defibr. Blut III : 6672 = I : 2224

13*
Dies ergibt einen Verlust von 12,3 % granulirter Zellen durch Defibrination.

\[Z. \; 66. \; \text{Nicht defibr. Blut} \; 709 : 2527 = I : 3,56 \]
\[Z. \; 67. \; \text{Defibr. Blut} \; 378 : 1793 = I : 4,74 \]

Das ist ein Verlust von 24,9 %.

\[Z. \; 68. \; \text{Nicht defibr. Blut} \; 540 : 1770 = I : 3,29 \]
\[Z. \; 69. \; \text{Defibr. Blut} \; 448 : 1474 = I : 3,29 \]

Also ein bis auf die zweite Decimalstelle durchaus übereinstimmendes Resultat, durch die Defibrination, wie es scheint, auch nicht der geringste Verlust an granulirten Zellen, trotzdem dass sich vollkommene Faserstoffgerin.sel ausgeschieden hatten, deren mikroskopische Untersuchung betreff ihres Gehaltes an granulirten Zellen ich leider versäumt habe.

Zählungen betreffen der Einwirkung einzelner tonisirender Arzneimittel.

Ich habe meine Versuche mit der tinct. myrrhae begunnen, da ich diese gerade zufällig zur Hand hatte.

\(\frac{1}{2} \) Stunde nach Genuss von 30 gtt. tinct. myrrhae.

\[Z. \; 70. \; \frac{1}{2}, \; 55. \; 2\frac{1}{2} \text{Stunde nach dem Frühstück.} \]
Numerisches Verhältniss zwischen den weissen u. rothen Blutzellen. 197

\[
\text{VIII : } 4389 = I : 549 \quad 1)
\]

<table>
<thead>
<tr>
<th>Ziffer</th>
<th>Prozent</th>
<th>Stunde n. Frühstück</th>
<th>Prozent</th>
<th>Stunde n. Mittagessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. 71.</td>
<td>21/3</td>
<td>4389 = I : 418</td>
<td>72.</td>
<td>11/2</td>
</tr>
<tr>
<td>Z. 73.</td>
<td>21/3</td>
<td>3759 = I : 418</td>
<td>72.</td>
<td>11/2</td>
</tr>
</tbody>
</table>

Augesichts dieser vier Zählungen, der ersten, die ich in dieser Beziehung machte, kam mir der gerechte Argwohn, ob denn vielleicht die Myrrhe ganz unschuldig sei, der Alkohol der Tinktur das allein anregende Prinzip. Das aber widerlegten auf das Entschiedenste die folgenden vier Zählungen:

\[\text{1/2 Stunde nach Genuss von 30 gtt. spirit. vin. rectificatss.}\]

<table>
<thead>
<tr>
<th>Ziffer</th>
<th>Prozent</th>
<th>Stunde n. Frühstück</th>
<th>Prozent</th>
<th>Stunde n. Mittagessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. 74.</td>
<td>11/6</td>
<td>4407 = I : 1469</td>
<td>75.</td>
<td>12/6</td>
</tr>
<tr>
<td>Z. 76.</td>
<td>11/6</td>
<td>3956 = I : 1320</td>
<td>77.</td>
<td>11/6</td>
</tr>
</tbody>
</table>

Also der Alkohol bedingte die Vermehrung der Lymphkörperehen nicht; ich wandte daher auch bei den folgenden Mitteln die Tinkturen an.

\[\text{1/2 Stunde nach Genuss von 30 gtt. tinct. ferri pomat.}\]

<table>
<thead>
<tr>
<th>Ziffer</th>
<th>Prozent</th>
<th>Stunde n. Frühstück</th>
<th>Prozent</th>
<th>Stunde n. Mittagessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. 78.</td>
<td>11/6</td>
<td>4891 = I : 699</td>
<td>79.</td>
<td>11/6</td>
</tr>
<tr>
<td>Z. 80.</td>
<td>11/6</td>
<td>3076 = I : 769</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Diese Zählung war 20 Minuten nach dem Einnnehmen gemacht, die übrigen alle 1/2 Stunde darauf.
Z. 81. 13/6 55. 23/4 Stunde nach dem Mittagessen:
VIII : 4985 = I : 623
1/2 Stunde nach Genuss von 30 gtt. tinct. amar.
Z. 82. 18/6 55. 31/4 Stunde nach dem Frühstück:
VII : 3666 = I : 524
83. 18/6 55. 23/4 Stunde nach dem Frühstück:
V : 3336 = I : 667
84. 14/6 55. 3 Stunden nach dem Mittagessen:
X : 5119 = I : 512
85. 16/6 55. 41/4 Stunde nach dem Mittagessen:
VII : 4195 = I : 599
1/2 Stunde nach Genuss von 30 gtt. tinct. chimaæ simpl.
Z. 86. 19/6 55. 3 Stunden nach dem Frühstück:
IX : 4404 = I : 489
87. 20/6 55. 21/2 Stunde nach dem Frühstück:
IX : 3851 = I : 428
88. 19/6 55. 21/2 Stunde nach dem Mittagessen:
IX : 4501 = I : 500
89. 20/6 55. 31/2 Stunde nach dem Mittagessen:
VII : 3487 = I : 498

Wollten wir demgemäß die untersuchten tonica ihrer Energie nach auf die Zunahme der granulirten Zellen in Reihenfolge stellen, so erhielten wir zu einer Zeit, wo I : 1500 zu erwarten war, folgende Reihe:

tinct. ferr. pomat. mit einer Mittelzahl: I : 700 (688)
- amara I : 600 (576)
- chinaæ I : 500 (479)
- myrrhae I : 400 (397).

Das Eisen zu unterst und die unbekannte Myrrhe oben an, allen andern tonicis voraus.

Die relative Zunahme der farblosen Blutzellen nach Einnahme jener Mittel ist somit constatirt, und es frage sich nur, ob auf ähnliche Weise angestellte Zählungen, vielleicht Hand in Hand gehend mit Bestimmung der absoluten Mengen der Blutzellen, nicht auch in pharmakodynamischer Beziehung bemerkenswerthe Resultate ergeben könnten. Interes-
sant genug ist was ich gefunden, das ergiebt am deutlichesten eine einfache Rechnung, die auch ihre Anwendung findet auf die Vermehrung der granulirten Zellen durch die Mahlzeiten.

Setzen wir die Menge des Gesammtblutes $= 16 \text{ fl.} = 8$ Kilogramme = dem Gewicht von 800000 C.M. und den C.M. = 500000 Körperchen (Vierordt, Welcker), und betrachten nun folgende Proportionen, unter der Voraussetzung, dass sich die Menge der rothen immer gleich bliebe:

\[
1500 : 1 = 5000000 : X \quad \text{und} \quad 400 : 1 = 5000000 : X
\]

\[
X = \frac{5000000}{1500} \quad X = \frac{5000000}{400}
\]

\[
X = 3333 \quad X = 12500
\]

Also 3333 die Zahl der granulirten Zellen pro C.M. für die Zeit, wo das Verhältniss 1 : 1500, und 12500 die Zahl derselben pro C.M. für die Zeit, wo das Verhältniss 1 : 400. Um die Zahlen für die gesamte Blutmenge zu finden, multiplizieren wir die genannten mit 8000000, erhalten also für das Verhältniss 1 : 1500 die Zahl 266640000000

\[
\text{und} \quad 1 : 400 \quad \text{also} \quad 100000000000
\]

Dies giebt also für 30 gtt. tinct. Myrrhae eine Mehrerzeugung von 733560000000 granulirten Zellen, also für einen Tropfen mehr als 2444000000.
Historisches und Experimentelles über Muskeltonus.

Von

DR. RUDOLF HEIDENHAIN.

(Hierzu Taf. VIII.)

Etwas gerecht jeder Wissenschaft zum grössten Nachtheile, wenn in dieselbe Ausdrücke sich einschleichen, deren Bedeutung nicht strenge festgestellt ist. Lockere Begriffe haben lockere Schlüsse zur nothwendigen Folge. So entsteht daraus im Laufe der Entwicklung der Wissenschaft ein Gewebe von Irrthümern, die unmerklich mehr und mehr festen Fuss fassen und um so schwerer erkannt und ausgerottet werden, als spätere Generationen der Gelehrten leicht die Anschauungen früherer ohne gründliche Kritik in sich aufnehmen, besonders solche, die unter der Form vieldeutiger Ausdrücke weite Verbreitung in der täglichen Sprache der Wissenschaft, aber dennoch für den genauer Prüfenden ein nur zweifelhaftes Bürgerrecht erlangt haben. Mit Wörtern, denen nicht durch allgemeines Uebereinkommen eine feste Bedeutung gegeben ist, schaltet Jeder nach Belieben. Jeder legt ihnen einen ihm bequemen Sinn unter, ohne sich der Willkürlichkeit seiner Interpretation bewusst zu sein. Zuletzt weiss Niemand mehr klar, was Andere unter denselben Ausdrucke verstehen, und es entspinnen sich unfruchtbare Debatten über Worte, nicht über feste, reale Begriffe.

Historisches.

Schon Galen in seiner Schrift: οὔτως δὲ ινείας μονεμφάλης; 1) spricht –

1) Medicorum Graecorum opera quae exstant. Edit. cur. C. G. Kuhn Vol IV.
von einem ,,τόνος“ 1) und kennt tonische Bewegungen 2). Er versteht unter diesen willkürliche, längere Zeit dauernde Muskelcontractionen, die er als eine Reihe so schnell auf einander folgender Einzelcontractionen ansieht, dass die Muskeln, obgleich in thätigem Zustande, zu ruhen scheinen. So seien die Muskeln einer ausgestreckt gehaltenen Hand in tonischer Action begriffen, obwohl die Hand unbewegt scheine. Der τόνος selbst aber ist die den Muskeln durch psychischen Impuls vermittelst der Nerven mitgetheilte Spannung. In Galens’s Sinne ist das Wort Tonus später nicht mehr gebraucht worden. Höchstens den Ursprung „εἰς γνήσιον νηστικόν“ hat jener Tonus mit dem mancher Physiologen unseres Jahrhunderts gemein, die darunter ebenfalls eine von den Centralorganen abhängige, aber ununterbrochen andauernde und unwillkürliche Muskelcontraction geringen Grades verstanden.

Die Erscheinungen, welche zur Annahme eines Tonus in letzterem Sinne führten, z. B. die Verkürzung eines an einem oder an beiden Insertionsenden losgelösten Muskels 4), die permanente Contraction eines Muskels nach Durchschneidung seines Antagonisten 5), die continuumliche, auch im Schlaf anhaltende Thätigkeit der Sphincteren 6), alle diese Erscheinungen kannte und überlegte Galen sehr wohl. Die ersteren erklärte er durch eine eigenthümliche, den Muskeln angeborene Kraft, sich in sich zu contrahiren 7), die ununterbrochen thätig ist 8), und deren gleichzeitiger Action in den Antagonisten die Glieder ihre mittlere, etwas gebeugte Stellung in der Ruhe verdanken. Dass diese Kraft von den Nerven unabhängig ist,

1) l. c. pg. 369, 402 etc.
2) l. c. pg. 400.
3) l. c. pg. 369.
4) l. c. pg. 391.
5) l. c. pg. 387.
6) l. c. pg. 438.
7) l. c. pg. 390: Οὖν ἄδηλον δ', ὅτι τὸ μὲν τείνεσθαι ἦν καὶ εἰς ἑαυτὸς συνεκκλεσθαι οὕμνητος ἐνέγερε τοὺς μνῷ.
8) Οὐδὲνοι οὖν ἦσον τάσης οὐδεὶς μῆς, οὐδ’ οὐ ἐν τοῖς μέσοις σχῆμασιν (pg. 419), d. h. nicht einmal, wenn die Glieder in der mittleren Stellung zwischen Beugung und Streckung ruben.
Historisches und Experimentelles über Muskeltonus. 203

erklärt zwar Galen nirgends direkt, doch geht es aus dem ganzen Zusammenhange auf das Bestimmteste hervor. Denn einmal demonstrirt er sie auch an todtten Thieren. Ferner erklärt er sich das Zustandekommen willkürlicher Bewegung an ruhenden Gliedern, deren gleich stark gespannte Antagonisten sich im Gleichgewichte halten, durch die Annahme, die natürliche Kraft des einen werde momentan durch den Willensimpuls verstärkt und erlange so das Übergewicht über die des andern 1). Daraus folgt, dass er die bei der Nervenerregung sich äussernde Kraft ganz und gar sondert von derjenigen, die er als dauernde und ihm eigenthümliche im Muskel voraussetzt.

Die Sphincterenwirkung stellt Galen als abhängig von willkürlicher Action dar, eine Deutung, welche trotz des Scharfsinnes, den er zu ihrer Vertheidigung aufbietet, nicht gerade glücklich zu nennen ist.

So sind die Ansichten des Gelehrten, den wir, einen grossen Sprung machend, zunächst in Betracht zichen, Georg Ernst Stahl 1), bei weitem weniger den Forderungen ruhiger, vorurtheilsfreier Beobachtung entsprechend. Stahl schrieb eine besondere Abhandlung über den Tonus 2), deren ich leider nicht habhaft werden konnte. Soviel ich aus anderen Au-

1) pg. 415.
2) De motu tonico vitali. Jenae, 1692.
toren 1) darüber ersehen, gebraucht er die Bezeichnung „motus tonicus“ in ganz anderem Sinne als Galen. Um es kurz zu sagen, versteht er darunter die relativ trägen Bewegungen vieler Theile, in denen die neuere Anatomie als bewegendes Prinzip glatte Muskelfasern nachgewiesen hat, also z. B. die Contractionen der Ausführungsgänge der Drüsen, der Gefässe, der Haut bei Application von Kälte. Ursache dieser Bewegungen, wie aller anderen, ist bei Stahl die bewusste Seele, die vernünftige Regentin ihres selbst erbauten Körpers. Es wäre uninteressant, länger bei diesen wenig fruchtbaren Theorien stehen zu bleiben, die sich in ähnlicher Weise durch die Schriften der zahlreichen Schüler Stahl’s fortspinnen. Wir erwähnen erst wieder, als für unsern Gegenstand wichtig, Haller, dessen Irritabilitätslehre eine neue Epoche in der Muskelphysiologie begründete.

Haller 2) unterscheidet vier Arten von Contractibilität an den Muskeln: 1. Die allgemeine Elastizität, die sie mit allen anderen organismischen Geweben theilen, und deren Aeusserung in der auf eine gewaltsame Expansion folgenden Contraction bestehet. 2. Contractilitas fibrae animalis mortuae, welche im lebenden, wie im todten tierischen Gewebe, so lange es feucht ist, ihren Sitz hat und an der Contraction erkannt wird, welche durchschnittene Haut, getrennte Muskeln u. s. f. erfahren. Diese Kraft ist in tierischen Theilen fortwährend thätig, wenngleich ihre Wirkung nicht fortwährend in die Erscheinung tritt, was darin seinen Grund hat, dass die gleichen, nach entgegengesetzten Seiten gerichteten Kräfte sich aufheben. Haller war nicht im Stande, die Erscheinungen, die er dieser eigenthümlichen Kraft zuschreibt, auf die Elastizität zurückzuführen, ja er war über das Wesen derselben so im Unklaren, dass er von ihr die Verschrumpfung ableitet, welche

1) Namentlich aus Tiedemann’s Physiologie des Menschen. Darmstadt 1830, I. 713, und vor Allem aus Haller’s weitläufigen Referaten.
2) Elementa physiologiae corporis humani. Lausannae MDCCLXII. Tom. IV. Lib. II. Motus animalis. Sect. II. Motus musculorum phaenomena.
3. auf die Contraction, welche die Haut bei Berührung mit corrodirenden Flüssigkeiten (Salpetersäure, Schwefelsäure etc.) erleiden, sowie auch die Contraction, welche die Haut bei Application von Kälte erfährt. 3. Vis contractilis musculis insita s. propria. Auch unter dieser Rubrik finden wir eine Menge ganz verschiedener Erscheinungen zusammengefasst. Jeder muskulöse Theil hat die Fähigkeit, sich bei Einwirkung irgend welcher Reize unabhängig von den Nerven zu contrahiriren. Die einen Organe gerathen schon unter dem Einfluss schwächerer Reize in Action, wie das Herz und die Eingeweide, die in Folge der im Organismus stetig auftretenden, wenig intensiven Reize fortwährend Bewegungen vollführen; die anderen Organe, weniger reizbar, contrahiriren sich deutlich sichtbar erst bei Einwirkung stärkerer, von aussen herstammender oder in den Bahnen der Nerven vom Gehirne her ihnen zufliessender Reize; so die willkürlichen Muskeln. Gleichwohl ist auch in diesen die vis insita fortwährend thätig. Von dieser continuirlichen Action leitet H a l l e r alle Phänomene im Bereiche der animalen Muskeln ab, die Galen seiner σώματος τοίς μυσθιν ἐνέργεια zuschreibt, also die gleiche Spannung der Antagonisten, die Contraction des einen nach Durchschneidung des andern u. s. f., eine Anschauung, welche im Auge zu behalten für unser speziellen Gegenstande von besonderer Wichtigkeit ist. 4. Vis nervosa. Sie wird in den Muskeln in Folge von Erregung ihres Nerven thätig, hat mit der vorigen Kraft die ungefähre gleiche Dauer nach dem Tode gemein, unterscheidet sich aber von derselben dadurch, dass sie vom Gehirn her auf die Muskeln übertragen wird, und dass sie immer nur momentan thätig ist. Gegen die Physiologen, die der vis nervosa ununterbrochene Thätigkeit zuschreiben, wendet H a l l e r ein, der Augenschein lehre, dass der Zustand der Muskeln, welcher nach einer aktiven, durch Innervation bedingten, Contraction eintrete, ganz verschieden sei von dem Contractionszustande selbst. Mithin werde mit letzterem Zustande, der durch die Innervation herbeigeführt wird, auch wohl die Innervation selbst vorüber sein.

1) pg. 444, 445.
Es müssten ferner die willkürlichen Muskeln ermüden und schmerzen, wie erwartungsmässig nach jeder dauernden Anstrengung, wenn sie von den Nerven in ununterbrochener Thätigkeit gehalten würden. Auch wisse die Seele, die ja die vis nervosa erwecke, Nichts von der fortwährenden Thätigkeit der Muskeln. Endlich würde unser begrenzter Verstand, der immer nur wenige Dinge zugleich auffassen könne, gar nicht dazu hinreichen, das Gleichgewicht so vieler Muskelgruppen dadurch, dass er sie vermittelst der Nerven in der gehörigen Spannung hielt, fortwährend, selbst im Schlafe und in allen beliebigen Lebenszuständen, auf passende Weise herzustellen. Die Möglichkeit einer unwillkürlichen fortwährenden Innervation fällt Haller gar nicht ein. Immerhin sehen wir schon jetzt eine wenigstens ähnliche Frage obschweben, wie in neuester Zeit, die Frage, ob die Spannung der Muskeln am lebenden Körper vom Nervensystem abhängig oder unabhängig ist. Haller spricht sich, wie dies auch neuerdings geschehen ist, für die Unabhängigkeit aus. Doch unterscheidet sich seine Ansicht von der neueren dadurch, dass er jener Spannung nicht eine rein physikalische, sondern eine vitale Kraft, die vis contractilis musculis insita s. propria, zu Grunde legt, wie schon oben bemerkt worden ist.

Wieder übergehen wir eine Reihe physiologischer Schriftsteller, die den von Haller aufgestellten neuen Gesichtspunkten folgten, ohne sie irgend wesentlich zu modifiziren, bis auf Bichat 1). Wenn Haller sich der neuerdings seit Weber vielfach acceptirten Ansicht über die Spannung der willkürlichen Muskeln dadurch um einen Schritt genähert hatte, dass er sie von den Nerven unabhängig sein liess, so vollen dete Bichat diese Annäherung, indem er jene Spannung auf rein physikalische Kräfte zurückführte. Dadurch wird er für die Geschichte unseres Gegenstandes so wichtig, dass wir bei ihm etwas länger stehen bleiben müssen.

Bichat unterschied, wie Haller, vier Arten von Con-

Bichat weist 1) weitläufiger darauf hin, dass viele der organischen Gewebe im normalen Zustande am lebenden Körper über das ihrer natürlichen Elastizität entsprechende Maafs gedehnt sind. So die willkürlichen Muskeln durch ihre Antagonisten, die hohlen Muskeln und die Gefässen durch ihren Inhalt, die Haut einer Körperform durch die benachbarter Theile u. s. f. Mit dem Wegfalle der Ursachen der Dehnung fällt diese selbst weg, es tritt Contraction der vorher gespannten Theile ein. Daber das Klaffen von Wunden, daher die Verkürzung losgelöster Muskeln und die Contraction ihrer Antagonisten u. dgl. m. Diese contractilité hat ihren Grund lediglich in der physikalischen Beschaffenheit der organischen Gewebe, und wenn sie auch nach dem Tode weniger beträchtlich ist, als während des Lebens, so hört sie doch niemals auf, sondern

1) Bichat l. c. pg. 106 sq.
bleibt, wenn auch in geringerem Grade, bestehen, so lange die Textur der Gewebe erhalten ist.

Wir sehen, dass die tonicité oder contractilité organique insensible bei Bichat eine ganz andere Rolle spielt, als der moderne Tonus. Für die Sache des letztern wichtiger ist die zuletzt besprochene Contractilität. Wir werden später finden, dass ein deutscher Physiologe ganz auf Bichat’s Anschaunungen in Betracht dieser letztern zurückkam.

Nach Bichat finden wir lange Zeit nichts für uns besonders Interessantes. Der Begriff des Tonus ändert sich im Wesentlichen bei den nächstfolgenden Physiologen nicht; er bleibt unbestimmt, indem als „tonisch“ bald diese, bald jene Bewegungsform bezeichnet wird. So definirt Tiedemann 1) als tonische Bewegungen solche, „die weder als Wirkungen der blossen Elastizität, noch als solche der Muskulcontractilität anzusehen sind“. Sie werden fast denselben Organen zugeschrieben, an denen Bichat seine tonicité demonstrirte. Den gleichen Betrachtungen sind von zu geringem Interesse, als dass sie uns länger fesseln könnten.

Historisches und Experimentelles über Muskeltonus. 209

"dem Zurückziehen der durchschnittenen Muskeln, an den leis-sen Bebungen bloßgelegter Muskeln und an der Verstellung des Gesichtes und der Zunge bei halbseitiger Lähmung" 1). Weiter wird 2) für diese continuirliche Innervation die stetige Contraction der Sphincteren angeführt, die nach M. Hall von der Integrität des Rückenmarkes in seinem unteren Theile abhängt, und die spontane Contraction der Muskeln, deren Antagonisten durchschnitten oder gelähmt sind 3).

1) l. c. II. 40.
2) l. c. 80 und 81.
5) Müller’s Archiv. 1856.
büsste seine runde Form ein, war nicht mehr zusammengezogen, lax, schlaff, hängend. Schlaff war auch der Schwanz und bewegte sich nicht mehr, wenn er gereizt wurde. Aus diesen Versuchen, in denen neben dem „Tonus“ auch die Reflexbewegungen verloren gegangen waren, schloss der englische Physiologe, dass beides, Tonus und Reflexaction, nur Modifikationen derselben Function des Rückenmarkes seien.

Durch Henle 1) wurde die Tonuslehre weiter ausgebildet. Er nahm den Namen Tonus für die ununterbrochene Thätigkeit in Anspruch, die er im ganzen Nervensysteme nachweisen wollte. Bedingung für die tonische Thätigkeit der Nerven ist ihr Zusammenhang mit der grauen Substanz des Rückenmarkes und Gehirnes. Für den Tonus der Muskeln führt Henle neue Beobachtungen oder Versuche durchaus nicht an. Er macht auf das Herabhängen des Unterkiefers nach Durchschneidung des dritten Quintusastes (Versuch?) und, wie Müller, auf die Schiefstellung des Mundes nach Facialislähmung sowie auf die Erschlaffung der Sphincteren bei Läsionen des Rückenmarkes aufmerksam. Wie das bekannte Faktum, dass nach Durchschneidung der Schenkelnerven die Beine, vollkommen gelähmt, nachgeschleppt werden, hierher gehört, ist freilich nicht abzusehen; es wird dadurch doch eben nur bewiesen, dass für die willkürliche Action der Muskeln die Integrität der zugehörigen Nerven notwendige Bedingung ist. Faktisches also bringt Henle zum Beweise seines Satzes, dass „Alles, was den Zustand der Nerven zu ändern vermag, auch die Spannung der Muskeln ändert“, sehr wenig bei. Dafür giebt er Hypothesen über die Natur des Tonus und seine Veränderlichkeit, die nichts weniger als bewiesen sind: „Drücken wir durch die Linie ab den angeborenen Tonus aus, so sind die Folgen eines excitingen Reizes zuerst Erregung (bis c), dann allmäßige Rückkehr zur Ruhe (cd) und unter dieselbe (de), dann Restitution und Steigerung (ef), endlich Beharren

auf diesem neu gewonnenen Tonus (fg)1). So soll in einer zweckmässig und mit den zur Erholung nöthigen Pausen ge- reizten Muskelgruppe der Tonus gesteigert werden. Diese wis- senschaftliche Interpretation der vulgären Thatsache, dass Muskeln durch Übung stärker werden, ist so einseitig, dass sie kaum irgend welchen Anklang finden dürfte. Die theoretisch construirte Tonuscurve entspricht der Wirklichkeit durch- ans nicht, wie später anzuführende empirisch gewonnene Cur- ven zeigen werden.

Volkmann2) adoptirt die Tonustheorie auf die von jenen Autoren angeführten Beweise hin.

Zwei Jahre nach des Letztern Arbeit begann die Reaction gegen den Muskeltonus durch Ed. Weber3) Um zu entschei- den, ob die Contraction, welche Muskeln bei Durchschneidung oder Loslösung eines ihrer Enden erfahren, vom Rückenmarke abhängig oder unabhängig sei, brachte Weber4), an Kanin- chen experimentirend, das Bein einer Seite nach Durchschnei- dung des n. ischiadicus in die für ruhiges Herabhängen nor- male halbgebogene Lage des Knie- und Fussgelenkes und durchschnitt dann die Achillessehne. Es entfernten sich ihre Enden von einander, im Mittel um 6 mm. (bei der bezeichne- ten Stellung). Nach Durchschneidung der Flexoren des Fusses auf der Vorderseite des Unterschenkels verkürzten sich auch diese. Er schloss daraus, dass die Verkürzung der Muskeln

1) Rationelle Pathologie I. 119.
2) Artikel Nervenphysiologie in Wagner's Handwörterbuch Bd. II. 1844, pg. 488.
3) Artikel Muskelbewegung in Wagner's Handwörterbuch III. 2. — 1846.
4) l e. p. 116.

Seit Weber ist über den Muskeltonns nicht mehr experimentirt worden. Die Physiologen begnügten sich, seine Gründe und die der andern Partei gegen einander abzuwägen und sich danach für die eine oder die andere Seite zu entscheiden oder, und das sind die meisten Fälle, die Sache in suspension zu lassen.

So erklärt Koelliker 1), er „glanbe“ an keinen Tonus, sondern halte „das Meiste“, was man mit diesem Namen bezeichnet habe, nur für Folge elastischer Spannung.

Nach Lotze’s Ansicht 2) liegt keine empirische Thatsache vor, die zu der Annahme auffordere, dass auch bei der Abwesenheit positiver Reize jeder Nerv sich, wie der opticus, von dem es erwiesen sei, in einem Zustande der Thätigkeit befinde. Dennoch sei diese Annahme aus allgemeineren (?) Gründen nicht unwahrscheinlich.

Ludwig 3) widmet der Tonusfrage eine Seite, auf welcher er theils die von Weber gegen den Tonus erhobenen Bedenken bekräftigt, theils neue Monita gegen andere Gründe, die zu Gunsten des Tonus erhoben worden sind, beibringt. Namentlich wendet er gegen M. Hall’s Versuch an dem sphincter ani einer Schildkröte ein, dass bei Menschen nach Verletzung des Hals- oder Brusttheiles des Rückenmarkes, durch welche das Lendenmark vom Gehirn getrennt wird, der Afterschließer vollkommen erschlafft, so dass der Koth unwillkör-

1) Mikroskopische Anatomie, Leipzig 1850, II. 1. pg. 269.
2) Allgemeine Physiologie, Leipzig 1851, pg. 412.
3) Lehrbuch der Physiologie I., Heidelberg 1852, pg. 152,

In ganz ähnlicher Weise spricht sich Eckhards über unserm Gegenstand aus.

1) Grundzüge der Physiologie des Nervensystems, Giessen 1851.
2) Archiv für pathologische Anatomie Bd. VI. 139.
erwünscht sein, sich ihrem „Tonus“ gegenüber ihren Standpunkt klar gemacht zu sehen.

Nachdem bisher rein historisch die Entwicklung des Begriffes des Tonus verfolgt und referirt worden ist, welche Deutungen zu verschiedenen Zeiten die Erscheinungen erfahren haben, die man neuerdings als Beweise für die Existenz des modernen Tonus angeführt hat, gehen wir zur Prüfung der Gründe pro et contra über, um zu sehen, wie weit die Frage schon spruchreif ist.

2. Schwieriger ist die Beurtheilung des Grundes, der zur
seiner Fasern nämlich bewegt jeder genioglossus bei seiner Contraction die Zunge nicht bloß nach vorne, sondern gleich nach der andern Seite hin. Wirken beide genioglossi zusammen, so heben sich die beiden die Zunge nach den Seiten hin bewegenden Kräfte auf und es bleibt nur die Bewegung geradeaus übrig. Fällt aber bei einseitiger Hypoglossuslähmung die Wirkung des einen genioglossus aus, so nimmt die Zunge ganz die Bewegung an, die ihr von dem andern genioglossus ertheilt wird, d. h. sie wird nach vorne und gleich mit der Spitze nach der gelähmten Seite hin bewegt. — Was zweitens die Verzerrung des Mundes nach der gesunden Seite hin bei einseitiger Facialislähmung anlangt, so ist Folgendes zu bemerken: Werden im Normalzustande die Muskeln, die sich in die Mundwinkel inseriren, in Bewegung gesetzt, so wirken an beiden Winkeln gleiche Kräfte auf den orbicularis oris, der in Folge dessen nach beiden Seiten hin gleich gedehnt wird und beim Nachlassen der Contraction jener Muskeln natürlich seine normale Form wieder einnimmt. Sind die Muskeln des einen Mundwinkels gelähmt, so muss bei der willkürlichen Contraction der entsprechenden Muskeln der gesunden Seite der ganze orbicularis, der nirgends eine feste Insertion hat, nach dieser Seite hin verzogen werden, wobei die Muskeln der kranken Seite eine Dehnung erfahren. Nach Beendigung der Contraction sind letztere nicht im Stande, die durch die willkürliche Action herbeigeführte Verzerrung wieder aufzuheben, die deshalb eine bleibende wird. Sie wird mit der Dauer der Lähmung immer bedeutender, weil die gelähmten Muskeln immer schlaffer und dehnsamer werden1). Man sieht, dass sich der Tonus-Hypothese eine andere nicht weniger berechtigte entgegensetzen, dass sich mithin aus den besprochenen Erscheinungen kein sicherer Schluss auf die Existenz oder Nichtexistenz des Tonus ziehen lässt.

3. Man hat das Verhalten der Sphincteren als Beweis für

1) Ahnliche Betrachtungen in Bezug auf den letzten Punkt stellt schon Koeüiper an l. c.

4. M. Hall's oben erwähnte Versuche an zwei enthaupteten Kaninchen und einer enthaupteten Schildkröte sind wenig beweiskräftig. Sehen wir von den Beobachtungen ab, die er bezüglich der Reflexbewegungen anstellte, so bleiben als Beweise für die Aenderung der Spannung der Muskulatur, also für den Wegfall des „Tonus“ nur die Bemerkungen übrig, dass die Extremitäten der Thiere nach jener Operation „erschlafft“ sein und „ihre Widerstandskraft“ verloren haben sollen. Diese Symptome sind aber offenbar nur dem ungefähren Augenscheine entnommen und deshalb als wissenschaftliche Beweismittel für so delicke Fragen ohne Gewicht.
5. Wir haben die für den Tonus angeführten Gründe und die Gegenggründe besprochen und gesehen, dass beide durchaus nicht hinreichend sind, um einen endgültigen Schluss zu formulieren. Es bleibt noch eine Thatsache übrig, die allerdings zur Annahme einer continuirlichen Innervation geneigt macht, weil sie das Vorhandensein derselben wenigstens an einem Nerven sicher beweist. Ich habe den Vagus im Auge. Nach Durchschneidung desselben oder während der Durchleitung eines constanten Stromes steigt die Frequenz der Herzschläge sofort bedeutend; auf der andern Seite sinkt sie, selbst bis auf Null, bei Erregung des Nerven durch einen discontuirlichen Strom. Aus diesen Thatsachen geht hervor, dass die mittlere Zahl von Herzschlägen, die für den physiologischen Zustand die Norm ist, aus einer continuirlichen Innervation des Vagus von den Centralorganen aus, also aus einer „tonischen“ Thätigkeit desselben resultirt. Wenn nun für den Vagus eine continuirliche Innervation unleugbar bewiesen und sie auch wohl für die Sphincteren nicht wegzeduciren ist, so wird man sehr geneigt, dieselbe auch für die übrigen in centrifugaler Richtung ihre Effecte äussernnden Nerven zu supponiren, wie es die Tonustheorie haben will.

1) nicht nach der Durchleitung, wie Ludwig in seinem Lehrbuche unrichtig referirt (II. 68).
suchungen im physiologischen Laboratorio des Herrn Prof. du Bois-Reymond zu Berlin angestellt, der nicht ermüdete, mich mit Hülfsmitteln aller Art für die Durchführung der Arbeit zu versehen. Es sei mir vergönnt, demselben meinen innigen Dank für seine ausserordentlich liberale Unterstützung auszusprechen.

Versuche.

Die bisherige Darstellung muss noch in Etwas modifizirt werden. Jeder Muskel nämlich erfährt durch ein angehängtes Gewicht, durch das er im Augenblicke nur bis zu einer bestimmten Länge expandirt wird, mit der Zeit eine weitere continuirliche Dehnung. Der Längenzuwachs für gleiche Zeiten ist am Anfange der Dehnung am bedeutendsten und nimmt später schnell ab. Denken wir uns auf der Abscissenaxe Ox eines Coordinatensystemes (Fig. 1) die Stücke Ox, x1x2, x2x3 etc. den Zeiteinheiten entsprechend abgetragen, denken wir uns ferner auf der Ordinatenaxe das Stück Ly gleich der Länge des Muskels am Anfange der Beobachtung aufgetragen, durch y eine Parallele zur Abscissenaxe gezogen, in x1, x2 u. s. f. Ordinaten errichtet, welche jene
Parallele in \(y^1, y^2 \) u. s. f. schneiden, endlich auf die Ordinatenstücke \(y^1x^1, y^2x^2 \), etc. von \(y^1, y^2 \) etc. aus die den Zeiten \(Ox^1, Ox^2 \) etc. entsprechenden Längenzuwächse = \(y^1l^1, y^2l^2 \) etc. aufgetragen, so werden die Punkte \(l^1, l^2 \) u. s. f. durch eine Curve verbunden werden, die ihre Convexität der Abscissenaxe zukehrt. Wie ist nun von diesen Längenzuwächsen zu unterscheiden der Zuwachs, welchen der Muskel nach Durchschneidung seines Nerven erfährt, falls Tonus vorhanden ist? Offenbar wird hier eine plötzliche Verlängerung des Muskels eintreten, weit bedeutender, als die sehr geringen Zuwächse, welche aus der continuirlichen Dehnung hervorgehen. Die Curve wird mithin an der Stelle, welche dem Zeitpunkte der Nervendurchschneidung entspricht, discontinue rlich werden, indem sie plötzlich nach der Abscissenaxe hin um ein Stück sinkt, welches von der Grösse der vernichteten tonischen Contractionskraft abhängig ist. Darauf wird sie einen dem früheren ähnlichen Gang einhalten. Geschieht also in unserm Curvenschema Fig. 1 die Durchschneidung bei \(x^n \), so wird die Curve in der nächsten Zeiteinheit plötzlich bis \(l^n \) sinken und dann in der früheren Weise fortgehen. Ist dagegen kein Muskeltonus vorhanden, so wird die Continuität der Curve durch die Nervendurchschneidung nicht gestört werden.

Die Durchführung der Versuche nach dem eben entwickelten Prinzip hat manche nicht leicht zu beseitigende Schwierigkeiten. Die Messung der Muskellängen musste mit grosser Schärfe vorgenommen werden, da einmal die Längenzuwächse des Muskels in Folge der Dehnung innerhalb kurzer Zeiträume sehr gering sind, da ferner vielleicht auch die tonische Kraft des Muskels keine bedeutende Grösse hatte, so dass dann die nach der Vernichtung derselben eintretende Verlängerung ebenfalls nicht sehr bedeutend sein konnte. Diese Schwierigkeit war überwunden, wenn es gelang, dem oberen Insertionspunkte des Muskels, an dem die Untersuchung vorgenommen wurde, eine durchaus feste Lage zu geben. Dies vorausgesetzt, brachte ich an dem untern Ende des Muskels einen vertikalen Stahlstab an, der wieder an
seinem unteren Ende das dehnende Gewicht auf einer kleinen Schale trug, während an seine Mitte eine kleine versilberte Scala mit Millimetertheilung angeschraubt war. Auf einen bestimmten Theilstrich der Scala stellte ich den horizontalen Faden des Fadenkreuzes eines Fernrohrs ein, das sich in einiger Entfernung von der Scala befand. Bei jeder Längenveränderung des Muskels trat ein anderer Theilstrich der Scala in das Fadenkreuz. Es ist klar, dass auf diese Art jede Veränderung der Muskellänge mit beliebiger Genauigkeit gemessen werden konnte, wenn die Theilung der Scala hinreichend ins Feine getrieben war und das Fernrohr dem entsprechend vergrösserte. Bei meiner Scala gingen auf 1 Millimeter 5 Theilstriche. Die Vergrösserung des Fernrohres reichte hin, um jeden Scalengrad in 10 Theile durch Schätzung zerlegen zu lassen, so dass mit hinreichender Sicherheit Längenveränderungen im Betrage von $\frac{1}{50}$ Mm. constirt werden konnten, eine für die vorliegenden Zwecke völlig genügende Feinheit der Beobachtung. Alles kam darauf an, den oberen Insertionspunkt des Muskels am lebenden Thiere unverrückbar zu machen. Wie diese ausserordentlich schwierige Aufgabe gelöst wurde, werde ich später bei Beschreibung der einzelnen Versuche anführen.

Historisches und Experimentelles über Muskeltonus.

nem untern Ende in zwei auf einander senkrechten, im Mit-telpunkte seines Querschnittes sich kreuwendenden, seiner Axe parallelen Ebenen Schnitte hatte, in die ein Kreuz von zwei sehr dünnen Glimmerblättern eingelassen war. Jedes Blatt hatte die Form eines Rechtecks, dessen Seiten resp. 70 Mm. und 40 Mm. lang waren. Diese windflügelartig gestellten Blätter tauchten in ein Gefäß mit Olivenöl. Es genügte diese Vorrichtung, um jede Pendelschwankung von einer die Sicherheit der Beobachtung gefährdenden Grösse zu verhüten.

Nachdem die Idee meiner Versuche und die Vorrichtun-gen im Allgemeinen beschrieben, gebe ich zu den speziellen Experimenten über.

gewicht für die Muskeln constant blieb, werde ich es später nicht besonders erwähnen, sondern als Belastung nur die Gewichte anführen, welche ich auf die kleine Schale legte.

Ich gebe nun einige nach dem obigen Prinzip gewonnene Curven. Statt auf die Ordinaten die ganzen Muskellängen \(L_y, L_1^1, L_2^2 \) u. s. f. aufzutragen, wie sie in dem Schema Fig. 1 verzeichnet sind, zeichne ich nur die Variationen des Höhenstandes des untern Muskelendes in den verschiedenen Zeiträumen, ich markire also nur die den Punkten \(y, l^1, l^2 \) etc. der Fig. 1 entsprechenden Punkte. Wird zugleich die Länge des Muskels am Anfange der Beobachtung angegeben, so kann man diese zu den (positiven oder negativen) Zuwächsen leicht hinzuaddiren und so ein Bild der ganzen Muskellängen sich construiren. — Ich habe aus der Zahl der Curven, die ich besitze, nur zwei abgezeichnet, weil alle anderen ihnen vollkommen analog sind. Die erste, Fig. 2, bezieht sich auf eine Muskelgruppe von 35 Mm. Länge \(^1\) und 10 Grm. Belastung, die zweite, Fig. 3, auf eine Gruppe von 40 Mm. Länge und 20 Grm. Belastung. Die einzelnen Abscissenstrecken entsprechen einer halben Minute, denn die Länge des Muskels wurde jede halbe Minute an dem Stande der Scala abgemessen. Der Werth eines Ordinatenteiles beträgt 0,2 Mm. Wo die die Muskellängen angebenden Punkte mit einem darüber stehenden (+) bezeichnet sind, geschah in der vorhergehenden halben Minute eine Zuckung. Ich musste Zuckungen veranlassen, um mich über den Einfluss derselben auf den Stand der Scala zu unterrichten, da ja bei der Durchschneidung des Nerven eine Zuckung schwer zu vermeiden war. Oft zuckten die Frösche ohne äussere Veranlassung, wenn sie aus ihrer unbequemen Situation sich zu befreien trachteten. Im Nothfalle kniff ich empfindliche Hautstellen mit einer Pincette, um die Thiere zu Zuckungen zu veranlassen. Man sieht, namentlich an der zweiten Curve, dass die mit einem (+) versehenen Punkte öfters höher ste-

\(^1\) Die angegebene Länge ist hier, wie später, das Mittel aus mehreren Messungen an verschiedenen Stellen der Muskelgruppe.
stehen als die vorangehenden und folgenden. Es geht daraus hervor, dass nach Zuckungen öfters geringe Contractio-

nen der Muskeln zurückbleiben, die erst allmählich nachlassen. Ich habe diese bleibenden Zusammenziehungen sehr häufig nach stärkeren Zuckungen beobachtet. Die Regelmässigkeit der Curven in der Gestalt, wie wir sie nach dem Früheren erwarten durften, wird durch diese Contractionen allerdings gestört, doch bleibt der Sinn ihres Ganges im Allgemeinen derselbe. In beiden vorliegenden Curven trat eine allmähige Dehnung des Muskels ein, die in der ersten in 14,5 Min. 0,44 Mm., in der zweiten in 18,5 Min. 0,4 Mm. betrug. In be-
den Fällen ist aber die Durchschneidung des Nerven, die durch ein schwarzes Doppelkreuz (§) angedeutet ist, ohne allen Einfluss auf den Gang der Curve, es tritt durchaus nicht ein irgend bemerkliches Sinken derselben nach der Trennung ein, was wir erwarten mussten, wenn der Muskel vom Rückenmarke aus im Zustande einer mässigen Contra-
ction gehalten wurde. Es folgt daraus: die animalen Mus-
kel besitzen keinen vom Nervensysteme abhän-
gigen Tonus in dem erörterten Sinne des Wortes.

Die Berechtigung dieses Schlusses aus den obigen Beob-
achtungen ist noch näher zu begründen. Man könnte anneh-
men, dass Tonus zwar vorhanden ist, aber von einer so ge-
ringen Grösse, dass er den hier angewandten Beobachtungs-
mitteln entgeht. Stellen wir zuerst fest, welche Grösse der Ausdehnung des Muskels übersehen werden konnte. Nach den früheren Angaben konnte ich auf der Scala 1/50 Mm. durch Schätzung ablesen. Die Länge des ersten Muskels, dessen Zahlen ich bei der Berechnung zu Grunde legen will, betrug 35 Mm. Ich konnte es also feststellen, wenn sich der Mus-
kel um 1/1750 seiner Länge ausdehnte, und Längenverände-
rungen dieser Grösse sind auch in der Curve verzeichnet

worden. Ich will nun die Möglichkeit sogar relativ grosser Fehler zugeben, obgleich ich für dieselben keine Quelle zu finden wüsste. In keinem Falle hätte es mir entgehen kön-
nen, wenn sich die Muskeln bei den einzelnen Beobachtun-
gen nach der Nervendurchschneidung regelmässig um einen

Mütter's Archiv, 1866. 15
halben Theilstrich (= 1/10 Mm.) verlängert hätten. Eine solche plötzliche Verlängerung ist aber niemals vorgekommen. Der Muskel hat sich also, was über allen Zweifel feststeht, bei der Belastung von 10 Grm (wozu das Gewicht der durch Stahlstab, Scala etc. repräsentirten Belastung von 5 Grm. kommt) nach der Nervendurchschneidung nicht um 1/350 seiner Länge ausgedehnt. Es kann somit als sicher angesehen werden, dass die hypothetische tonische Kraft keinenfalls so gross ist, um 10 Grm. um 1/10 Mm. zu heben. In anderen Fällen betrug die Belastung nur 5 Grm., das Resultat war ein gleiches. Nimmt man hinzu, dass der Querschnitt der benutzten Muskelgruppe, den ich nicht bestimmt habe, ein beträchtlicher ist, so sieht man, dass die hypothetische tonische Kraft unter eine Grösse sinkt, welche für Zwecke des Organismus noch verwendbar sein dürfte. Diese Betrachtung scheint mir um so schlagender, als ich alle Daten der Rechnung sehr zu meinen Ungunsten angenommen habe.

Man könnte ferner behaupten, in Folge der Präparation sei der Tonus erloschen. Doch schon daraus, dass die Frösche willkürliche Zuckungen zu vollführen im Stande waren, geht hervor, dass die Leitung vom Rückenmarke zu dem Muskel und die Contractilität des letztern intact war. Ferner gelang es ohne Ausnahme nach Durchschneidung des Nerven vom peripherischen Ende aus durch mechanische Reizung kräftige Muskelcontractionen zu erzeugen, was die Fortdauer der Leistungsfähigkeit sowohl des Nerven als des Muskels beweist. Man wird endlich sehen, dass bei den Kaninchen, auf die ich sogleich komme, Muskel und Nerv unmittelbar gar nicht insultirt wurden, dass aber trotzdem die Resultate dieselben blieben.

Endlich ist ein dritter Einwand in Betracht zu ziehen, den ich mir selbst gemacht habe. Bei Fröschen vergrössert sich nach Vagusdurchschneidung die Frequenz der Herzschläge nicht, während sie bei Säugethieren ausserordentlich zunimmt. Es scheint daraus hervorzugehen, dass bei den letzteren der Vagus im Zustande ununterbrochener Thätigkeit sich befindet, bei ersteren nicht. Was für diesen Nerven gilt, könnte
leicht auch für die anderen Geltung haben. Der Beweis der
Nichtexistenz des Muskeltonus bei Fröschen konnte deshalb
nicht als Beweis gegen den Tonus im Allgemeinen betrach-
tet werden. Ich musste sonach den Versuch an warmblüti-
tigen Thieren wiederholen. Ich wählte Kaninchen, weil bei
ihnen am leichtesten die Forderung zu erfüllen war, den
obern Insertionspunkt des benutzten Muskels zu fixiren. Sei-
ner Lage sowohl als der Leichtigkeit der Präparation des
zugehörigen Nerven wegen ist der gastrocnemius des Kanin-
chens am besten zu benutzen, obwohl ihn die Kürze seiner
Fasern weniger empfehlenswerth macht. Die Kaninchen be-
festigte ich so, dass ich sie mit der Bauchseite auf ein Brett
legte, auf welches ich die vorderen Extremitäten aufband,
 während ich an den hinteren Extremitäten beiderseits zwi-
ischen den Knochen und der starken Muskulatur der Hinter-
seite des Oberschenkels ein breites Leinwandband durch-
zog, um mittelst desselben die Oberschenkel fest an das-
delbe Brett anzuschnüren. Ebenso wurden zwischen Achilles-
sehne und Unterschenkelknochen breite Bänder durchgezo-
gen und durch diese die Unterschenkel fixirt, welche gerade
bis an den untern Rand des Brettes reichten. Letzteres stand
 durch Schrauben befestigt, vertikal auf dem Rande eines ho-
izontalen, von einer Holzwand mit starken Streben getra-
gen, Brettes, an welches die im Fussgelenke rechtwink-
lig umgebogenen Füsse befestigt wurden. Nachdem das Ka-
nchen auf diese Art in vertikaler Lage fixirt war, schnitt
ich das hintere Ende des calcaneus, an das sich die Achilles-
sehne festsetzt, mit einer Knochenzange vom übrigen Kno-
chen ab, präpriierte die Achillessehne bis zum untern Ende
des Muskelbauches, der selbst vom Felle bedeckt blieb, frei,
und befestigte an das an ihrem untern Ende hängende Kno-
chenstückchen mittelst einer Klemmschraube den die Scala
tragenden Stahlstab. Der Stamm des nv. ischiadicus kann
in seinem Verlaufe am obern Ende des Oberschenkels sehr
leicht zugänglich gemacht werden. Alle diese Operationen
lassen sich fast ganz ohne Blutung ausführen. Im Übrigen
wurde die Beobachtung ganz wie bei den Fröschen angestellt.
Von den an Kaninchen gewonnenen Curven gebe ich ebenfalls zwei, Fig. 4 und 5. Die erste Curve bezieht sich auf einen sehr kleinen Muskel von nur 25½ Mm. Länge, der mit 50 Grm. belastet war. Anfangs trat, wie man sieht, eine beträchtliche Dehnung ein. Der daraus resultierende Gang der Curve wird durch eine Zuckung in der sechsten halben Minute der Beobachtung unterbrochen, nach welcher die Dehnung momentan beträchtlicher wird als vorher (ein Umstand, der auch in der Curve Nr. 3 in der zehnten halben Minute eintritt). Bald darauf wird die Dehnung geringer. Die Senkung der Curve nach der Durchschneidung übertrifft die vorher durchaus nicht; im Gegenteil, die Durchschneidungskontraktion ist bei der auf die Operation folgenden Ablesung noch ein wenig sichtbar und verschwindet erst bei der nächsten. — Die zweite Curve (Fig. 5) ist an einem sehr starken Muskel von 34 Mm. Länge gewonnen. Die Belastung betrug 100 Grm. Die Beobachtung konnte erst einige Minuten nach Anbringung der Belastung beginnen. Darin lag wohl der Grund, dass keine Dehnung mehr verzeichnet wurde. Sie war schon vollendet und hatte bei dem sehr starken Muskel wohl keine besondere Grösse. Man sieht, dass fast nach jeder Zuckung eine Kontraktion von fast 0,2 Mm. zurückbleibt, die sich sehr bald wieder ausgleicht, und dass die Länge, die der Muskel am Anfange des Experiments hatte, constant bleibt, sowohl vor als nach der Nervendurchschneidung.

Die übrigen an Kaninchen gewonnenen Curven geben durchaus dieselben Resultate. Es bestätigt sich also der oben aufgestellte Satz, dass die Hypothese des Muskeltonus eine ungegründeute ist.

Um zu zeigen, welchen Abfall die Curven ungefähr haben mussten, wenn Tonus vorhanden war, gebe ich in Fig. 6 ein Stück einer Curve, die an einem Kaninchen gewonnen ist, während es tetanische Krämpfe hatte. Nachdem die Curve eine Strecke in gewöhnlicher Weise fortgegangen war, erhob sie sich plötzlich weit über die Abscisse und verlief so unregelmässig, dass es unmöglich war, ihren Gang genauer zu verfolgen. Uns interessirt hier auch nur der Moment der
Durchschniedung. Sie geschah, als ich den Stand des Muskels in einem Augenblicke genau fixirt hatte, wo die Erhebung über die Abscisse 15 Scalengrade betrug. Sofort sank, wie man sieht, der Muskel auf die Anfangsabscisse und wurde während mehrerer Minuten continuirlich gedehnt, unbekümmert um die noch fortdauernden tetanischen Stösse in den anderen Muskeln. Eine ähnliche, wenn auch nicht so bedeutende, doch ebenso plötzliche Senkung der Curve hätte stattfinden müssen, wenn unter normalen Verhältnissen, wie unter den hier beobachteten abnormen, vom Rückenmarke aus die motorischen Nerven in continuirlicher Erregung gehalten würden. Uebrigens dient dieser Fall zum Beweise für die Sicherheit der Befestigung des Thieres: denn nachdem die Anfangsabscisse erreicht war, ging die Curve ihren gewöhnlichen Gang, obgleich intensive Krämpfe den übrigen Körper erschütterten.

Dass mit der Widerlegung des Tonns für die animalen Muskeln dieselbe für die vegetativen Muskeln noch nicht gegeben ist, versteht sich von selbst. Gerade in neuester Zeit sind bei Gelegenheit der zahlreichen Versuche über Temperaturveränderung nach Nervendurchschniedigungen Beobachtungen gemacht worden, die im Falle ihrer Bestätigung dem Tonns der Gefässe sehr das Wort reden. Doch finden sich noch Widersprüche unter den Resultaten der verschiedenen Experimentatoren, so dass bis jetzt sichere Schlüsse nicht gezogen werden können. Es stehen wohl von der nächsten Zukunft Aufschlüsse über die hier einschlagenden, jetzt von so vielen Seiten angeregten Fragen zu erwarten.

Berlin, den 1. Oktober 1855.
Bemerkungen über die Randkörper der Medusen.

Von

Prof. C. GEGENBAUR zu Jena.

(Hierzu Taf. IX.)

Wenn die physiologische Bedeutung der sogenannten Randkörper der Medusen als sensitive Apparate im Allgemeinen auch schon seit längerer Zeit bekannt ist, so scheint mir doch die allerdings oft besprochene Frage, welchem spezifischen Sinne sie angehören, bisher ohne genaue auf anatomische Untersuchungen gestützte Beantwortung geblieben zu sein, und man schwankt heutzutage noch zwischen Gehör- und Schorgan, je nachdem man diese oder jene Form, in welcher die Randkörper auftreten, im Sinne hat. Wie sich aber diese Randkörper in den natürlichen Gruppen der Medusen verteilt zeigen, und in welchen Combinations sie auftreten, das ist meines Wissens bis jetzt noch unbesprochen geblieben.

G a e d e, R o s e n t h a l, E h r e n b e r g, K o e l l i k e r, W i l l, W a g n e r und in neuerer Zeit F o r b e s und A g a s s i z haben mehrfach diesen Organen ihre Aufmerksamkeit geschenkt, so dass wir bei zahlreichenGattungen und Arten von den Formen der Randkörper genan unterrichtet sind, und es sogar möglich wird, die typische Bildung derselben für die einzelnen Familien festzustellen. Ja, sehr häufig geben die Randkörper einen besseren Aufschluss über die Stellung des Thieres, als man durch die früher nur zu sehr für wichtig gehaltene Körperform oder die Verhältnisse der Tentakeln zu erlangen vermocht hatte. Hiervon überzeugten mich vielfach meine eigenen Untersuchungen, die sich über die wichtigsten
der Medusenfamilien erstrecken und vielleicht einiges dazu beitragen mögen, die Organisation, und damit auch die Bedeutung näher unterscheiden zu lernen.

A. Randkörper der niederen Medusen.

Alle hierher zu rechnenden Schirmquallen, welche mit Einschluss der von Forbes unpassender Weise als nachtägige Medusen benannten Polypensprüßlinge, die Aequiriden und Aeginiden, sowie die Geryoniden umfassen: lassen zweierlei Arten der Randkörper erkennen, welche auf die gehörig umgränzten Familien genau verteilt sind, und ebensogleich auch in ihrer Bedeutung auseinander gehalten werden müssen. Alle finden sich am Rand der mit einer Schwimmhaut (Velum nach Forbes) umsäumten Scheibe oder Glocke, und stehen entweder mit der Tentakelbasis in inniger Beziehung, oder sie sitzen als kurze Hervorragungen zwischen den Tentakeln, in einem Falle merkwürdiger Weise von langen Stielen getragen.

Es lassen sich diese Randkörper in zwei Abtheilungen scheiden, die bei der Systematik der Medusen recht gut zu verwerten sind. Die eine Form tritt uns als Bläschen mit erdigem Concretionen entgegen, die andere erscheint nur als Pigmentablagerung, die zuweilen einen lichtbrechenden Körper umschliesst.

a. Bläschenförmige Randkörper.

Diese finden sich erstlich bei allen Geryoniden, dann bei sämtlichen Aeginiden, wahrscheinlich auch bei den Aequiriden (soweit nämlich diese durch den Besitz einer Schwimmhaut bestimmter abzugrenzen sind) und endlich bei einem Theile der bisher unter dem Genus Thaumantiadi untergebrachten kleinen Medusenformen.

Bei den ächtten Oceandiden, sowie bei den Thaumantiadien, welche Familien beide durch Pigmentflecke an der Tentakelbasis ausgezeichnet erscheinen, ist keine Spur von bläschenförmigen Randkörpern von mir beobachtet worden, sowie auch dasselbe aus den sorgfältigen Untersuchungen von Agassiz hervorgeht, so dass zwischen beiden Formen der
Randauszeichnung ein sich gegenseitig ausschliessendes Verhalten zu bestehen scheint.

Eine von Forbes gemachte Angabe, nach welcher auch bei einerächten Oceanide (Oceania turrita) nebst den Pigmentflecken ein concretionhaltiges Bläschen vorkommt, soll weiter unten analysirt werden.

Was nun die in Rede stehenden Bläschen selbst betrifft, so finden wir diese von rundlicher, elliptischer oder länglicher Gestalt, mit stets sehr dünner Wandung versehen, die sich continuirlich in die Integumente der Meduse fortzusetzen scheint, und von allen Seiten den Hohlraum umschliesst. Ionen findet sich ein Epithel von glatten polygonalen Zellen, die aber erst nach Behandlung mit Essigsäure sichtbar werden. (Fig. 6.) Als Inhalt des Bläschens sieht man von klarer Flüssigkeit umgeben eine oder mehrere sphärische oder oval geformte bewegungslose Concretionen, die, nach ihrer Reaction auf Zusatz von Säuren zu schliessen, zum Theil aus kohlensaurem Kalke bestehen, und nach ihrer Auflösung einen organischen, die frühere Form nachahmenden Rückstand hinterlassen. (Fig. 6f.) Krystallinische Bildungen oder Krystalle habe ich niemals beobachtet.

Das Vorkommen zeigt bezüglich der Lokalität stets eine innige Beziehung zum Gastrovascularsysteme, ohne dass aber das Lumen der Bläschen, wie man vielleicht anzunehmen geneigt sein möchte, mit dem Innern der Magenfortsätze in offener Communication stände. Diese Relation offenbart sich am besten bei den Cuniniden, wo die Randkörper stets am Ende der Magensäcke, und nie in den Interstitien, mögen
Bemerkungen über die Randkörper der Medusen.

233
diese schmal oder breit sein, angebracht sind, so dass in ihnen zugleich ein Merkmal gegeben ist, den oft äusserst schwer zu erkennenden Rand des Schirmes zu bestimmen.

Der Tentakelzahl entsprechend trifft man die Randbläsen bei den Geryoniden, und zwar je eines an der Basis eines Tentakels, während sie bei den andern Familien mit Radiärkanälen, obwohl bei jeder Species in bestimmter Anzahl vorhanden, sehr verschiedene Modi der Anordnung einhalten, und bald ebenfalls an der Tentakelbasis, bald zwischen zwei oder mehreren Tentakeln erscheinen. In einer eigenthümlichen Weise verhalten sie sich bei einigen Arten aus der Familie der Aeginiden, wo sie von einem kegelförmigen Zapfen (Fig. 2a.), dessen dickeres, vorstehendes Ende eine Vertiefung besitzt, getragen werden, so dass das meist längliche oder kolbige Bläschen (Fig. 2b.) aus der Vertiefung hervorragt, wie etwa der Schwengel aus einer Glocke. Der Zapfen selbst weist deutlich zellige Structur nach, und jede Zelle ragt mit einer starken Wölbung über die Oberfläche vor, ja bei einer der Gattung Aegina verwandten Form trägt jede Zelle regelmässig ein langes nach abwärts gerichtetes Wimperhaar.

Aber wenn auch das Randbläschen mit einer Cilienumkleidung versehen wäre, so würde doch keine Bewegung der Concretionen stattfinden können. Eine sorgfältige Untersuchung der Randkörper wird diesen Satz begründen.

Wählt man zu Beobachtungsobjecten die ziemlich grossen Randbläschen einer Geryonia (Fig. 3—5), so entdeckt man alsbald, dass die Concretion nicht frei in dem Bläschen liegt, sondern durch einen kurzen Stiel (c) mit der Wandung derselben (auch Will gibt die wandständige Lage an und Frey und Leuckart lassen die Concretion wie von einer zarten Zelle getragen und zum Theil in sie eingesenkt erscheinen) verbunden sei, ja dass von diesem Stiele aus noch eine sehr feine Membran (d) über die ganz Concretion sich hinwegzieht, und sie somit vollständig gegen das Lumen des Bläschens hin umschliesst. Bei wiederholtem Nachforschen sieht man dann zuweilen eine noch viel dickere Umhüllung der Concretion, und in der Hülle feine Moleküle und ein ovales oder rundes Körperchen (Fig. 4. e), das sich wie ein Kern ansnimmt, und dessen Bedeutung als solcher wohl auch recht plausibel erscheint, wenn man in der speziellen Hülle der Concretion eine Zelle erblicken will. In der That liegt auch gar nichts vor, was einer solchen Annahme entgegenstände, so dass wir uns die Bildung der Concretion in der Secretionshöhle einer wandigen, das Innere des Randbläschen vorragenden Zelle vorschlieβend denken können, analog der Bildungsweise anderer Concretionen im niederem Thierreich, wie z. B. die Nierenconcretionen der Gasteropoden.

Bemerkungen über die Randkörper der Medusen.

Membran deutlich zu sehen, während die anderen Arten nichts dergleichen erkennen liessen, wovon ich die Ursache mehr in der Kleinheit der Randkörper als in einem wirklich abweichenden Verhalten suchen möchte.

Nach diesen Verhältnissen kann also in keinem Falle von Bewegungen der Concretionen die Rede sein, und es fällt ein grosser Theil der Analogie hinweg, nach welchem man die blaschenförmigen Randkörper der Medusen mit den Gehörorganen der Acephalen und Cephalophoren in gleiche Reihe stellt.

b. Pigmentbildungen (Ocelli).

Das Vorkommen von haufenweise gruppierten Pigmentzellen am Rande oder besser an der Tentakelbasis — denn nur hier findet man sie — der Medusen scheint sich streng von jenem der vorhin beschriebenen Randbläschen, indem es sich ausschliesslich bei den Gruppen von Medusen trifft, welche ich unter den Familien der Oceaniden und Thaumantia
den begreife, und von denen die ersteren sicher, die letz
teren wahrscheinlich ihre Abstammung von ammenden Poly
nenköpfchen ableiten1).

1) Der einzige Fall, wo das Vorkommen von Randbläschen und Pigmentflecken eine Ausnahme von der aufgestellten Regel zu bilden scheint, wird, wie oben angedeutet, von Forbes bei *Oceania turrita* angeführt. „An dem Bulbus eines jeden Tentakels befindet sich ein kleiner scharlachrother Ocellus, bestehend aus einer wohl umschrie
nen Gruppe von Pigmentzellen, und darunter in der Substanz des Bulbus ist ein Hohlraum, der eine vibrierende Masse kry
tallinisierter (kalkiger?) Partikelchen, mit braunen Pigmentzellen untermischt, ein
schliesst. Es ist dies ohne Zweifel der Otolith-Körper.“ Hiegegen möchten nun dennoch einige Zweifel zu erheben sein, wie denn die Vermischung der angeblichen kristallinisichen Partikelchen mit Pigment
zeilen, die durch einander wirbeln sollen, eine für einen Randkörper sehr unwahrscheinliche Beschaffenheit ist. Ich erkenne hierin nur eine Ausstülpung des Randkanals in die Tentakelbasis, ein Vorkommen, das sich bei vielen Oceaniden findet, in welcher Erweiterung dann häufig die sehr verschieden zusammengesetzten festen Contenta des Kanalsys
tems sich aussammeln, und zu randlichen Ballen geformt von der Ci
dienanskleidung herumgetrieben werden.

Andere kleinere Ocelli findet man bei den Oceaniden mit büschelförmig gruppirten Tentakeln, Lizza, Bougainvillea (Hippocrene), bei welchen sie von Agassiz und auch von mir gesehen wurden. Von Forbes, der zahlreich hierher gehörige Formen beobachtete, sind keine Angaben hierüber gemacht. Es sitzen diese kleinen Flecke stets an der Unterseite der Tentakeln, und zwar so angeordnet, dass sie einen gegen die Basis des Büschels zu offenen Halbkreis formiren.

Bemerkungen über die Randkörper der Medusen.

B. Randkörper der höheren Medusen.

Wenn wir bei den niederen Quallenformen das sich gegenseitig ausschliessende Vorkommen beider Arten von Randkörpern präcis durchgeführt sehen, so zwar, dass dadurch zwei leicht abgrenzbare Familien-Gruppen formirt werden, so zeigen die höheren Medusen (Steganophthalmata, Forbes) einmal in der allen gleichmässig zukommenden ausgebildeten Form der einen Randkörperart, sowie in dem bei Einigen noch stattfindenden Hinzutritte der anderen Art, so dass hier beide an einem Randorgane vereinigt sind, eine um vieles vorwärts gerückte Organisationsstufe.

Am einfachsten, und nur dem Scheine nach complicirt finden wir die Randkörper bei Pelagia und Cassiopeia 1). Hier stellen sie eiförmige, am freien Ende etwas zugespitzte, am entgegengesetzten verbreiterte, und durch einen kurzen Stiel in einem Ausschnitte zwischen den Randlappen des Schirmes befestigte Bläschen vor, welche dem unbewaffneten Auge ein gelbliches Aussehen darbieten. Genane Untersuchungen liegen mir von Pelagia noctiluca vor. Nahe über dem Ein schnitte, in welchen der Randkörper eingefügt ist, verläuft ein mit der benachbarten Ausstülpung des Magens kommunizirender Kanal (Fig. 8. d), der sich hier etwas erweitert und mit besonderen, von dem umgebenden Gewebe deutlich ab-

gegeltenen Wandungen versehen in den Stiel des Randkörpers eintritt, in welchem er gerade nach abwärts bis über das erste Drittel des letzteren hinaus verläuft, um alsdann fast rechtwinklig zur Längsachse des Randkörpers sich einzubiegen. In Fig. 8 sieht man bei der Lumen dieser Einbiegungsstelle als scharf begrenzten ovalen Ring, und bei mehr seitlichen Ansichten wird hinreichend genau Kontrolle geübt, dass hier nicht etwa Täuschungen im Spiele gewesen.

Im Randkörper selbst befindet sich eine, ziemlich genau seiner äußeren Contour nachahmende, also ovale Höhlung (Fig. 8 f), die gleichfalls von einer deutlich abgegrenzten Gewebsschicht umgeben wird. In dieses Cavum mündet der umgebogene Stielkanal, ja es scheint dasselbe nur eine plötzliche Erweiterung des letzteren vorzustellen. Somit kommuniziert das Gastrovascularsystem bei den höheren Medusen mit dem Cavum des Randkörpers, was von Kölliker am schon erwähnten Orte in Abrede gestellt ward. Wie die gesamte Innenfläche der vom Magen ausgehenden Fortsätze, so ist auch der Kanal im Randkörperstiele, und seine ampullenförmige Erweiterung (f) im Randkörper selbst, mit einem dichten, aber zugleich sehr zarten Flimmerüberzuge überdeckt, durch den eine beständige Strömung der in diesen Höhlen enthaltenen Flüssigkeit erzeugt wird. Wer je an der eben geschilderten Verbindungsweise zweifeln sollte, der versuche es nur an vollständigen Thieren zu beobachten, und er wird bald durch den Weg der in der Ernährungsfüssigkeit enthaltenen Zellgebilde und Moleküle über die Richtigkeit dieser Communication belehrt sein. Am leichtesten wohl ist dies durch die Untersuchung einer noch im Ephyrastadium befindlichen Pelagia zu erreichen, wo die Ampulle (Fig. 7. c) des Randkörpers nur als eine einfache Verlängerung oder Ausstülpung einer Magentasche (b) erscheint.

Von Kölliker, wie auch von Anderen, wird noch einer im Randkörper befindlichen, der oberen Fläche der Scheibe entsprechenden Öffnung gedacht, durch welche die Ampulle des Randkörpers nach aussen hin kommunizirte, so dass also hier das Gastrovascularsystem eben so viele Poren besäße
als Randkörper an der Medusenscheibe sich finden. Ich habe nichts auf eine solche Einrichtung Beziehbares beobachtet, sah niemals ein Abfließen der besonders längs der Wände sich lebhaft bewegenden Flüssigkeit, und muss deshalb die Existenz solcher Öffnungen in Zweifel ziehen, sowie ich gleichzeitig für nicht unwahrscheinlich halte, dass der im Stiele der Randkörper befindliche Kanal, vielleicht auf einem Durchschnittsbilde, für eine solche Öffnung genommen ward. (Vergl. Fig. 8. e.)

Am freien Ende der Randkörper, und fast seine ganze Spitze bildend, liegt ein ovales, 0,14"" langes, 0,09"" breites Säckchen (Fig. 8. g), welches dicht mit säulenförmigen Kristallen angefüllt ist, und wohl den physiologisch wichtigsten Theil des ganzen Organes repräsentirt. Die Membran dieses Säckchens ist zwar dünn, besitzt aber dennoch eine gewisse Resistenz, und wird seitlich und an dem von der Ampulle abgewendeten Ende von den hier sich etwas verdünnenden Wandungen des Randkörpers selbst umfasst, während ihr gegen die Ampulla gerichteter Theil von der Flimmerauskleidung der letzteren noch überzogen wird. Zuweilen ragt diese Partie sogar noch mit gewölbter Fläche ins Cavum der Ampulle vor. Eine Communication des Krystallsackes mit der letzteren existirt nicht. Auch Bewegungen der Krystalle wurden niemals von mir gesehen, sowie ich auch das Vorhandensein von Cilien für die Innenfläche des Krystallsackes verneinen muss. Die Krystalle selbst (Fig. 9) stellen sechsseitige, an beiden Enden schräg abgestumpfte Säulchen vor, deren Länge und Anzahl eine sehr variable scheint. Die längsten messen ca. 0,02"". In Essigsäure erschienen sie unlöslich. Sie erfüllen meist vollständig die Höhlung ihres Sackes, unordentlich durch einander liegend, und lassen nirgends einen beträchtlichen Zwischenraum.

Bei einer anderen, den Ephyrazustand der Pelagien repräsentirenden, aber völlig ausgebildeten Meduse, die ich einmal als Ephyropsis 1) erwähnt habe, und die wohl zu der

1) Comptes rendus, t. XXXVII.
von Kölliker 1) aufgestellten Gattung Nausithoe zu rechnen sein wird, fand ich die zwischen den tief eingeschnittenen Randlappen, alternirend mit den Tentakeln, stehenden Randkörper von etwa 0,09‘‘ Grösse auf folgende Weise zusammengesetzt:

Aus dem von zwei Randlappen (Fig. 10. aa) gebildeten Winkel ragt ein gelblich gefärbter, nach der Unterseite der Meduse hügelförmig vorstehender Wulst (b) vor, dessen Zusammensetzung aus Zellen, besonders an seinem Rande, wo sie konisch gegen die Mitte hin einstrahlen, nicht zu vernehmen ist. Auf der Höhe des Wulstes sitzt ein dunkler Pigmentfleck (c), der fast kreisrund erscheint. Er misst 0,015‘‘. Der ganze Wulst wird von einem zungenförmigen, mit breiter Basis ansitzenden Gebilde überragt, dessen Inneres einen mit Wimpern ausgekleideten Hohlraum (d) vorstellt, und, was die Analogie mit der Ampulle des Pelagienrandkörpers noch erhöht, eine in rascher Strömung begriffene Flüssigkeitsmenge einschliesst, von der die darin befindlichen Formelemente einen beständigen Wechsel, ein stetes Aus- und Einströmen erkennen lassen. Obgleich der vorbeschriebene gelbbliche Wulst sich queer über die Basis der Ampulle lagert, so findet man die Verbindung der letzteren mit den sackartigen Fortsätzen des Magens, von denen je einer mit spitzem Ende in einen der Randlappen des Schirmes sich erstreckt, doch leicht heraus, indem die Kleinheit dieser zierlichen Qualle die mikroskopische Beobachtung im Ganzen erleichtert. Wie der ganze Randkörper in die Tiefe des Einschnittes zwischen zwei Lappen des Schirmes sich einfügt, so sitzt auch die wimpernde Ampulle zwischen je zwei Magentaschen, und kann ebenfalls als eine Ausstülpung derselben betrachtet werden. Der Hohlraum der Ampulla wird durch ein kleines, dem Anscheine nach an den gelblichen Wulst befestigtes Säckchen verringert, welches mit gleichem Abstande von der Ampullenwand von oben her in die Höhle hineinragt, und ein queerovalen, mit Krystallen gefülltes Bläschen (Fig. 10. e) um-

Bemerkungen über die Randkörper der Medusen. 241

schliesst, in welchem wir das Analogon des Krystallsackes der Pelagien erkennen. Die Krystalle (f) finden sich meist zu zweien, doch fand ich auch zuweilen 4 oder 5. Sie messen etwa 0,08—0,09"" und besitzen bei der Unregelmässigkeit ihrer zahlreichen Flächen eine schwer zu beschreibende Form.

Das bisher Angegebene lässt sich an unversehrten Thieren beobachten; préparirte man aber einen der Randkörper von der Scheibe los, und traf es sich zufällig, dass er sich auf seine Basis stellte, so fand man die von der Oberfläche betrachtet als rundlicher Fleck erscheinende Pigmentmasse von umgekehrt konischer Form (Fig. 11. b) und weit in die gelbliche Zellenmasse des Wulstes hineinragend. Inmitten der nach oben und aussen gewendeten Kegelbasis sah man dann einen lichtbrechenden Körper (c), der mit gewölbter Fläche hervorragte und von einem schwarzen Pigmentrande umsäumt war. Ein besonderer Ueberzug war nicht zu entdecken, sondern lichtbrechender Körper wie Pigment waren in unmittelbarer Berührung mit dem umgebenden Medium. Leider vermochte ich den ersteren nicht zu isoliren, so dass seine im Pigmentconus verborgene Fläche nicht zu bestimmen war. Auf angewandte Compression mittelst des Deckgläschens ergab er sich als eine weiche, aber formlos zerfließende Substanz. Die Zellen in der nächsten Umgebung des Pigmentconus waren grösser als die weiter entfernten, und sie waren es vorzüglich, welche die gelbliche Färbung des ganzen Wulstes bedingten.

Indem ich mich vorläufig der übrigens nicht schwer zu findenden Deutung all dieser Theile enthalte, lasse ich noch die Beschreibung der Randkörper einer anderen Meduse folgen, deren Untersuchung mir das höchste Interesse bot. Carybdea marsupialis trägt ihre 4 Randkörper auf schlanken Stielen und birgt sie in 4 noch weit oberhalb der Randausschnitte des glockenförmigen Körpers eingegrabenen Nischen, die zu zwei Drittheilen ihrer Höhe von einem dünnen, am freien Rande zierlich ausgeschweiften Blättchen überdeckt werden. In Fig. 12 ist dieses Verhalten bei geringer Vergrösserung veranschaulicht. a stellt den Randkörper mit seinem Stiele b, c die
Nische vor; d ist die deckende Lamelle, die nichts Anderes ist, als eine Fortsetzung der glashellen Substanz der Glocke.

Der Randkörper selbst (Fig. 13) ist von unregelmässig viereckiger, oder ovaler Gestalt mit schräg gestellter Längsachse und an das dünne Ende eines beweglichen, contrac
tilen Stiel es (a) befestigt. Dieser inserirt sich mit seiner dicker gewordenen Basis genau in die Mitte des oberen quere
tlinearen Nischenrandes, und bildet dort, indem er mit dem Deckblättchen und der Substanz der Glocke verschmilzt, eine doppelwulstig nach aussen vorragende Anschwellung. In sei
ner Längsachse besitzt der Stiel einen Kanal, der mit trichterförmiger Erweiterung beginnend, mit beträchtlich verengtem Lumen in die Substanz des Randkörpers hineintritt (Fig.13.b), sich etwas weniges erweitert, um dann nach kurzer Einschnü
rung sich in eine unregelmässig viereckig gestaltete Ampulle (c) fortzusetzen und damit zu enden. Diese Ampulla, deren Gestalt am besten aus der gegebenen Abbildung Fig.13 zu ersehen ist, nimmt einen beträchtlichen Theil des Inneren vom Randkörper ein und wird theils von einem kleinlichen gelblichen Gewebe, das gewissermassen die Grundsubstanz des Randkörpers bildet, theils von sogleich zu beschreibenden Gebilden begrenzt. An dem Ursprunge des Stiels von der Glocke lässt sich der Kanal in Fortsätze des Magens verfolgen, so dass auch hier der Zusammenhang der Randkörperformelle mit dem Gastrovascularsystem nachzuweisen ist. Die ganze Innenfläche des Kanals sowohl, wie der Ampulle, ist mit Cilien ausgekleidet und der Inhalt besteht aus einem hellen Fluidum, welches zahlreiche Zellen einschliesst, nebst feinen Molekülen und vielen kleinen Körperchen ver
schiedener Art und Form. Alle diese wirbeln vielfach durch einander und finden sich in grösserer Anzahl an der etwas verbreiterten und ausgebuchten Parthie der Ampulle, wel
che schräg gegenüber dem Eintritte des Kanales liegt. Die Strömung der Flüssigkeit geht in bestimmter Richtung vor sich, so dass immer an einer Wand das Absteigen und an der gegenüber stehenden das Aufsteigen der Formelemente
gesehen wird, wie solches auch die Richtung der Pfeile in Fig. 13 versinnlicht.

An der vorhin erwähnten größeren Fläche der Ampulle, und in dem meist nach abwärts gerichteten Theile des Randkörpers und am weitesten von der Eintrittsstelle des Kanals entfernt, liegt ein etwas abgeplatteter, von der Seite gesehen niereiförmiger Sack (d) von 0,14" im Durchmesser. Er lägert so dicht an der Ampullenwand, dass er sie an meisten Stellen etwas eindrängt. Das Contentum dieses Sackes besteht dicht aus Kristallen, die rhombische oder trigonale Begrenzungsflächen darbieten und von bedeutender Härte sind. Ich fand sie gleichfalls in Säuren (Chrom- und Essigsäure) unlöslich. Die Membran des Sackes ist sehr dünn, scheinbar strukturlos und elastisch.

Gerade der Insertionsstelle des Stieles gegenüber und in der verlängerten Achse des Kanales erblickt man ferner eine unregelmässig geformte, zuweilen rundliche Masse schwarzer Pigments (e), die an Umfang etwa dem des Kristallsackes gleichkommt, in Fällen ihn auch übertrifft. Aus dieser ragt mit fast halbkuglicher Fläche ein heller lichtbrechender Körper (f) von 0,1" Durchmesser, und gibt sich als vollkommene Kugel zu erkennen, sobald man ihn aus der Pigmentmasse herausgeschält hat. Er wird, soweit er im Randkörper steckt, ausschliesslich von der Pigmentmasse umfasst, ohne dass noch eine andere Substanz sich dazwischen lagert. Ebenso wenig ist an seiner unteren Partie ein besonderer Ueberzug sichtbar. Die Pigmentmasse selbst, welche ihn und da um die lichtbrechende Kugel mit kleinen Vorragungen sich herumwölbt, wird ringsum von der gelblichen Grundsubstanz des Randkörpers umlagert, und wird sogar an der vorderen Fläche bis zum Rande der Kugel davon überdeckt; nur mit ihrer hinteren Fläche berührt sie einen Theil der Wand der flimmernden Ampulle. Seither von diesem ungewöhnlichen Organe bemerkt man noch ein solches kleineres, welches fast im rechten Winkel zur Achse des vorigen nach oben gerichtet ist; dicht dabei, zuweilen zwischen diesen bei-
den Organen sieht man noch ein drittes, ebenso gebaut aber von viel geringerer Größe und häufig (wie in Fig. 13) mit einem langen Pigmentstreifen in die Grundsubstanz ragend. Ausserdem kommen in den einzelnen Randkörpern noch mehrere des lichtbrechenden Körpers entbehrende Pigmentflecken vor, deren Gestalt und Lagerung durchaus unbeständig ist. Diese Unbeständigkeit erstreckt sich zuweilen auch auf die grösseren Organe, und ich fand von den 8 Randkörpern der zwei untersuchten Exemplare von Carybdea marsupialis kein völlig gleich zusammengesetztes Paar.

Man ersieht aus dem Vorstehenden erstlich, dass sich die einer Schwimmhaut (Velum) entbehrenden höheren Medusen (Rhizostomiden und Medusiden) durch mehrfache wichtige Momente der Randkörperstructur von ihren niederen Verwandten auffallend unterscheiden, sowie man auch zweitens erkennt, dass selbst innerhalb dieser Abtheilungen wiederum gewisse Schwankungen der Randkörperzusammensetzung, in der ein deutlicher Fortschritt von einer niederen zu einer höheren Organisationsstufe sich offenbart, wahrgenommen werden müssen.

höherer Ausbildung zeigen sich die Randkörper von *Aurelia aurita*, wo nach Ehrenberg’s Darstellung ein rother, am Rande etwas diffuser Pigmentfleck, auf einer als Nervenknoten gedeuteten Masse, die dicht oberhalb des Krystalsäckchens sich findet, angelegt ist. Bei der kleinen *Nausithoe albida* (mihi) tritt in dem Pigmenthaufen ein deutlicher lichtbrechender Körper auf, der von besonderer Grösse und offensichtlicher Kugelform im Randkörper der *Carybdea marsupialis* erscheint, ja es wiederholt sich bei dieser Meduse das Vorkommen eines solchen augenähnlichen Organs innerhalb verschiedener Grössengrade in einem und demselben Randkörper, dem noch dazu durch seine Beweglichkeit eine besonders hohe Bedeutung inne zu wohnen, sowie er jedenfalls die für die Strahlthiere höchste Potenz eines empfindenden Organs erreicht zu haben scheint.

Dass das Erscheinen von Pigmentflecken mit dem Auftreten eines Sehorganes in einer innigen Beziehung stehe, das lehren vielfältige Thatsachen in dem Bereiche der Wirbellosen, und die Entwickelungsgeschichte zeigt uns die Bildung von Pigment in einem und demselben Geschöpfe, sehr häufig der Entstehung des zusammengesetzten Sehorganes vorangehend, gleichsam nur die Stätte bezeichnend, wo wir letzteres in entwickelterer Stufe zu suchen haben, sowie wir ebenso wieder in den niederen Formen irgend eines thierischen Typus nur Pigmentflecke sehen, während die auf höherer Stufe stehenden ein deutlich ausgeprägtes Auge an der Stelle des Pigmentfleckes aufweisen. So sicher nun der Weg der Deutung zu sein scheint, den uns die Morphologie führt, so unsicher muss uns dieser Boden erscheinen bei der Frage nach dem funktionswerten beregter Organe. Ob es möglich sei, dass ein einfacher Farbfleck, des lichtbrechenden Körpers, und was noch viel mehr ist, des als Nervensystem aus dem Körperparenchym differenzirten, empfindenden Substrates entbehrend, Licht, oder selbst nur Farbestrahlen sinnlich zu empfangen befähigt sei, ist eine Sache schwierigen Entscheidens, und Fragen der Art können nicht so leicht hin abgefasst werden, da uns die Physiologie der niederen
Thiere noch so ziemlich eine terra incognita ist, und bei den Verrichtungen der einzelnen Organe oft die verschiedensten Factoren concurriren. Es dürfte sich hier vor Allem darum handeln, wie die Sensibilität solch' niederer Organismen so- wohl qualitativ als quantitativ beschaffen sei, und es sind be- sonders noch gewisse anatomische Facta genauer festzustel- len, ehe wir annehmen dürfen, dass Pigmentflecke, wie sol- che an der Tentakelbasis der Oceaniden als Sehorgane, wenn auch nur als minder potenzirte, functioniren. Etwas heller wird aber das über die Bedeutung dieser Organe schwebende Dunkel, wenn lichtbrechende Körper in die Pigmentmasse sich einlagern, oder wenn sogar besondere Gewebselemente, die als Nervenapparate gedeutet werden können, unter dem Pigmente sich finden. Ich halte es jedoch für noch nicht aus- gemacht, ob die gelblichen Zellenmassen, die sich im Rand- körper von *Nausithoe* und *Carybdea* finden, als Theile eines Nervensystemes anzusehen sind, und es ist bis jetzt nur die Wahrscheinlichkeit, welche sie als solche betrachten lässt; desgleichen gilt wohl auch für die schenkelförmigen Körper, die nach Ehrenberg bei *Aurelia aurita* im Randkörper zu finden sind, und die für Augennerven erklärt werden. Es bleibt aber noch übrig, diese einzelnen, mit Ganglien Ähn- lichkeit besitzenden Gewebsteile auch in einem anatomi- schen Zusammenhänge darzustellen, wenn aus ihnen ein Sy- stem soll gebildet werden; mir ist es nicht geglückt, und der Randkörperstiel von *Carybdea*, der wohl am geeignetsten zu solcher Untersuchung wäre, zeigte nichts, was als Verbin- dungsstrang der Ganglien unter einander aufgefasst werden könnte. Für die Oceaniden und Thaumantiaden hat Agas- siz ein parallel und mit dem Ringkanale des Mantels verla- fendes Fasersystem, welches sich mit den unter den Pig- mentflecken liegenden Anschwellungen in Verbindung setze, beschreiben und als Nervensystem gedeutet, wodurch dann freilich die Pigmentflecke, namentlich jene, die mit einem lichtbrechenden Körper versehen sind, wie z. B. *Cladonema*, in ihrem Werthe um beträchtliches steigen. Doch wenn uns auch hier noch beträchtliche Lücken bleiben, so sind wir der

Man ist gewohnt die bläsenförmigen und mit Concretionen versehenen Randkörper als Hörorgane anzusprechen, gestützt auf die auch hier wieder vorliegende Analogie der Form, die fast durch die ganze Thiereihe, wenn auch bei den obersten Typen nur in gewissen Entwickelungsstadien, sich hindurchzieht. Unter den niederen Medusen, mit Ausschluss der Oceaniden und Thaumantiaden, stellen sie ein aus Zellen gebautes, mit Flüssigkeit gefülltes Bläschen vor, in welchem Concretionen sichtbar sind, die aber noch von einer besonderen, enger anliegenden Membran umhüllt werden und damit zugleich der Bläschenwand angeheftet sind. Niemals fanden sich hier Krystalle; sie werden niemals durch Flimmerhaare in Bewegung gebracht, und auch in dem allseitig abgeschlossenen Bläschenraume ist keine Flimmererscheinung beobachtet. Auch bei den höheren Medusen liegen die unorganischen aber hier krystallisirten Gebilde in einem sie enge umschliessenden Säckchen, welches hier nahe an eine vom Gastrovascularsystem gebildete ampullenförmige Ausstülzung gelagert ist. Sie liegen dicht bei einander und ihre Zahl variiirt. Bewimperung des Säckchens ist gleichfalls hier nicht vorhanden, so dass, abgesehen von den Formenverhältnissen der Einschlüsse, eine grosse Uebereinstimmung zwischen den Randbläschen der niederen und den Säckchen der höheren Medusen sich offenbart. Die Art und Weise, wie sich die anorganischen Bildungen zu dem sie umschliessen-
den Säckchen verhalten, steht in einem Gegensatze zu jenen bei den übrigen Wirbellosen, denen solche als Gehörbläschen gedeutete Organe zugeteilt sind; Ctenophoren, Würmer, Mollusken und Crustaceen weisen Otolithen auf, die stets frei beweglich sind, und die (Tunicaten und Krebse ausge- nommen) diese Freiheit sogar durch zitternde, durch Cilien verursachte Bewegungen kundgeben. Ausserdem sind es die beträchtlichen Schwankungen in der Menge der anorganischen Einschlüsse, auf welche vorzüglich Ehrenberg bei *Aurelia aurita* aufmerksam gemacht hat. Diese Umstände dürften wohl im Stande sein, für die Deutung dieser Organe als Gehörorgane einige Bedenken zu erregen, und eine Annahme, die darauf zielte, in den Bläschen nur excretorische Apparate zu finden, wäre nicht geradezu verwerflich, wenn wir auch, wie jetzt die Thatsachen liegen, durch das Vorkommen der Bläschen theils mit augenähnlichen Organen, theils gleichsam vicariirend mit denselben zu ihrer Deutung als Sinnesorgane hingeführt werden. Auch der Umstand ist zu beachten, dass sie ausschliesslich bei der freien und deshalb höher organisirten Medusenform sich finden, und dass sie bei allen, gewöhnlich als Geschlechtskapseln der Hydroiden bezeichneten unvollkommen entwickelten Individuen jener Ammenkolonien durchgängig nicht vorhanden sind. Würden jene anorganischen Bildungen bloss, an gewisse vegetative Verrichtungen gekettete Ausscheidungen vorstellen, so würden sie wohl auch an den stets mit den Ammenstöcken verbunden bleibenden Individuen zu finden sein.

Erklärung der Abbildungen.

Fig. 1. Randbläschen von *Aegineta* (n. Gen.)

Fig. 2. Randkörper einer anderen Art derselben Gattung.
 a. Der glockenförmige Träger.
 b. Bläschen mit der Concretion.
Fig. 3—6. Randkörper von Gcryonia.
 a. Der Stiel des Randkörpers.
 c. Stiel für die Umbüllung der Concretion.
 d. Hülle der Concretion.
 e. Kern. (?)
 f. Concretion.
 f'. Organischer Rückstand nach Auflösung der Concretion durch Säure.

Fig. 7. Randkörper einer jungen Pelagia (Ephyra).
 a, a. Zwei Randlappen.
 b. Fortsatz des Magens.
 c. Ampulle.
 d. Krystallsäckchen.

Fig. 8. Randkörper von Pelagia noctiluca.
 a. Stiel.
 b, b. Ränder des zwischen zwei Schirmlappen befindlichen Einschnittes.
 c. Randkörper.
 d. Kanal des Stieles.
 e. Lumen des Kanales bei seiner Umbiegung.
 f. Ampolle.
 g. Krystallsack.

Fig. 9. Krystalle aus dem Randkörper von Pelagia noctiluca.

Fig. 10. Randkörper von Nausithoe albida. (n. Sp.)
 a, a. Lappen des Schirmrandes.
 b. Gelblicher Wulst.
 c. Pigmentfleck.
 d. Ampulle.
 c. Krystallsäckchen.
 f. Krystalle.

Fig. 11. Der gelbliche Wulst des Randkörpers von derselben Meduse, vom Profil gesehen.
 a. Zellenmasse.
 b. Pigmentconus.
 c. Lichtbrechender Körper.

Fig. 12. Randkörper nebst Umgebung, von Carybdea mar-
 supstitialis, schwach vergrössert.
 a Randkörper.
b. Stiel derselben.
c, c. Nischenförmige Vertiefung in der Glockensubstanz.
d. Deckblätten.

Fig. 13. Randkörper von derselben Meduse, stärker vergrößert.
a. Stiel.
b. Kanal in demselben.
c. Ampulle.
d. Krystallsack.
e. Pigment.
f. Lichtbrechender Körper.

Von

DR. FRIEDRICH KÜCHENMEISTER,
prakt. Ärzte in Zittau

K.
Fr. Küchenmeister: Uebersetzung der Arbeit de Filippis:

... die Sonne im Busen einer Meerconchylie befruchtet: eine Meinung, welche bei Plinius und Dioscorides auftritt, aber keine Gnade bei den Neueren gefunden hat, indem diese nicht nur viele Behauptungen der alten Schriftsteller und unter diesen die prahlerische Narrheit der Cleopatras 1) unter die Fabeln verweisen, sondern auch, indem sie einige Worte, welche sich vor Alters auf die Perlen bezogen, in himmelweit verschiedener Bedeutung anwenden. So will man heute mit dem Worte: Oriente, wenn man es auf die Perle anwendet, freilich nicht mehr ihr exclusives Vaterland, sondern vielmehr einem besonderen Glanz anzeigen, in welchem ihr ganzer Werth besteht. Der Name: Uniones, welchen die römischen Landleute den Zwiebeln beilegten, wurde zur Zeit des Jugurthinischen Krieges so geachtet, dass man sich seiner bediente, um damit die grössten und schönsten Perlen zu bezeichnen, von denen gerade vor jener Epoche in Rom keine ähnlichen gesehen worden waren. Jetzt bezeichnet man mit ebendemselben Namen dagegen ein Genus der gemeinsten, obwohl manchmal Perlen tragenden Conchylieen, in den Teichen und Flüssen der ganzen nördlichen Hemisphäre. Die Perlenhalsbänder, deren Rasseln so sehr den raffinirten Luxus der römischen Damen ergötzte, wurden Crotali genannt, jetzt machen ein gleicher Name und Geräusch dagegen vor Schrecken den Wanderer, der die amerikanischen Länder durchreiset, schaudern.

Die Wissenschaft hat nun trotz seines poetischen Blendwerkes den alten Irrthum zerstört, aber ihn nicht corrigirt; vielmehr ist sie bei ihren vielsachen Versuchen, die Bildungsursache der Perlen zu suchen, selbst zu einem, ebenso von der Wahrheit entfernten, weniger schönen und daher weniger verzeihlichen Irrthum, als der alte war, gelangt, indem sie den Ursprung der Perlen einer Krankheit des Thieres, 1) Der stärkste Essig greift die Perlen nur sehr langsam an und löst sie noch nicht ganz auf. Der organische Theil bleibt zurück unter der Form eines schwammigen Rückstandes, dessen Volumn grösser ist, als das der zum Experiment verwendeten Perle. (de Filippi.)
in welchem sie erzeugt würden, d. i. einer Verderbniss seiner Säfte, oder dem Austreten kalkiger Materie zuschrieb, welche eine Art von Natta bildet 1).

Es ist in der That beobachtet worden, dass, wenn irgend eine Moluske oder ein anderes bohrendes oder nagendes Thier eine der Schalen der gewöhnlichen Perlmuschel (Meleagrina margaritifera) durchbohrt, das Thier der letzteren die Beschä- digung seiner Muschelschale durch Ablagerung einer Masse, welche auf ihr eine überhaupt einer Perle vergleichbare Er- höhung derselben Substanz, aus der die innere Lamelle ge- bildet wird, hervorbringt, mit der Zeit wiederherstellt.

Es gibt in der That 2 Arten von Perlen 2). Die einen

1) Natta = Matte = Bastmatte = Flechtwerk bedeutet wahrschein- lich so viel als Emballage = Umhüllungsmaterial. K.
2) Im Allgemeinen kann man allerdings die Eintheilung de Fi-
sind an der innern Fläche der Schale, von der sie gleichsam eine Vegetation zu sein scheinen, angewachsen, die anderen befinden sich ganz frei in der Dicke des Mantels selbst, der die Schalenmassen secernirt; und sind letztere gerade die schönsten und wertvollsten Perlen. Es ist nicht nöthig zu

bemerken, dass die ans reparatorischen Excrencenzen bestehenden Perlen jedenfalls nur zu der ersten Kategorie gehören können. Die Bildungen der zweiten Kategorie aber verlangen noch eine Erklärung.

Was die angewachsenen Perlen betrifft, so geschieht es fast nie, dass man, ihnen entsprechend, an dem gegenüberstehenden äusseren Theile der Schale eine Verletzung fände');

eine Verletzung, die permanent bestehen müsste, bei der Unmöglickkeit, in welcher das Thier sich befindet, die äusseren Schalenlagen wiederherzustellen.

Es ist bekannt, dass die Materie, aus welcher die Perlen zusammengesetzt sind, dieselbe ist, welche die eigentliche Perlmutter, d. i. das innere und dickere Stratum der Muschelschale, bildet, und aus sehr feinen Schichten kohlensauren Kalkes, mit thierischer Substanz vermisch, besteh, und weiter, dass diese Schichten concentrisch um einen Kern gelagert sind, dessen Natur und Beschaffenheit eben das Problem der Perlenbildung lösen soll.

1) Man kann den hier ausgesprochenen Satz nicht in der von de Filippi ausgesprochenen Allgemeinheit fassen, sondern muss jeden-
ter incrustirt werden, und die Form des fraglichen, fremden Körpers wird bis zu einem gewissen Punkte die Form der Incrustation selbst, die durch irgend einen Zufall auch den äusseren Anschein einer verkäuflichen Perle würde annehmen können, bestimmen. In einigen Cabinetten werden solche Incrustationen aufbewahrt, welche eine von der zuvor erwähnten verschiedene Idee über den Prozess einer künstlichen Perlenerzeugung hervorgebracht haben; die nämlich, dass man nicht sowohl die Muschelschale des Weichtieres anzubohren, als vielmehr einen fremden Körper (z. B. ein Sandkorn oder eine kleine Perle), der als Attractionskern für die Perlenmasse dienen soll, zwischen Schale und Mantel einzuführen habe.

Es ist nicht mit hinlänglicher Sicherheit constatirt, welchen Ausgang die in dieser Absicht angestellten Versuche gehabt haben, indessen kann man es wohl als allgemeine Annahme aufstellen, dass es in den Perlen einen Kern fremder Materie (1) gibt, weshalb es besser sein würde, die Perle mit einem Blasenstein, als mit einer Natta zu vergleichen.

falls beschränkend hinzufügen: „jeder fremde, in den Mantel oder die Schale einer Meleagrina, einer Unio eingeführte, und darin an einer für Perlenentwicklung günstigen Stelle längere Zeit, und mindestens so lange, als die Muschel Zeit bedarf, um ihn mit einer schützenden Cyste zu umgeben, in der Muschel zurückgehaltene Körper kann mit Perlmutter incrustirt werden.“ Die Kunst der Perlenerzeugung besteht nur darin, fremde, eingetretene Körper so lange, wie hier angedeutet ist, an gewissen Stellen des Mantels festzuhalten.

1) Kerne kann es geben, die aus dem Mineral-, Pflanzen- oder Thierreich herstammen. Man muss jedenfalls auf diesen allgemeinen Standpunkt sich stellen. Hauptsache ist nur, dass der fremde Körper klein sei und so lange an der günstigen Stelle verweile, wo er eingedrungen, dass er als fremder Körper von der Muschel betrachtet und von ihr mit häufigen Schichten, die sich mit Kalk imprägniren, umlagert werde. Natürlich wird das Thierreich am häufigsten den Kernlieferanten abgeben. Wir werden aber später sehen, dass auf all diese Kerne später nichts mehr kommt. Es können nämlich (was besonders von den Kernen gilt, welche von schmarotzenden, niederen Thieren herrühren) diese Kerne die Muschel wieder verlassen, was freilich nicht gar zu lange nach der Einwanderung geschehen darf. Absdann
Stenon, Redi und der Graf von Bourron meinten, dass solch einen Kern ein Sandkorn bilde, das zufällig in die Muschel eingedrungen sei und einen Reiz auf die äussere Seite des Mantels ausgeübt habe, wodurch eine grössere Zu-strömung der abgesonderten Perlenmasse entstehe. Blainville (Diction. des sciences natur. Vol. XXXVIII. pg. 503), der in dem sogenannten Perlensamen ein Sandkorn aufzu-
finden sich bemühte, drückt sich über die Natur und den Charakter der von ihm aufgefundenen Kerne nicht klar genug aus, und fügt darauf hinzu, dass er in verschiedenen Fällen einen derartigen Kern nicht angetroffen habe. Dieser letzte Umstand findet sich auch bei anderen Beobachtern, die ein Sandkorn als Kern bezeichnet wissen wollten; was dann zu dem Glauben Veranlassung gab, es könne der Kern auch aus organischer Materie (einfachem Schleim oder einem anderen krankhaften Producte des Thieres) bestehen.

Home (Philosoph, transact. 1826. P. 3. pg. 338) liess sich bewegen, zu glauben, dass die Eier der Muschel selbst die Perlenkerne abgaben, und seine Argumente reducirten sich besonders auf zwei: 1. Alle von ihm untersuchten orientali-
schen Perlen enthielten im Centrum einen leeren Raum, in welchem sehr gut ein Ei enthalten sein könnte; 2. er fand auch Perlen im Ovarium der Anodonten (einem anderen Ge-
findet man wohl in den Perlen gar keinen fremden Körper als Kern, sondern die Perle beginnt sofort mit der ersten abgelagerten häutigen Schicht, eine grössere oder kleinere leere Höhle umschliessend. Hier wirkte die ursprünglich um den fremden Eindringling von der Muschel abgesonderte Schicht später selbst als Kern der Perlenbildung. In die-
er Weise haben unbedingt diejenigen Recht, welche meinen, dass der Kern auch aus organischer Materie bestehen könne. Vertanschen wir ihre Worte: „einfacher Schleim oder ein anderes krankhaftes Product des Thieres können den Perlenkern bilden“, damit, dass wir sagen, die um einen fremden Körper gebildete häutige Umhüllungsschicht kann nach Entfernung des echten Kernes selbst zum Perlenkern werden, so sprechen wir die Wahrheit in geläutertcr Ansicht aus. Wir würden daher wohl thun, von primären Kernen (d. i. den von aussen einge-

Dringen) und von secundären (d. i. den von dem Muschelthiere selbst gebildeten) zu sprechen. cfr. infra.

K.

1) Das, was Home angegeben hat, ist wahr und in der Natur begründet. Die de Filippischen Zweifel sind unbegründet und unge-rechtfertigt, weil er hier zweifelfsohne auf einem Felde reiner Hypothese sich bewegt und aller Selbstanschauung entbehrt. Der erste Homesche Grund dafür, dass die Perlenkerne durch Eier gebildet würden, steht freilich auf sehr schwachen Füssen. Der hohe Raum in dem Centrum orientalischer und mancher Elsterperlen kommt jedenfalls am häufigsten durch die Auswanderung oder Vertrocknung der Schmarotzer zu Stande. Der zweite Beweis Home's, dass der Perlenkern durch Eier gebildet werde, ist ein auf Thatsachen und Beobachtungen gestützter. Man findet nämlich zuweilen, jedoch immerhin nur selten und nur bei älteren, fruchtbaren Individuen Perlen, deren Wände sehr dünn, nur aus einer kleinen Anzahl concentrischer Schichten zusammengesetzt, leichter zerknirschl und innen hohl sind. Hierdurch gleichen sie dem im Handel vorkommenden, zwar sehr schön glänzenden, aber nicht massiven Perlsamen. Untersucht man den Detritus dieser Perlen, nach dem Zerspringen derselben und unter gleich-

259
normen Fall einer die Schale vollkommen penetrierenden Verletzung ausgenommen. Daher kann man sagen, dass beim gewöhnlichen Prozesse der Perlenbildung weder unorganische, von aussen kommende Körperchen, noch Eier, die im Inneren des Thieres erzeugt wurden, den Keim abgeben können 1).

Durch Zufall wurde meine Aufmerksamkeit auf die Entstehung der Perlen in unseren gemeinen doppelschaligen Muscheln (Unionen und Anodonten) gelenkt, weil bei gewissen anderen Untersuchungen, die in ganz anderer Absicht angestellt wurden, sich Thatsachen darboten, welche einiges Licht über diesen noch so dunklen Gegenstand verbreiten konnten.

Ich beginne meinen Bericht damit, dass, nachdem eine gute Anzahl kleiner Perlen aus dem Mantel einiger Mollusken gesammelt worden war, einige davon zerbrochen wurden, um die innere Substanz zu untersuchen, während andere in verdünnter Salpetersäure aufzulösen versucht wurden. Aber auf keine Weise konnte ich einen Kern erkennen, der einem Sandkorne vergleichbar gewesen wäre. Die zerbrochenen oder zerschnittenen Perlen zeigten dagegen einen Durchschnitt, ähnlich dem vieler Stalaktiten, nämlich einen mehr oder weniger grossen Kern einer undurchsichtigen, kalkigen

1) Bei der Perlenbildung kommt es nicht auf ein blosses Eindringen eines fremden Körpers an jedem Orte, durch den Mantel hindurch und bis in den Raum zwischen Schale und Mantel an, sondern darauf, dass der Eindringling an einer bestimmten Stelle (vielleicht in einem Gefäßkanale des Wassergefässsystems) sitzen bleibt. Dass bei kräftigen und älteren Thieren, welche einen dickeren Mantel haben, die Perlen besonders vorkommen, ist bekannt und bestätigt das oben Gesagte. Die jüngste Muschel, welche einen Ansatz zu einer Perlenmuschel hatte, war etwa 1 1/2 Zoll lang und noch sehr dünnenschalig. Im Übrigen vergleiche man, um sich von der Unrichtigkeit des de Filippischen Schlussatzes zu überzeugen, die früheren Anmerkungen. Nach von Kengartens Untersuchungen liese sich übrigens ein Eindringen eines Sandkornes immerhin als möglich denken, treulich auf einem ganz anderen Wege, wovon wir bei den Elsterperlen sprechen werden. —
und ins Gelbliche spielenden Materie\(^1\)), die, wie die involvirende, wirkliche Perlenmasse aus Lagen zusammengesetzt war. Die Perlen, welche einige Stunden und auch einige Tage in Digestion mit Salpetersäure gehalten worden waren, verloren, je nach ihrem verschiedenen Durchmesser, ihre ganze kalkige Substanz; bewahrten jedoch dabei ihre frühere Form, schwollen nur etwas durch gasige Blasen auf und zeigten eine Anzahl sehr feiner, häutiger Strata, welche einen deutlichen centralen Kern organischer Materie umhüllten.

Es ist daher möglicher Weise, je nach den Fällen, mehr oder weniger leicht, die Charaktere nicht nur einer organischen Substanz, sondern wirklich eines verstorbenen organischen Wesens zu erkennen. Seine Bestimmung kann sich auf nichts anders, als auf indirecte Beweise stützen, obgleich dieselben in solcher Zahl und Stärke auftreten, dass sie uns nöthigen, einen Schritt weiter zu geben, und annehmen, dass das organisirte Wesen, welches den Perlenkern bildet, ein Helmínth ist. In beistehender Figur ist einer der Kerne der aus dem Mantel einer Anodonte genommenen Perle dargestellt.
Die positive Beobachtung der perligen Incrustation um die Schläuche des *Distoma duplicat*, muss natürlich den ersten Wert haben bei der per analogiam stattfindenden Bestimmung der organischen Wesen, die sich in ganz ähnlichen Bedingungen befinden und zum grössten Theile ihren organischen Charakter durch den Tod und die tiefe plötzliche Alteration in ihrem Gefolge verloren haben. Dann handelt es sich an zweiter Stelle um die Analogie, oder vielmehr die Identität des Anblicks und der Zusammensetzung, welche zwischen den ersten, die genannte Cyste incrustirenden und den den ersten Perlenkern bildenden Stratis stattfindet.

Es ist hinlänglich klar, dass diese Helminthen, um die äussere Seite des Mantels zu erreichen, nicht nöthig haben, durch eine offene Strasse einzuwandern.

Bei der sehr grossen Schwierigkeit, die echten Species der Unionen, selbst der europäischen, zu bestimmen — eine Schwierigkeit, die durch die enorme, von manchen Malakologen hervorgebrachte Confusion vermehrt wird — wird man nicht sagen können, ob die *Unio margaritifera* eine von den anderen Species sei, welche nur in gewissen Fällen keine oder wenigstens nicht in demselben Grade Perlen tragen. Aber wenn man auch nach übereinstimmender Ansicht der Malakologen diese Species bestehen lässt, wird doch Niemand die Eigenschaft, Perlen zu erzeugen, als eine ihnen spezifische betrachten wollen. Nicht einmal von allen *Unio-
nibus margaritiferis, die über Central- und Nordeuropa zerstreut sind, wird diese Eigenschaft in denselben Grade ge-
theilt, sondern es gibt Orte, die für dieses Geschenk der Natur privilegirt sind. Solche sind einige Seen der Schweiz; die Elster im Vogtland (Sachsen); der See von Tag in Schott-
land; der Fluss Conway in der Grafschaft Galles. An der Mündung dieses letzteren Flusses nistet die sehr gemeine Muschel (*Mytilus edulis*), von dem auch in bemerkenswer-
ther Menge Perlsamen erlangt wird, welcher in London zum Verkaufe kommt und bis zu diesen letzten Jahren ein Ge-
heimniss blieb. Die Pinnen, die Anomien, die Austern sind in einigen Gegenden perlentragend, in anderen nicht. Es bleibt noch übrig zu wissen, ob der grosse Reichthum an Perlen, den die *Helicagnina* des Golfes von Manaar (Ceylon) liefert, ausschliesslich der grössern Häufigkeit dieser Spe-
cies in jener Gegend im Vergleich mit sehr vielen anderen und entfernten Standorten, in denen sie gleichfalls häufig ist, zu- oder daher komme, dass die perlentragenden Indivi-
duen daselbst verhältnissmässig in grösserer Menge vorban-
den sind. Die Production der Perlen in den Exemplaren einer und derselben Species scheint im engsten Rapport mit der geographischen Vertheilung der Trematoden (sollte wohl beissen „gewisser Schmarotzer aus den niedersten Thierrei-
chen“ K.) zu stehen, welche in den Muscheln selbst sich einnisten. Jene ist um so grösser, nach meiner Ansicht, je reichlicher diese in einer gewissen Lokalität sich vorfindet. Dies lässt mit allem Grunde schon den Fall ahnen, in wel-
chem, wie ich sagte, sich die Anodonten von Racconigi im Vergleich mit denen anderer und auch nahe Wasser sich befänden.

Wie sehr ungleich die Vertheilung dieser Helminthen in den Weichthieren selbst in einer und derselben Gegend ist, würde an verschiedenen Beispielen gezeigt werden können. Aber Niemand, der es gründlich zu erklären sucht, wird da-
von überrascht sein. In der Lombardie fand ich sehr häufig in der *Paludina vivipara* jene Würmer, welche der Gegen-
stand der Beobachtungen von Nitzsch, Baer und später

Aber kehren wir zurück zu dem ersten Gegenstand. Ich muss hier dem Einwände zuvorkommen, dass oft auch in den Anodonten des Po perlige Auswüchse an der Muschel- schale sich finden, ohne dass man eine Spur von Helminthen an der entsprechenden Stelle des Mantels sähe. Man muss aber in solchen Fällen bedenken, dass diese Excreczenzen alt sind, und die Generation von Helminthen, von denen die den Kern bildenden Individuen abstammten, ihre Entwicke-
Die Helminthen im Mantel fehlen nie, wenn sich auf der perlmutterglänzenden Fläche der Schale einige kaum beginnende Perlen finden.

Dies ist ein Wink mehr über die Mittel zur künstlichen Perlenerzeugung und über ihren mangelhaften Erfolg.

Aus den erörterten Thatsachen fließt ziemlich natürlich die Indication des bei diesem Zwecke zu verfolgenden Verfahrens: die Species der Trematoden zu studiren, welche in den perlentragenden Muscheln schmarotzen, und durch Einwanderung in jene Gegenden, wo die Kalksubstanz abgesondert wird, zur Kernbildung dienen können. Die Ausbreitung dieser Helminthen wird durch die Oerlichkeit begünstigt. Wo die Helminthen fehlen oder selten sind, da fehlen auch die Perlen oder sind doch wenigstens selten.

Ich glaube, dass nach diesem Prinzip die Perlenerzeugung sehr vermehrt werden kann.

So wären wir denn angelangt am Schlusse der de Filippischen Arbeit und wollen uns nun in einem folgenden Aufsatze über die Entstehung der Perlen in der Elstermuschel verbreiten.

Von

Dr. Küchenmeister.

Werfen wir nochmals einen prüfenden Blick auf die letzten Seiten der de Filippischen Arbeit, so sehen wir, dass de Filippi zuerst nachgewiesen hat, dass die an der Innenschale der Teichmuscheln sich gar nicht selten vorfindenden Rauhkeiten Einem Trematoden entstammen. Dies ist aber auch der einzige faktische Beweis, den de Filippi geliefert hat. Per analogiam schliesst er nun weiter, dass die Perlen im Mantel der Muscheln wahrscheinlich auch demselben oder einem anderen Trematoden entstammen. Die Herren C. Vogt und der Referent in der Zeitschrift „die Natur“ haben auf die de Filippischen Mitteilungen hin ohne Weiteres bekannt gemacht, dass die Perlen durch das Einwandern des Distoma duplicatum oder richtiger seiner Cercarien entstehen. De Filippi erwähnt selbst: „Allemal wenn ich eine Anodonte nahm, sah ich in ihrem Mantel in grosser Zahl die kleinen Schlänche eingestreut, welche die Distomen enthielten, und konnte perlige Rauhheiten von verschiedener Form etc. erkennen.“ Dabei sagt er, dass diese Gebilde zuweilen fast sphärisch gewesen wären und über die anliegende Fläche der Schale also ausgestreut lagen. Er selbst macht weiter auf die Formverschiedenheit dieser Gebilde und der echten grössern Perlen aufmerksam, nennt dies aber mehr eine Altersverschiedenheit.

Um meine immer schwankende Gesundheit, die durch fast 15 Jahre lange Diarrhoen, die nach einem vor einigen Jahren vorhergegangenen Typhus nur um so hartnäckiger geworden und selbst einige Zeit von Oxalurie begleitet waren, geschwächt war, zu stärken, hatte ich mich in diesem Sommer nach unserem vogtländischen Bad Elster begeben, aus
dem ich, beiläufig bemerkt, denn auch ausserordentlich ge-
stärkt und gebessert zurückkehrte. Nahe den Standorten der
sogenannten Muschelbänke erwachte in mir das Interesse für
diesen Gegenstand, von dem ich wusste, dass er ein noch
ungelöstes Problem sei. Damals kannte ich, wie schon be-
merkt, Nichts von der de Filippischen Ansicht, und er-
hielt erst am Schlusse meiner Untersuchungen durch R. Leu-
ckart den de Filippischen Originalartikel. Ich wendete
mich, da die Eltermuscheln der speziellsten Aufsicht des
Staates sich zu erfreuen haben, und die Zeit meines Aufent-
haltes in Elster eine ziemlich kurze war, durch eine Sepa-
rateingabe an Sr. Königl. Majestät selbst und erhielt in we-
nigen Tagen schon die Allerhöchste. durch das Königl. hohe
Finanzministerium ausgefertigte Erlaubniss zu den beabsich-
tigten Untersuchungen, sowie die betreffende Behörde an-
gewiesen wurde, mich in meinen Untersuchungen auf jede
Weise zu unterstützen. Von der mir gewordenen Erlaubniss,
die gewonnenen Resultate in einer wissenschaftlichen Zeit-
schrift publiziren zu dürfen, mache ich hierdurch Gebrauch,
und erwähne noch, dass das Königl. hohe Finanzministerium
nach Einreichung eines vorläufigen Berichtes und Planes über
die künstliche Vermehrung der Perlen mich beauftragt, die
Angelegenheit nach meinen Vorschlägen einzurichten, und eine
dermalige Unterstützung von 100 Thlr. hierzu mir gnädigst
aus freiem Ermessen, und ohne dass ich um eine derartige
Unterstützung gebeten, ausgesetzt hat.

Um über die Ursache der Perlen ins Klare zu kommen,
vermochte ich keinen andern Weg einzuschlagen, als der ist,
den auch die anderen Experimentatoren schon vor mir ein-
geschlagen hatten. Ich löste zuvörderst Perlen in Essigsäure,
wie in Mineralsäure, unter Anwendung der in der Anmer-
kung pg. 262 der vorigen Arbeit angegebenen Cautionen, wo-
durch man den Prozess der Perlenauflösung ausserordentlich
abkürzt. Die alsdann auf ein Minimum zusammengeschmol-
zene Perle behandelte ich noch einige Zeit in Säure und zer-
drückte sie hierauf zwischen zwei Glasplatten. Die kleinen
zwischen den Glasplatten befindlichen Stücke lösten sich all-

Es war also keinem Zweifel unterworfen, dass in manchen Perlen der Elstermuscheln eine Wasserspinne den Perlenkern bildet, und diese Wasserspinne ist die *Atax ypsilophora* (van Beneden) oder *Limnochares = Hydraehna anodonta*. Die Lebensgeschichte dieser Thiere ist bekannt und erklärt auf sehr einfache Weise den Perlenbildungsprozess. Diese Wasserspinne lebt im schlammigen Boden schwach fließender, angestauter und mehr stehender Gewässer, besonders also in schlammigen Teichen. Nie oder äusserst selten steigt sie an die Wasserfläche herrauf, immer in den Schichten verweilend, welche dem Schlamme des Bodens sich zunächst befinden; was die Muscheln anlangt also sicherlich am liebsten in dem Niveau der hinteren Hälfte des Muschelkörpers. In dieser Körperrhälftje fand ich denn auch stets die Ataxindividuen besonders reichlich eingewandert, abweichend von den Angaben einiger anderer Autoren, wäh-
rend treulich auch die vordere Körperhälfte nur selten davon frei war. Es treibt sich nun die 8beinige, geschlechtsreifc Spinne im freien Wasser herum und setzt zeitweilig ihre Eier in dem Mantel der Anodonten, Unionen u. s. w. ab. Diese Eier verwandeln sich, während das Muscheltier sie mit einer häutigen Hülle umgibt, in 6beinige Spinnen. Letztere wandern für gewöhnlich nach einiger Zeit aus den Eischalen und der Umbüllungscyste aus und gelangen ins freie Wasser. Wie viel Zeit zu dieser Umwandlung der Eier nöthig ist, kann ich nicht bestimmen, doch mag die Dauer dieser Epoche eine sehr kurze sein, wie wir schon aus der Unsumme von solchen Hydrachen, welche in ruhigen, günstigen Orten wohnen, und vielleicht per analogiam von den Krätmilben aus schliessen können, die 10—12 Tage höchstens hierzu brauchen. Auch diese 6beinige Brut bewegt sich eine Zeit lang frei im Wasser, wie es später die 8beinige Spinne thut. Nach einiger Zeit wandert diese 6beinige Brut von Neuem in den Mantel der Muscheln ein, zieht ihre Füsse an sich, und häutet sich, nachdem das Muscheltier sie mit einer Hülle umgeben hatte, innerhalb dieser Hülle. Sobald dieser Prozess abgelaufen ist, durchbricht das Thier diese Hülle und gelangt mit 8 Beinen begabt in die freie Natur, wo sie geschlechtsreif wird, die geschlechtlichen Funktionen ausübt, Eier legt u. s. w. Stets und auf allen Entwickelungsstufen der Milbe haben die von dem Muscheltiere gebildeten Hülsen oder Kapseln eine runde, sphärische Form, da die Eier selbst, sowie das in Häutung begriffene Thier nach Anziehung seines Beine die Kugelform annimmt. Bei dem Ausschlüpfen aus der meist sphärischen Cyste fällt die abgestreifte Haut der 6beinigen Spinne entweder gleichzeitig mit durch die Auswanderungsoffnung heraus oder sie bleibt zufällig liegen. Eben so wird dies mit dem Chorion des Eies geschehen, wenn dieses nicht, was vielleicht zuweilen geschehen mag, sich an die Innenwand der von der Muschel gebildeten Cyste anlöhet. Ken- nen wir einmal diese Thatsachen, so begreift sich der Perlenbildungsprozess, insoweit er die Atax anget, leicht. Die ursprünglich von der Muschel um die Ataxhaut gebildeten Cyste gibt den Perlenkern ab, wenn sie nach Ausschlüpfung der Brut
nicht selbst wiederum resorbirt wird, wofür wir keine Beweise, aber auch freilich noch keine Gegenbeweise haben. Die Fälle, wo das Ei oder die 6beinige Milbe am Ausschlüpfen verhindert wird, oder die Milben- oder Eihaut in der Cyste zurückbleibt, sind jedenfalls solche, in denen die Cyste nie resorbirt wird. Diese Cyste ist nun jedenfalls als das Wesentlichste bei den Perlen zu erachten, die innerhalb des Mantels selbst und innerhalb seines Parenchymes gebildet werden.

Wollten wir nun künstlich die Perlen erzeugen, so hätten wir hiernach nichts nöthig, als reife Ataxweibchen und junge 6beinige Brut mit perlenerzeugenden Muscheln und älteren, diesen Prozess begünstigenden Exemplaren in Berührung zu bringen. Und dies erachte ich denn auch als einen Hauptpunkt unserer Aufgabe, die ich jedoch von einem allgemeineren Gesichtspunkte aufgefasst wissen möchte, als de Filippi überhaupt angedeutet. Die Antwort auf die Frage:

„Wie lassen sich schöne, echte, runde Perlen in den Perlenmuscheln künstlich erzeugen?“

ist a priori sehr einfach zu beantworten:

Man muss solche niedere Schmarotzerthiere zur Absetzung ihrer Eier oder zur Einwanderung in den Mantel der Muscheln zu bewegen suchen, welche selbst oder in ihren Eiern eine runde Form habend, runde Ummhüllungscysten an den Seiten der Muschelthiere erzeugen; deren Zurückbleiben also einen runden Perlenkern abzugeben im Stande ist.

Von diesem allgemeinen Gesichtspunkte ausgehend, wird man dann zunächst sein Augenmerk richten:

1. auf reife Ataxweibchen.

Wie oben bemerkt sind diese Thiere nur in stehenden Wässern häufig; und es ist nicht unwahrscheinlich, dass eben deshalb die Perlen so selten in den Perlenmuscheln unserer Elster und ihrer oft reissenden Nebenbäche gefunden werden, weil die Ataxbrut hier überhaupt, wie in allen Fliesswässern, zumal den kiesigen, schnell fliessenden Gebirgswässern, äußerst selten sein dürfte. Wo wir es nun in der Elster und

Anmerkung. Unter den Perlenfundorten zeichnen sich die Westküste von Ceylon, besonders des Golfes von Mannar, die Bänke zu Tuticoreen, in der Provinz Tinnevelly, auf der Küste Coromandel, in der Nähe der Bahreens-Inseln im persischen Meerbüsen, bei den Looloo-Inseln, an der Küste von Algier,
bei der Insel Margarita in Westindien, an verschiedenen Orten der Colombischen Inseln und in der Bai von Panama in der Südsee aus. Ein Blick auf die Karte wird genügen, um, vor allem für den persischen Meerbusen und für den Meerbusen von Manaar, nachzuweisen, dass hier eben die Bedingungen stattfinden, die ich im Vorstehenden angedeutet habe. Alle Mittheilungen stimmen darin überein, dass die Sandbänke, also Orte, die mindestens in der Tiefe des Meeres, wo die Muscheln sitzen, gegen Strömungen eine Stauung bilden, die besten Fundorte sind. Zu wünschen wäre hier noch, dass man uns näheren Aufschluss über die Lage der besten Perlenfundorte gäbe, und darüber berichte, ob die besten Perlen mehr an der Seite der Sandbänke sich befinden, welche dem Lande zugekehrt und sicher gegen rapide Strömungen geschützter sind, oder an der dem Meere zugekehrten Seite sich befinden. Jedenfalls sind, wie nach diesen geographischen Mittheilungen scheint, die besten Perlenstandorte ruhigere Stellen in den Gewässern, an deren Boden sich Schmarotzer, wie die Atax ypsilophora, gern herumtreiben.

2. Auf die spiralig sich auflösende Brut von Rundwürmern, die in Cysten schmarotzen, welche, der runden Form der Würmer entsprechend, ebenfalls rund sind.

Nach den trefflichen Untersuchungen Meissners würde man auch Mermisbrut zur Einwanderung zu veranlassen haben, um zuzusehen, ob sie die Perlenkerne abgeben könnten. Es versteht sich, dass man dabei dies in der Weise zu Stande zu bringen suchen muss, dass man die Muscheln in Gefässen, die mit Wasser gefüllt sind, über Nacht mit der Mermisbrut in Berührung lässt. Ist dies geschehen und ist Einwanderung der Brut in die Muschel erfolgt (wie z. B. in Schneckenarten nach Meissner gesehentlich), dann würden die Muscheln ebenso in die Perlenwässer zurückzuversetzen sein.

3. Auf verschiedener Cestodenbrut, die man den Muscheln zu verschlucken gibt. Ob dies gelingen wird, lässt sich a priori nicht bestimmen, doch werde ich es nicht unterlassen, auch diesen Versuch und zwar in der Weise anzu-
Ueber eine der häufigsten Ursachen der Elsterperlen etc.

stellen, dass ich die aus reifen Gliedern entnommene und ins Wasser gestreute Brut einige Tage mit den Muscheln in Be- rührung lasse.

Was nun 4tens die Trematoden anlangt, welche de Filippi als Ursachen anklagt, so wird man, weil man die künstl- liche Perlenzucht immer zum grossen Theil in den Händen der Laien lassen muss, auch genötigt sein, möglichst allgemeine Anweisungen zu ertheilen. Die Aufgabe der Männer vom Fach besteht darin, solche Leute das Cercariengewimmel in Sümpfen und stehenden Gewässern kennen zu lehren, und sie anzuweisen, an heiteren, sonnigen Sommertagen von diesem Ge- wimmel zu schöpfen, und dies Wasser in Gefässen zu thun, in denen sich die Muscheln befinden. Sobald man Schlächte in dem Mantel der Muscheln bemerkt, welche von eingewanderter Brut herrühren, muss man die Muscheln wieder in die Perlen- gewässer zurückversetzen. Man wird selbstverständlich diese Experimente nur so lange fortsetzen dürfen, als das Leben der Muscheln dadurch nicht beeinträchtigt wird.

Welche Trematodenart es besonders sein wird, die als per- lenbildender Schmarotzer der Muscheln auftritt, ist zur Zeit noch nicht erwiesen. Vielleicht handelt es sich hier um die Brut von Dist. duplicatum, vielleicht aber auch um die Brut von Aspidogaster conchicola (zu dem übrigens seiner Zeit Steen- strup das Dist. duplicat. gerechnet hat).

Zwischen den inneren Lamellen der Branchien, und zwar gebildet durch eine Art Auseinandertretens derselben an ihrer Basis, befindet sich der Meatus branchialis, wie schon Bo-
Küchenmeister

Janus wusste. In diesen Kanal mündet von beiden Seiten (der rechten und linken Körperhälfte) her eine kleine mit einer Klappe verschliessbare Öffnung, durch welche man jederseits in die mit Wimperhaaren besetzte Vorhöhle der Schalendrüse (Vestibulum corporis Bojani; Keber) gelangt. Ein anderer Kanal führt von dieser Vorhöhle aus in einen Hohlräum, aus dem man durch eine mittelst einer Klappe verschliessbare Öffnung in das Corpus Bojani selbst vordringt. Aus dem Corpus Bojani führt uns ein anderer Kanal in das mit plattenähnlichen Vorsprüngen u. s. v. versehene Pericardium. Aus dem Pericardium dringen wir durch mehrere Öffnungen in das kalkreiche, rothbraune, spongöse Organ und von da aus durch andere Öffnungen in das System des eigentlichen, den ganzen Muschelkörper durchziehenden Wassergefäßsystems, das nach seiner Funktion, gelösten Schalenbildungsstoff (in Wasser gelöste und an thierische, schleimähnliche Massen gebundene Kalkmassen) durch den Körper zu führen, von Rengarten aber mit dem Namen Systema canaliun calcari fororum et aquiferorum belegt wurde. Das Wassergefäßsystem aber selbst entleert sich endlich des mehr oder weniger im Innern verwendeten und verbrauchten Wassers durch mehrere, besonders am hinteren Fusstheile sich frei nach aussen öffnende, siebförmige, etwa 0,1'' im Lichten hal tende Öffnungen. (Bei der Teichmuschel fand Rengarten bekanntlich drei derselben an dieser Stelle des Fusses. keine aber am Vorderfussse und Mantelrande.)

Da durch die an den verschiedensten Orten angebrachten Klappen oder klappenähnlichen Vorrichtungen der Eintritt des freien Wassers, in welchem die Muschel lebt, zwar in das Wassergefäßsystem vorwärts gestattet ist, aber dasselbe nicht, so lange nicht Klappenfehler vorhanden sind, durch eben diesen Meatus zurücktreten kann 1), so hat das Wasser folgen-

1) Ich erlaube mir hier beiläufig eines Momentes zu gedenken, welches man die Kiemenströmungen zu nennen pflegt. Keber spricht von zwei Strömungen und sagt: „um das schon von Carus erwähnte Aus- und Einströmen in den Kiemen zu sehen, bediene man sich eines mit
hierzu den Umstand, dass die Perle kaum irgendwo anders ein so günstiges Material für ihre Bildung finden dürfte, als eben innerhalb dieses Wassergefässsystems, in welchem der gelöste Schalenstoff (häutige Substanz und Kalksalze) kreiset; sodann den Umstand, dass nach bekannten Organisations- und Krystallisationsgesetzen die Umlagerung in organischen Flüssigkeiten ziemlich schnell vor sich geht, wenn Stockungen in der Circulation bei Vorhandensein eines rings democh zu umströmenden Kerns auftreten; ferner die bekannte Thatsache, dass Schmarotzerthiere dieses Wassergefässsystem lieben (man denke an den Bucephalus polymorphus und an das Auffinden von Perlen mit Atax als Kern im Herzbentelwasser); weiter den Umstand, dass man die Perlen auf die Weise aus dem lebenden Thiere herausbefördert, dass man einen seichten Queerschnitt über der Perle in den Mantel macht, und dann an die Ansenschale der Muschel klopft, wodurch die Perle frei wird, herausfällt und eine runde, glatte Höhle zurücklässt; sowie zuletzt den Umstand, dass die Einkerbung der Schale hinter und über dem Perlensitze gleichsam eine lokale Atrophie der Schalenbildung darstellt, welche sich am ungezwungensten erklären liesse, wenn man annahme, dass diese locale Atrophie hervorgebracht werde durch lokale Verschließung oder Verengerung der Lichtung des den Schalenstoff zu der Schale hin führenden Gefässes. Diese Betrachtungen sind jedenfalls geeignet, in uns den Gedanken aufkommen zu lassen, man habe es bei der Perlenbildung oft mit einer Analogie der Venenstein zu thun, wobei ich mich jedoch ausdrücklich davor bewahrt haben will, als hielte ich das Wassergefässsystem für das Venensystem der Muschel, das ich sehr wohl kenne. Ich will nur gesagt haben, dass die Perle zuweilen die Folge der um einen in der Lichtung eines Wassergefässsystems befindlichen, hier stecken gebliebenen Kern stattgefundenen, concentrischen Ablagerung von häufigem und erdigem Schalenstoff sei. Freilich weiss ich sehr wohl, dass hierfür der Beweis nur durch Injectionen und dadurch geführt werden kann, ob sich Öffnungen der Gefässe, die mit der Höhle communiciren, in welcher die Perle sitzt, nachweisen

Zu dem letzteren Experimente werde ich ferner auch den feinsten, geschlämmten Sand verwenden, der überhaupt durch Suspension zu erlangen ist, um auch die Frage zu entscheiden, ob Sandkörner den Perlenkern zu bilden vermöchten.

Nur auf diesen beiden angedeuteten Wegen, deren letzterer übrigens auch in dem ersten Experimente von den mit den Muscheln in Berührung gebrachten Schmarotzern freiwillig angetreten werden kann, ist es möglich, die Sache der künstlichen Perlenbildung zum Abschluss zu bringen, und behalte ich mir weiteren Bericht vor.
Ein Musculus supraclavicularis beim Menschen.

Von

Prof. H. Luschka in Tübingen.

(Hierzu Taf. X.)

Das morphologische Interesse, welches sich an diesen, wenn auch von mir bis jetzt nur erst wenige Mal beobachteten Muskel knüpft, veranlasst mich gleichwohl von dem unscheinbaren Funde Notiz zu geben, und zwar besonders in der Hoffnung, dass diejenigen, welchen ein zulängliches Material zu Gebote steht, auf ihn bei vergleichend-anatomischen Untersuchungen ihr Augenmerk richten mögen.

Der Oberschlüsselbeinmuskel erschien in drei zu meiner Wahrnehmung gelangten Fällen nach allen Seiten hin so durchaus selbstständig, dass nicht entfernt daran zu denken ist, ihn mit irgend einer Varietät der bekannten Muskeln in Beziehung bringen, oder ihn überhaupt als einen isolirten Bestandtheil eines andern deutet zu können. Zweimal habe ich den Muskel nur auf einer, einmal aber in ganz übereinstimmender Ausbildung auf beiden Seiten und zwar in allen drei Fällen bei Männern gesehen.

Der M. supraclavicularis zeichnet sich durch eine sehr schlanke, spindelähnliche Gestalt aus. Seine Lage hat er auf dem oberen Winkel des Schlüsselbeines, jedoch so, dass er auch einen Theil der vorderen und besonders der hinteren Fläche dieses Knochens bedeckt, und daher seiner ganzen Ausdehnung nach am besten von oben her betrachtet wird. Die Länge des Muskels entspricht der halben Länge der Clavicula und seine grösste Dicke beträgt 7 Millimeter. Dem Verhältniss der Fleischfasern zur Sehnensubstanz nach gehört der Muskel
zu den getiederten, indem die ersteren in der Richtung von der Schulter her von hinten und von vorn an eineplatte, den oberen Rand bildende Sehne anstossen. Diese beginnt ohne scharfe Grenze und gedeiht rasch zu einer Breite von 2\(\frac{1}{4}\) Mm., um sodann, um die Hälfte schmaler geworden, in einer seichten Rinne über das Sternalende der Clavicula und über das vordere Faserband des Brustschlüsselbeingelenkes hinweg zu laufen und sich, jetzt wieder breiter geworden, an der vorderen Fläche des manubrium sterni anzusetzen.

Betrachten wir die Verhältnisse des Ursprunges, Verlaufes und Ansatzes unseres Muskels näher, dann lässt sich darüber Folgendes berichten. Von seinem zugespitzten äussern, dem Acromialende des Schlüsselbeines zugekehrten Ende entspringt der M. supraclav., von der Mitte des Schlüsselbeines an, in einer Länge von 3\(\frac{1}{2}\) Centimeter, völlig fleischig, indem die Fasern fest mit dem Gewinde der Knochenhaut verwachsen sind. Der auch gegen das innere Ende der Clavica spitz auslaufende Muskelbauch verjüngt sich mehr und mehr zu der frei über das Sternalende des Schlüsselbeines weglauflenden, 1\(\frac{1}{2}\) Centimeter langen Sehne, welche sich dann verbreitert in der vorderen Faserhaut des Brustbeinhandgriffes, fleischig-sehnig, hart unter dem Lig. interclaviculare verliert.

Eine Wirkung des im Verhältniss zu den Knochen, zwischen welchen er angeordnet ist, sehr zarten Muskels kann nicht wohl angenommen werden und sein Vorkommen mehr nur in morphologischer Hinsicht Beachtung verdienen. In diesem Betrefte ist es aber ohne Frage wichtig genug, zu erforschen, in wiefem derselbe eine Wiederholung einer bei manchen Thieren vielleicht gesetzmaßigen Formation ist, worüber ich bisher inzwischen nicht den mindesten Aufschluss erlangen konnte. Gedenkbar erscheint es mir, dass der Muskel in Beziehung mit den Ossa suprasternalia gebracht und als actives Bewegungsorgan derselben gedeutet werden könne, wie wohl es mir noch nicht vorgekommen ist, beiderlei Theile bei einander zu finden. Diese Deutung möchte ganz besonders der Ansicht derjenigen zu Gute kommen, welche den Suprasternalknochen als vorderes Ende einer Halsrippe erklären. Be-

Nach dem, was ich in Vorstehendem über den M. supraclavicularis beigebracht habe, dürfte es aber klar geworden sein, ihn mindestens nicht mit derlei Vorkommnissen verglei-
Ein Musculus supraclavicularis beim Menschen.

chen zu können, sondern ihn unter allen Umständen als einen durchaus selbstständigen Muskel ansehen zu müssen.

Erklärung der Abbildung.

Das Präparat ist der Leiche eines etliche 40 Jahre alten Mannes entnommen, welcher der schwer arbeitenden Klasse angehörte und wegen Mordes enthauptet worden ist.

Der Handgriff des Brustbeines a ist in natürlichem Verbande mit den Schlüsselbeinen h. b. dargestellt. Der M. supraclavicularis läuft mit seinem Bauche c. c. über den oberen Umfang der Clavieula. Die dünne Sehne d. d. zieht in einer seichten Rinne des Sternalrandes hin und setzt sich verbreitert e. e. unter dem Lig. interclaviculare an.

Nachschrift.

Seit der Absendung obiger Mittheilung ist der M. supraclavicularis, nachdem ich diesem Gegenstande eine besondere Aufmerksamkeit zugewendet habe, im Verlaufe dieses Winters noch viermal in ganz übereinstimmender Weise zu meiner Wahrnehmung gekommen, so dass ich nicht anstehe den Muskel als eine, wenn nicht regelmässig, doch öfters vorkommende, morphologisch eigenthümliche Bildung im Systeme der Anatomie des Menschen aufzuführen.
Über Eiweiss-Diffusion
(vorläufige Mittheilungen).

Von
Prof. v. Wittich in Königsberg.

Die nachfolgenden Diffusionsversuche wurden durch eine Behauptung Mialhes') veranlasst, der aus den negativen Resultaten seiner Versuche berechtigt zu sein glaubte: das Eiweiss für absolut nicht-diffusibel, also auch für unlöslich, im normalen Zustande, zu erklären. Zwei Momente sollten jedoch nach seiner Angabe im Stande sein dasselbe diffusibel zu machen: erstens ein abnormer Zustand der dasselbe von der Aussenflüssigkeit scheidenden Membran; zweitens die Umwandlung des Albumins selbst in eine diffusibele Modifikation, die er Albuminose nannte. Die beiden letzten Behauptungen, die er aus abnormen endosmotischen Vorgängen im Körper erschloss, fallen, sobald sich das Grundexperiment, aus dem die Unfähigkeit des Albumins zu diffundiren feststellte, nicht bestätigte. Ich glaube im Verlaufe vorliegender Zusammenstellung einige jener Bedingungen wenigstens angeben zu können, welche die Diffusibilität des normalen Albumins auch ohne Alteration der Scheidewand ermöglichen, und somit nachzuweisen, dass es auch durchaus nicht der Annahme einer besonder Modifikation bedarf, um dieselbe zu erklären. Ich begnüge mich einfach die bisher gewonnenen Resultate aufzuführen, und eben nur die Schlüsse zu ziehen, die wir aus ihnen auf die Natur des gelösten Al-

Ueber Eiweiss-Diffusion.

287

bunins zu ziehen berechtigt sind. Keincwegs aber konnte es mir einfallen, bei der Complizirtheit der hier vorliegenden Versuche, auf irgend welche sichere Ausbeute für die Theorie der Endosmose zu rechnen.

1) De hymenogonia Albuminis. 1850. pg. 12 f.
4) Brücke: De diffusione humorum per septa mortua et viva. p. 55.
um nicht die endosmotischen Erscheinungen als durch die Ver-
derungen in der chemischen Zusammensetzung der Scheide-
dwand selbst bedingt ansehen zu müssen.

Als innere Gefässe dienten bei meinen Versuchen zwei
Cylinder, die von derselben Glaseöhle geschnitten ziemlich
gleiche Lumina zeigten (5 Mm. Radius). Dieselben waren in
Fünftel-Cubik-Centimeter getheilt, so dass man noch mit
ziemlicher Genauigkeit Zehntel C. C. schätzen konnte. An
ihrem unteren Ende hatten sie zum Festbinden der Membran
einen seichten circulären Riff. Um nun zunächst gleichzeitig
die Durchgängigkeit der Membran für Eiweisslösungen zu
prüfen, je nachdem dieselbe ihre natürliche Innen- oder Aus-
senseite letzterem zukehrte, wurden die beiden Cylinder in
entsprechender Art geschlossen: so also, dass bei dem einen
die natürliche Innenseite nach Innen, bei dem andern nach
Aussen kehrte. Die glattgezogene Membran wurde mit einem
Seidenfaden festgebunden, und dann der Rand desselben wie
letzterer selbst mit einem dünnen Collodiumüberzug verwahrt.
Der Cylinder war durch einen durchbohrten Kork getrieben,
der gleichzeitig das äussere cylinderförmige Gefäss schloss.
Der ganze Apparat wurde in allen Versuchen unter eine mit
Wasserdämpfen erfüllte Glocke gebracht und so die Verdun-
stung beider Flüssigkeiten möglichst verhindert. Der Druck,
unter dem beide Flüssigkeiten standen, liess sich leicht durch
Höber- oder Tieferstellen des innern Cylinders reguliren.

Bei der sichtbaren Grösse der Poren, die das filzige Ge-
webe der Schalenhaut unter dem Mikroskop zeigte, schien
es mir von vorn herein zunächst wichtig, dieselbe darauf zu
prüfen, ob diese fein genug seien, um einem auf sie wirken-
den hydrostatischen Druck Widerstand zu leisten. Zu diesem
Zweck wurden in die beiden in vorbeschriebener Art geschlos-
senen Cylinder 2 C. C. Wasser gefüllt und in ein leeres Ge-
fäss gehängt. Nach zwei Stunden war aus dem, der die na-
türliche Innenseite dem Wasser abkehrte, letzteres vollstän-
dig ausgeflossen, während der andere kaum merklichen Vo-
lumsverlust zeigte. — In einem andern Fall wurden in beide
Cylinder 5 C. C. Wasser gefüllt und dieselben so weit in ein

Müller's Archiv. 1856. 19

Es geht hieraus unzweifelhaft hervor, dass die beiden Flächen der Membran sich vollkommen verschieden verhal-ten, es daher für die Diffusion von grösster Wichtigkeit sein muss, nach welcher Richtung hin man dieselbe wirken lassen will. Ein Versuch erläutert dasselbe noch entschiedener. Die beiden kleineren Cylinder wurden mit 0,4 C. C. einer ziemlich concentrirten Kalilösung gefüllt und bei anfangs gleichem Druck 24 Stunden hindurch mit destilliertem Wasser diffun-dirt. Bei Beendigung des Versuches war die Flüssigkeit in dem Cylinder, bei dem die natürliche Innenseite dem Kali zukehrte, bis 1,0 C. C. gestiegen, in dem andern hatte die zu bedeutende Weite der Poren von der Aussenseite her das Aufsteigen des Wasserstroms, seinem Eigengewichte entge- gen, verhindert und beide Flüssigkeiten auf gleichem Niveau erhalten. Gewiss muss dieser auffallenden Erscheinung eine anatomische Verschiedenheit der beiden Seiten zu Grunde liegen; eine solche lässt sich jedoch mit dem Mikroskop nicht nachweisen; man kann das an sich äusserst feine Häutchen noch gar wohl in verschiedene Schichten spalten, alle aber zeigen die gleiche Zusammensetzung aus jenen den elastischen Fasern äusserst ähnlichen Gebilden, die sich nach allen Seiten hin kreuzend einen ungemein unregelmässigen Filz bilden, dessen Zwischenräume in allen Schichten bald verschwindend klein, bald ungemein gross sind, so dass sie kaum eine ungefähre Schätzung ihrer Grösse je nach den verschiedenen Lagen zulassen. Es bleibt daher nichts übrig,
als in einer schwer zu bestimmenden eigenthümlichen Ueber-
einanderlagerung der Schichten den Grund dieser auffallen-
den Erscheinung zu suchen.

Versuche, die mit Eiweisslösung in derselben Art (wie
mit der Kalilösung) gemacht wurden, gaben dieselben Re-
sultate. In zwei Beobachtungen, in denen die natürliche In-
nesseseite der Schalenhaut dem Eiweiss zukehrte, stieg das Vo-
lum der letztern in etwa 24 Stunden um mehr als 0,5 C.C.,
während in vier, bei denen die Membran umgekehrt war, in
gleichen Zeiten, bei gleichen Eiweiss- und Wassermengen,
bei annähernd gleich grossen Berührungsflächen und ziemlich
gleichen Temperaturen, nur eine überhaupt eine Volumsver-
mehrung zeigte, die übrigen in gleichem Niveau blieben.

Bevor ich die Beobachtungen jedoch genauer angebe, kann
ich die Schwierigkeiten nicht übergehen, die sich ihnen ent-
gegenstellen. Eiweiss - Diftusionon haben immer das Miss-
liche, dass uns vorläufig noch eine sichere Methode erman-
gelt, um die Salze albuminöser Flüssigkeiten qualitativ und
quantitativ zu bestimmen. Operiren wir daher von vorn her-
ein mit Gemengen, deren Zusammensetzung uns nur unvoll-
kommen bekannt ist, so tritt nach beenderter Diffusion die-
selbe Schwierigkeit ein, nämlich die während derselben über-
gegangenen organischen und unorganischen Bestandtheile ih-
ner Menge nach zu bestimmen. Wäre das von Wurty 1) dar-
gestellte Eiweiss wirklich vollkommen salzfrei, so wäre das
Verfahren einfach; man könnte theils mit demselben direk
t experimentiren, theils ein Gemenge desselben mit löslichen
Salzen, deren Quantität man vorher bestimmte, dazu be-
nützen. Leider ist dasselbe jedoch, wie ich bereits früher 2)
gezeigt, nicht salzfrei, würde daher eben so wenig Sicher-
heit bieten als andere albuminöse Lösungen.

Es blieb mir daher kein anderer Weg, als nach unter-
brochener Diffusion den eingedampften Rückstand des Was-

1) Comptes rendus T. XVIII. pg. 700 und Erdmanns Journal
Bd. 32. pg. 503.
2) De hymenogonia albuminis pg. 13.
sers zu bestimmen, und aus seinem Aschenrückstand die Menge des übergegangenen Albumins zu berechnen. Das Hühnereiweiß, dessen ich mich in allen Versuchen theils im concentrirten, theils im diluirteren Zustande bediente, enthält ausser den beigemengten Salzen nur äusserst unbedeutende Mengen Fett, Zucker, Extractivstoffe, es kann daher wohl als eine ziemlich reine Eiweisslösung angesehen werden, und der Fehler ist nicht so gar gross, wenn wir, zumal bei den so geringen Mengen, alle übergegangene verbrennbare organische Substanz als Albumin in Anrechnung bringen. Auch die aus der angewendeten Methode (Einäscherung) entspringenden Fehler sind um so geringer, als es bei den sehr geringen Mengen keiner sehr hoher Temperaturgrade bedurfte, um die Substanz zu zerstören; es ja auch vorläufig nicht auf eine qualitative Bestimmung der feuerbeständigen Rückstände ankam.

Anfangs benützte ich zur Diffusion frisches flüssiges Hühnereiweiß, da es aber ziemlich schwer ist, dasselbe genau von der gallertigen, die Dotterkugel umgebenden Schicht zu trennen, und man so nur schwer aus ein und demselben Ei, viel weniger aus verschiedenen Eiern zwei Proben ganz gleicher Consistenz, gleichen Wassergehaltes und gleicher Löslichkeit gewinnt, so bediente ich mich später einer sehr verdünnten Lösung, die ich dadurch gewann, dass ich frisches Hühnereiweiß wohl mit dem vierfachen Volum Wasser aurührte und abfiltrirte. In den zunächst aufzuführenden Versuchen diente bei zweien frisches, unmittelbar dem Ei entnommenes Eiweiss, bei den übrigen eine in angegebener Art gewonnene Lösung, in der auf

100 Theile
97,3 Wasser,
0,15 Salze,
2,55 Albumin kamen.

Die nachfolgende Tabelle stellt die Resultate der 6 Beobachtungen zusammen.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2</td>
<td>5</td>
<td>22</td>
<td>0,6</td>
<td>0,046</td>
<td>0,036</td>
</tr>
<tr>
<td>b. 4</td>
<td>5</td>
<td>24</td>
<td>1,0</td>
<td>0,003</td>
<td>?</td>
</tr>
<tr>
<td>c. 2</td>
<td>5</td>
<td>22</td>
<td>1,0</td>
<td>0,047</td>
<td>0,001</td>
</tr>
<tr>
<td>d. 4</td>
<td>5</td>
<td>24</td>
<td>0</td>
<td>0,026</td>
<td>0,013</td>
</tr>
<tr>
<td>e. 4</td>
<td>5</td>
<td>24</td>
<td>0</td>
<td>0,002</td>
<td>0,0015</td>
</tr>
<tr>
<td>f. 4</td>
<td>4</td>
<td>24</td>
<td>0</td>
<td>0,013</td>
<td>?</td>
</tr>
</tbody>
</table>

In a und c wurde Hühnereiweiß unverdünnt diffundiert, in b, d, e, f jene Lösung; und zwar befanden sich dieselben bei a, b, c, d im inneren Cylinder, bei e und f im äussern. Zunächst muss es auffallen, dass bei fast gleicher Dauer des Versuchs und gleicher Berührungsfläche nur in einem der Fälle (c), in denen die Innenseite der Schalenbaut dem Wasser zugekehrt, eine merkliche Volumvermehrung des Eiweiss erfolgte, ja der sie bedingende Wasserstrom sehr viel bedeutender ausfiel, als in dem ihn entsprechenden Versuch (a). Während wir also in d, e und f die uns aus Früherem bekannte leichtere Permeabilität der Aussenseite der Membran dem Aufsteigen des Wassers seiner Schwere entgegen hinderlich werden und die Ausgleichung beider Flüssigkeiten nur durch die Diffusion der Salze und des Albumins erfolgen sahen, ist in c dieses physikalische Hinderniss scheinbar ausser Wirksamkeit geblieben. Dieser Widerspruch erklärt sich zunächst dadurch, dass erstens bei dem geringern Wassergehalt der natürlichen Eiweisslösung das Bestreben
des letztern (wegen der grössern Differenz der von einander geschiedenen Flüssigkeiten). Wasser aufzunehmen eine sehr viel grössere sein musste, als in den 3 folgenden Versuchen; ferner aber waren die Eiweissproben der beiden entsprechenden Beobachtungen (a und c) auch unter einander qualitativ verschieden, da letztere eine nicht unbedeutende Menge jenes wasserarmeren, gallertigen, spezifisch schwereren Eiweisses enthielt, das am Boden des Cylinders auf der Membran ruhend möglichst viel Wasser imbibirte, und da es nicht tropfbar flüssig ist, sich in die Poren der Membran eindringend, sie verengend, jenes physikalische Hinderniss für den Wasserstrom beseitigte.

Was den Eiweiss- und Salzstrom betrifft, so correspon-
diren den Versuchen a und b, c und d. In allen vierien war die spezifisch schwerere Lösung oben und musste natürlich in c und d, in denen letzterer ein geringer Widerstand geboten wurde, eine grössere Neigung zeigen, seiner Schwere zu folgen. Deshalb sind auch in c und d, unter sonst glei-
chen Verhältnissen, sehr viel mehr Salze und Eiweiss übergegangen, als in a und b. Bei der Vergleichung von a und c muss jedoch stets die vorerwähnte verschiedene Beschaf-
fenheit der Cylinderinhalte vor dem Beginne der Diffusion in Erwähnung gezogen werden; dagegen gestatten b und d einen reinen vollgültigen Vergleich; in d ist fast das Achtfache der Stoffe übergegangen. In den beiden letzten Ver-
suchen (e und f) kommt die spezifische Schwere der Eiweisslösung nicht in Betracht, und bei der erwiesenen leichteren Permeabilität der Membran in vorliegender Anordnung des Versuchs ist dieselbe von verschwindendem Einfluss auf die Schnelligkeit der Diffusion. Diese erfolgt, als ob auf einer Eiweissschicht unmittelbar eine andere salzfreien Was-
ers ruht, sie wird daher sehr viel langsamer vor sich ge-
ben, als im umgekehrten Falle, in dem die schwerere Flüs-
sigkeit sich oben befindet. In e und b sind gleiche Mengen gleich lange diffundirt, aber bei verschiedenen ge richteter Mem-
bran und bei verschiedener Lagerung der spezifisch schwe-
L'eber Eiweiss-Diffusion.

reren Lösung; es ist daher auch bei e weniger übergetreten als bei b, noch grösser ist der Unterschied bei e und d. f zeigt wohl einen viel geringeren Eiweiss- und Salzstrom als d, aber einen grösseren als e, dafür ruht aber auch in f nur eine 4 C.C. haltende Schicht auf dem Eiweiss, die Vertheilung des Albumins findet daher weniger Widerstand und wird schneller erfolgen müssen als in e, wo 5 C.C. Wasser auf dem Eiweiss lasten.

Vergleichsweise wurden ferner fast gleiche Mengen Eiweiss einmal durch die M. testae, das andere Mal durch Amnion mit salzfreiem Wasser unter übrigens gleichen Bedingungen diffundirt. Das Ergebniss dieses Versuches war folgendes:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amnion</td>
<td>2,4</td>
<td>32</td>
<td>23</td>
<td>1,8</td>
<td>0,021</td>
</tr>
<tr>
<td>M. testae</td>
<td>2,0</td>
<td>32</td>
<td>23</td>
<td>1,6</td>
<td>0,018</td>
</tr>
</tbody>
</table>

1) H. M e k e l (Mikrographie einiger Drüsenapparate niederer Thiere. M ü l l e r s Arch. 1846, pg. 60) macht schon auf den Unterschied aufmerksam, der bei der Diffusion durch die M. testae eintritt, je nachdem man die eine oder die andere Seite derselben dem Eiweiss zugeht. Seine nur kurzen Angaben hierüber sind durch die hier aufgeführten Beobachtungen zu modifiziren und finden in ihnen ihre Deutung.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 4 25 0,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,001</td>
<td>Eiweiss unten, Wasser oben. Scheidewand M. testae.</td>
</tr>
<tr>
<td>4 4 25 0,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,002</td>
<td>Eiweiss unten, Wasser oben. Scheidewand Amnion.</td>
</tr>
<tr>
<td>4 4 10 1,0</td>
<td>0,056</td>
<td>0,008</td>
<td>0,048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 10 14 0,6</td>
<td>0,006</td>
<td>0,002</td>
<td>0,004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Unterschiede sind so in die Augen springend, dass sie weiter keiner Erklärung bedürfen.

Um endlich den Einfluss kennen zu lernen, den die Verschiedenheit des hydrostatischen Druckes, unter dem die beiden geschiedenen Flüssigkeiten gleich bei dem Beginn des Versuches standen, auf die Diffusionsvorgänge ausübt, wurden in zwei Fällen gleiche Mengen Eiweiss und eine gleiche Menge Wasser gleich lange diffundirt; der eine der beiden inneren mit der Membrana testae geschlossenen Cylinder aber nur so weit in das Wasser gesenkt, dass die Eiweisslösung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>gleich</td>
<td>22</td>
<td>1,0</td>
<td>0,02</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>ungleich</td>
<td>22</td>
<td>0</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Hiernach ist, wie ja auch zu erwarten war, die Verschiedenheit des Druckes von grösstem Einfluss auf den aufsteigenden Wasserstrom, weniger auf den zum Wasser gehenden Eiweiss- und Salzstrom, und zwar ist es a priori wahrscheinlich, dass dieser Einfluss um so geringer, je grösser der Druck ist, unter dem die Wasseratome im Aussengefässe stehen, je grösseren Widerstand sie also dem höheren Druck des Eiweisses leisten. Wurden vergleichsweise in drei Fällen ceteris paribus gleiche Mengen Eiweiss mit verschiedenen Mengen Wasser diffundirt, die sich annähernd wie 1:2:3 verhielten, so war auch die Volumsvermehrung in den Eiweisszylindern diesen proportional.

Ueber den Einfluss verschiedener Temperaturgrade auf die endosmotischen Erscheinungen stehen mir vorläufig keine vergleichenden Beobachtungen zu Gebote. Wohl aber habe ich mich bemüht, die nun ferner aufzuführenden vergleichenden Versuche unter möglichst gleichen Temperaturgraden auszuführen, so dass dieselben von keiner erheblichen Störung für die aus ihnen gewonnenen Resultate sein konnten.

Waren somit die zufälligen Einflüsse, die die Richtung und Natur der angewendeten Membranen, die spezifische Schwere der zu diffundirenden Flüssigkeiten, die Verschiedenheit des hydrostatischen Druckes, unter dem die beiden
geschiedenen Fluida standen, auf die endosmotischen Vorgänge anzuwenden im Stande sind, festgestellt und als nicht ganz zu beseitigende Fehlerquellen erkannt, so wurden, um die Abhängigkeit der Diffusibilität des Eiweisses von der Gegenwart der Salze zu prüfen, zwei verschiedene Wege eingeschlagen.

2. In einer andern Versuchsreihe wurden gleiche Mengen Eiweisslösung ceteris paribus mit verschieden concentrirten Salzlösungen diffundirt, und nach gleicher Dauer des Vorganges das übergegangene Albumin durch Eindampfen und vorsichtiges Einäschern bestimmt. Es wurde möglichst dafür gesorgt, in allen diesen Versuchen durch Einstellung des innern Cylinders etwaige Druckdifferenzen auszugleichen; sie wurden ferner bei ziemlich gleichen Temperaturgraden veranstaltet. Zwei Fehlerquellen aber, die wohl die absoluten Zahlenwerthe unserer Angaben, nicht aber die relativen, auf die es uns hier hauptsächlich ankam, alteriren konnten, sind absichtlich vernachlässigt. Es sind dies einmal: der Umstand, dass das spezifisch schwerere Fluidum im Innencylinder angebracht wurde, also beschleunigend auf den Salz- und Eiweissstrom wirken musste; ferner die Benutzung des Amnions als Scheidewand. Auch dieser Umstand
konnte nur beschleunigend auf die endosmotischen Vorgänge wirken, wobei es allerdings fraglich ist, ob diese Beschleunigung für Salz und Eiweiss eine gleichwertige ist. Gleichwohl stellte sich trotzdem, dass beide Umstände meiner Prämisse eher nachteilig als förderlich sein konnten, das Abhängigkeitsverhältniss der Eiweissmengen von den Concentrationsgraden der Salzlösung ganz unzweifelhaft heraus.

I. Diffusion mit verschiedenen Wassermengen.

Als schliessende Membran dient das Amnion.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>1,0</td>
<td>0,056</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>8</td>
<td>1,1</td>
<td>0,059</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>0,039</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>32</td>
<td>1,3</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Als Eiweisslösung diente flüssiges Hühnereiweiss aus verschiedenen Eiern; daraus zum Theil erklären sich die kleinen Unregelmässigkeiten, da weder der Wasser- noch der Salzgehalt in dem Eiweiss von Hühnereiern constant ist. Ferner werden, wie aus Früherem erklärlich, kleine Druckdifferenzen zwischen der Aussen- und Innenflüssigkeit in A. und B. eine sehr viel grösse Fehlerquelle dadurch bieten, dass sie dem aufsteigenden Wasserstrom ein grösseres Hinderniss bieten. Gleichwohl ist selbst trotz dieser Hindernisse Wasser- und Salzstrom in allen 4 Versuchen ziemlich gleich, dagegen sehen wir die Menge des übergegangenen Albumins abnehmen mit dem Concentrationsgrade der durch den Salzstrom erzeugten Lösung im Aussengefäss:

In A hält das Wasser nach Beendigung des Versuchs 0,2\% Salze, 1,6\% Albumin,
in B 0,15\% , 0,6\% .
Ueber Eiweiss-Diffusion.

in C = 0,04 % Salze, 0,19 % Albumin.

in D = 0,03 % 0,09 %

In den nächsten Versuchen wurde eine sehr verdünnte und abfiltrte Lösung von Hühnereiweiss benutzt; dieselbe hatte auf 100 Theile

98,1 % Wasser,
0,19 % Salze,
1,71 % organische Substanz.

Dauer des	Eiweissmenge in	Wassermenge in	Volumenaufnahme	Lufttrockener	Aschenrückstand	Organische	
10	4	16	0,5	0,01	0,003	0,007	E.
10	4	32	0,5	0,005	0,003	0,002	F.
13	4	10	0,6	0,023	0,003	0,02	G.
13	4	16	1,6	0,015	0,003	0,012	H.
13	4	32	1,9	0,013	0,003	0,01	J.
13	4	48	1,9	0,013	0,003	0,01	K.

In der zu G, H, J und K benutzten Solution auf 100 Theile

96,4 % Wasser,
0,16 % Salze,
3,44 % organische Substanz.

Auch in den vorliegenden 6 Versuchen unterliegt der aufsteigende Wasserstrom nicht zu übereinstimmenden Schwankungen, während der Salzstrom ein ziemlich gleicher, der Eiweissstrom dagegen sich als ein constante mit dem Concentrationsgrade der Aussenflüssigkeit abnehmender zeigt. Und zwar sind die Schwankungen im Wasserstrom am auffallendsten in den 4 letzten Versuchen, die von vornherein so eingeleitet waren, dass die Flüssigkeit im innern Cylinder unter einem etwas höheren Druck stand als die äussere. In ihnen wirkte also dem aufsteigenden Wasserstrom entgegen: 1) die spezifische Schwere der innern Lösung (wie in den übrigen Versuchen); 2) der höhere hydrostatische Druck, der in allen
4 Versuchen beim Beginn gleich war. Wie schon früher gezeigt, ist dieser Widerstand um so bedeutender, je geringer die Differenz der geschiedenen Volumina, je geringer die Wasserschicht, auf die derselbe wirkt. Demgemäß steigt der Wasserstrom mit der Wassermenge im Aussengefäß. Dass übrigens der Wasserstrom in J größer als in F, in H größer als in E bei fast gleicher Dauer, erklärt sich aus dem gerin- geren Wassergehalt des zu den 4 letzten Versuchen verwendeten Eiweisses.

Auch in den nachfolgend zusammengestellten Beobachtungen wurden verdünnte Eiweisslösungen genommen:
zu L und M eine mit 97,3 % Wasser,
0,09 % Salze,
2,61 % organische Substanz;
zu N und O eine mit 97,9 % Wasser,
0,08 % Salze,
2,02 % organische Substanz.

Auch in ihnen ist der Salzstrom ziemlich constant, während der Wasserstrom schwankt, immer aber sinkt, wie in allen früheren Versuchen, die Menge des übergegangenen Albumins mit dem Concentrationsgrade der Salzlösung aussen. Sie gestalteten sich wie folgt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lufttrockener Rückstand in Gramm</td>
<td>Ascheflae- stand in Gramm</td>
<td>Organische Substanz in Gramm</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>10</td>
<td>0,6</td>
<td>0,006</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>16</td>
<td>0,6</td>
<td>0,004</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>16</td>
<td>0,9</td>
<td>0,019</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>32</td>
<td>1,8</td>
<td>0,007</td>
</tr>
</tbody>
</table>

In M und N ist mit gleichen Mengen aber verschiedenen lange experimentirt, daher grösserer Wasser-, Salz- und Eiweissstrom in N.
Selbst wenn wir annehmen, dass die Benutzung des Amnions als schliessende Membran von störendem Einfluss für die Gewichtsbestimmung der übergetretenen Substanzen ist, so bleibt doch die Abhängigkeit der Eiweissdiffusion von dem Concentrationsgrade der Salzlösung in den bisherigen Versuchen ausser Zweifel. Immer aber können die vom Amnion herrührenden Mengen organischer Substanz bei der Kleinheit der Berührungsfäche, bei der geringen Dicke der Haut, bei der meist kurzen Dauer der Versuche (höchstens 36 Stunden) nur äusserst gering sein und kaum ins Gewicht fallen. Ausserdem wurde die Vorsicht gebraucht, dass dasselbe nach jedem Versuche erneut, oder falls es noch zu einem neuen benutzt wurde, vorher mit Alkohol und Wasser ausgewaschen, um so einer Zersetzung im Innern der Membran vorzubeugen.

II. Diffusion mit Salzlösungen verschiedener Concentration.

Sahen wir in den früheren Versuchen mit der Zunahme der Wassermenge, und dem Sinken des Concentrationsgrades der äussern Flüssigkeit am Schlusse der Beobachtung, auch die Schnelligkeit abnehmen, mit der das Albumin durch die scheidende Membran trat, so haben die nachfolgenden die Absicht, direct zu zeigen, wie dasselbe bei Benutzung verschieden concentrirter Salzlösungen um so schneller übergeht, je mehr Salze vor Beginn des Versuches in der Lösung waren. A priori ist es schon wahrscheinlich, dass die Diffusibilität des Albumins auch nach dieser Seite hin eine Grenze hat, und dass beim Überschreiten derselben die Schnelligkeit des Durchtritts wieder sinkt, d. h. in der Zeit einheit geringere Mengen Albumins in sehr concentrirte, als in schwächere Lösungen übergehen. Die in dieser Richtung veranstalteten Versuche bestätigen diese Vermuthung und werden später aufgeführt werden.

Auch in den nächsten Versuchen benutzte ich das Amnion als Scheidewand; die zu ihnen benutzte Eiweisslösung hatte:
V. Wittich:

97,3 % Wasser,
0,09 % Salze,
2,61 % organische Substanz.

| 14 | 4 | Aq. dest. | 0,6 | 0,004 | 0,001 | 0,003 |
| 14 | 4 | Sol. Na CO₃ 0,006 % | 0,4 | 0,008 | 0,002 | 0,006 |

Scheidewand Membr. testae; diffundirt wurden in allen 2 C.C. unver- dünntes flüssiges Hühnereweiß.

27	2	Aq. dest.	3,5	0,02	0,005	0,015
27	2	Sol. Na Cl. 1,8 %	2,1	1,63	1,26	0,37
27	2	Sol. Na Cl. 3,7 %	2,1	3,934	3,503	0,431
22	2	Aq. dest.	1,6	0,015	0,006	0,009
22	2	Sol. Na Cl. 1,5 %	1,2	0,436	0,411	0,025
22	2	Sol. Na Cl. 3 %	0,7	0,77	0,705	0,065

Scheidewand : Amnion.

| 23 | 2,4 | Aq. dest. | 1,8 | 0,012 | 0,007 | 0,014 |
| 23 | 2,4 | Sol. Na CO₃ 0,3 % | 2,0(?) | 0,134 | 0,087 | 0,047 |
Die aus diesen Versuchen gewonnenen Resultate sind folgende:

1) Je concentrirter die äussere Flüssigkeit, desto geringer der zum Eiweiss gehende Wassermömm.

Nur die Versuche i und k machen eine mir unerklärliche Ausnahme, jedoch ist es denkbar (in meinen Notizen finde ich leider hierüber keine genauere Angabe), dass ich mit Eiweissmengen verschiedenen Wassergehaltes experimentiert.

2) Mit dem steigenden Concentrationsgrade der äussern Lösung wächst auch die Schnelligkeit des Eiweissstromes.

3) Endlich stellt sich heraus, dass das endosmotische Aequivalent für das Eiweiss, d. h. der Quotient des in der Zeit einheit übergegangenen Wassers durch die Eiweissmenge, kleiner ist, selbst in den Beobachtungen, in denen die geringste Eiweissmenge diffundirte, als das endosmotische Aequivalent für die Salze. Angenommen, dass alle verbrennbare Substanz als Albumin berechnet wird.

Es will somit scheinen, als ob entgegen den von Mialhe und Brücke gemachten Angaben über die Diffusibilität des Albumins, dasselbe sehr viel schneller diffundirt, als die ihm beigemengten Salze. Dabei ist jedoch zu erwähnen, dass wenigstens Brücke in seinen Versuchen die spezifisch schwere Flüssigkeit in den äussern Cylinder brachte, das Gewicht derselben also nicht beschleunigend wirkte. Ferner hat Brücke die Menge des übergegangeneu Albumins nicht bestimmt, sondern schliesst nur aus der schwachen Reaction des Wassers auf die Geringheit der Eiweissmenge. Mir selbst liegen nur 4 Beobachtungen vor, die ich ganz in derselben Art veranstaltete, von denen jedoch noch 3 so eingerichtet waren, dass die natürliche Innenseite der membrana testae dem Wasser die grössere Porenweite, also dem Eiweiss zukam. Trotzdem, dass fast gleiche Mengen Wasser und Eiweiss in jedem einzelnen Falle benutzt wurden, die Bedingungen zur Beschleunigung des Salz- und Eiweissstromes also
sehr günstig waren, traten doch nur 1 oder 2 Miligramm Eiweiss und eben so viele Salze über.

Keinenfalls aber können wir aus der geringeren Grösse der endosmotischen Aequivalente einen Schluss darauf machen, dass der eine oder der andere Körper früher diffundierte. Gegenüber den früheren Beobachtungen, die die Abhängigkeit des Eiweissstromes von der Anwesenheit der Salze darthatten, bleibt es immer fast gewiss, dass erstere jenen erst einleiteten, und es ist dabei sehr wohl denkbar, dass einem Atome Salz ein Multiplum Albumin äquivalent ist, dass daher bei Vorhandensein des ersteren, letzteres sehr viel schneller diffundierte.

Es lisses sich demnach die auf endosmotischem Wege eine Membran durchsetzende Eiweissmenge in salzfreies Wasser sehr wohl als eine Function der Zeit und der in derselben übergegangenen Salzmenge ausdrücken.

Dass übrigens nicht der Aggregatzustand, in dem das Eiweiss sich befindet, seine Zähigkeit es ist 1), welche die Schnelligkeit seines Durchtritts behindert, und derselbe erst erfolgt, sobald die auf der Scheidewand ruhende Schicht durch den Wasserstrom in einen diluirteren Zustand übergeführt wird, geht aus der Vergleichung bereits früher aufgestellter Beobachtungen hervor, in denen bald mit unverdünntem, bald mit verdünntem Hühnereiweiss experimentiert wurde.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0,008</td>
<td>0,048</td>
</tr>
<tr>
<td>10 4</td>
<td>4</td>
<td>8</td>
<td>1,1</td>
<td>0,01</td>
<td>0,046</td>
</tr>
<tr>
<td>10 4</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>0,01</td>
<td>0,029</td>
</tr>
<tr>
<td>14 4</td>
<td>10</td>
<td>0,6</td>
<td>0,002</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>14 4</td>
<td>16</td>
<td>0,6</td>
<td>0,003</td>
<td>0,001</td>
<td></td>
</tr>
</tbody>
</table>

1) Valentin, Physiologie des Menschen I. pg. 58.
In den beiden letzten Versuchen sind trotz dem, dass dieselben länger dauerten und mit dem flüssigeren filtrirten Eiweiss angestellt waren, weniger übergegangen, als in den vier ersten.

Für die im Vorigen hingestellte Behauptung, dass auch anderseits zu concentrirte Salzlösungen die Diffusibilität des Albumins beschränken, stehen mir nur zwei, aber sehr ecklante vergleichende Beobachtungen zu Gebote.

Es wurden die beiden grösseren graduirten Cylinder mit der M. testae so geschlossen, dass die natürliche Innenseite der Membran nach innen kehrte, und in sie 3,2 C.C. Eiweisslösung (99,6 % Wasser, 0,056 % Salze, 0,344 % Albumin) gefüllt. Der eine wurde in 20 C.C. einer vollständig gesättigten Kochsalzlösung, der andere in eben so viel einer 3 prozentigen Lösung desselben Salzes gesenkt, und innere und äussere Flüssigkeit unter gleichen Druck gebracht. Die Diffusion dauerte bei gleicher Temperatur 22 Stunden. Während der Zeit gingen aus der schwächeren Lösung 1,8 C.C. Wasser zum Eiweiss über, während die gesättigte dem letzteren 0,4 C. C. entzog. Die Eiweisslösung blieb in jenem vollständig klar, während in diesem auf der Membran eine wohl 0,2 C.C. haltende Schicht ungelösten Eiweisses lag, die sich jedoch bei Zusatz von Wasser wieder löste. Von den Salzlösungen wurde der grösste Theil dazu benutzt, um ihre Reactionen zu prüfen. Nur 3 Gramm von jeder wurden eingedampft und eingäschert. In der schwächeren Lösung stellte sich nach dem Ausglühen des deutlich kohlenden Rückstandes ein Gewichtsverlust von 2 Millegramm heraus, so dass annähernd wohl angenommen werden kann, dass ein Centigramm Albumin überging. Der eingedampfte Rückstand der gesättigten Lösung schwärzte sich kaum beim Glühen und zeigte einen wenigstens schon in den Zehnteln Millegramm liegenden Gewichtsverlust. Dem entsprach auch das qualitative Verhalten der beiden Lösungen nach Beendigung des Versuchs. Kochen und Salpetersäure brachte nur in der schwächeren Lösung eine schwache Trübung hervor, wohl aber bewirkte Jod, Cyaneisenkalium. Gerbsäure einen volu-
minösen Niederschlag in der schwächeren, in der gesättigten fast gar keinen.

Eine andere Probe derselben Eiweisslösung wurde 4 Tage lang mit einer gesättigten Kochsalzlösung diffundirt, und dadurch ein sehr voluminöser Niederschlag in derselben erzeugt, während die abgegossene Flüssigkeit nur schwach auf Eiweiss reagirte. Nach Verlauf dieser Zeit wurde das Eiweiss in ein anderes mit destillirtem Wasser gefülltes Gefäß gehängt, und dieses täglich erneut, bis sich der Niederschlag allmälig wieder durch Entziehung der überschüssigen Salzmengen löste.

Die bisherigen Versuche haben nur den allgemeinen Satz feststellen können, dass ein Abhängigkeits-Verhältniss zwischen Albumin und Salze existirt, und hieraus die verschiedenen sich widersprechenden Angaben über die Diffusibilität des Albumins erklären sollen. Geht man von der zweiten Versuchsreihe aus, in der Eiweiss mit verschiedenen concentrirten Salzlösungen in endosmotische Wechselwirkung gebracht wurde, so kann man sich dieses Verhältniss gar wohl versinnlichen, wenn man auf die Abscissenaxe eines rechtwinkligen Coordinaten-Systems die Concentrations-Werthe als \(x^0, x, x', x^2 - x^n \) aufträgt, und zwar sich in \(x^0 \) den Fall denkt, dass auf der Aussenseite destillirtes Wasser, in \(x^n \) eine gesättigte Lösung von Kochsalz befindlich sei. Bei beiden wird in einer bestimmten Zeit kein Eiweiss übergehen; den \(x^0 \) und \(x^n \) entsprächen also die Coordinaten \(y^0 \) und \(y^n = 0 \). Tragen wir weiter in \(x, x' \) etc. die in derselben Zeit in sie übergendenden Eiweissmengen auf als \(y, y' \) etc., so wird uns die Vereinigung der Endpunkte von \(y^0, y, y' \) etc. eine Curve geben, die in \(x^n \) und \(x^n \) die Abscissenaxe schneidet und von \(x^0 \) ab ansteigt. Aller Wahrscheinlichkeit nach kehrt die Curve der Abscissenaxe eine concave Seite zu und wird irgendwo ein Maximum haben, das uns das Lösungsmaximum angeben würde, in welches in der Zeiteinheit die grösste Eiweissmenge diffundirte. Die Natur der Curve würde uns das Abhängigkeitsgesetz zwischen Eiweiss und Salze bestimmter normiren. Vorläufig ist eine theoretische Betrach-
tung des Herganges noch ganz unstatthaft, da wir mit zu unsicheren Gemengen experimentierten, also auch noch zu wenig den Einfluss und die Menge der dem gelösten Eiweiss beigemischten Salze kennen, uns auch nicht einmal auf eine qualitative Scheidung der im Eiweiss befindlichen Salze einlassen konnten. Aus den Versuchen von Ludwig und Cloetta wissen wir, dass bei der Diffusion zweier Salze die endosmotischen Aequivalente beider oder doch eines derselben gewisse Beschränkungen erleiden; Aehnliches kann auch hier wirksam sein. Es wird also nicht eher daran zu denken sein, das allgemeine Gesetz für die Diffusion des Eiweisses festzustellen, bevor wir nicht ein vollkommen reines Eiweiss haben; gelingt es, ein solches zu gewinnen, so werden neue Versuche feststellen müssen, welchen Einfluss die gleichzeitige Diffusion von Eiweiss und Salzen (und zwar verschie- denen) auf die Grösse des endosmotischen Aequivalents der letzteren, und welchen die Gegenwart derselben auf die Diffusibilität des Eiweisses übt. Wir wissen, dass nicht alle neutralen Salze gleiche Löslichkeit, gleiche Diffusibilität haben, und dass sie sich auch je nach diesen Eigenschaften nicht ganz gleich gegen Eiweisslösungen verhalten; es lässt sich daher a priori annehmen, dass auch der Einfluss derselben auf die Diffusibilität des Albumins, falls sich eben die für die Eiweissgemenge gefundenen Resultate auch für salzfreies Albumin bestätigen, verschieden sein wird.

Es bleibt noch übrig, Einiges über das qualitative Verhalten der Eiweisslösung während der Diffusion, sowie über die verschiedenen Reaktionen der sehr deluirten Eiweisslösungen der Aussenflüssigkeit und ihren diagnostischen Werth für die Anwesenheit des Albumins nachzuholen. Die Veränderungen der Eiweisslösungen lassen sich einfach nach 3 Kategorien ordnen.

1) In allen Fällen, in denen salzfreies Wasser mit der-

1) Virchow a. a. O.
selben in Berührung kam, trübe sie sich sehr schnell, und zwar um so mehr, je concentrirter sie war, je grösser der Wasserstrom, oder je länger die Diffusion gedauert hatte. Wurde letztere unterbrochen und überliess ich die Flüssigkeit der Ruhe, so sank das ungelöste Albumin zu Boden, die darüberstehenden Schichten wurden fast vollkommen klar. Der Niederschlag löste sich, sobald durch Verdunstung ein Theil des Wassers verloren gegangen, d. h. sobald wieder das richtige Verhältniss zwischen Wasser, Salz und Eiweiss hergestellt war. Er löste sich ferner auch, sobald vorsichtig geringe Mengen Kochsalz oder kohlensaures Natron zugesetzt wurden.

2) In allen Fällen jedoch, in denen schwache Salzlösungen, die mit dem Salzgehalt der Eiweisslösung einigermassen im Gleichgewicht standen, benutzt wurden, blieb letztere vollkommen ungetrübt.

3) Durch gesättigte Kochsalzlösung endlich wurde, wie wir sahen, wiederum eine nicht unbeträchtliche Eiweissmenge aus der Lösung ausgeschieden.

Was schliesslich das Verhalten der Aussenflüssigkeit betrifft, so brachten Kochen und Salpetersäure nur in solchen eine sichtbare Veränderung hervor, in denen einigermassen erhebliche Mengen Eiweiss übergegangen waren; wohl aber liess sich auch in den anderen das Albumin auf diese Weise nachweisen, wenn man die Flüssigkeit vorsichtig bis auf geringe Mengen eindampfte. Quecksilbersalze, essigsaurer Blei und Argentum nitricum -Lösung wiesen auch die geringsten Spuren selbst in den Fällen nach, in welchen Aq. destillata als Aussenflüssigkeit benutzt wurde.
Ueber den Bau der Gallertscheibe der Medusen.

Von

Dr. Max Schultze, Professor in Halle.

(Hierzu Taf. XI. XII.)

Seit Ehrenbergs Untersuchungen über den Bau der Medusa aurita der Ostsee (Abhandlungen der Akad. d. Wissensch. zu Berlin 1835) sind speziellere histologische Details in Betreff des gallertartigen Körpers der Scheibenqualle nur sehr vereinzelt bekannt geworden, und beziehen sich die hierhergehörigen Angaben von R. Wagner (Icones zootomicae tab. XXIII. Fig. 9, 30, 31 p. 41) und die von Agassiz (Contributions to the natural history of the Acalephae of North America. 1849) fast ausschliesslich auf die Epitalial- und Muskelschichten, während die Organisation der eigentlichen Gallersubstanz unberücksichtigt blieb. Erst ganz kürzlich und nach dem Abschluss meiner hier mitzuteilenden Untersuchungen hat Virchow (Archiv für pathologische Anatomie etc. Bd. VII. 1855. pg. 558) einige genauerere Angaben über die Struktur der Gallersubstanz der Medusa aurita veröffentlicht, welche die bereits von Kölliker ausgesprochene Vermuthung bestätigten, dass der Schirm der Quallen mit gewissen Formen des embryonalen Bindegewebes (Schleimgewebe Virchow) übereinstimme (Handbuch der Gewebelehre 2. Aufl. 1855. pg. 60). Meine in Greifswald zum Theil mit meinem Vater in Verbindung angestellten Untersuchungen über den Bau der Medusa aurita, welche an der dortigen Küste jeden Herbst in grossen Schwärmen erscheint, haben durch Vergleichung einiger mittelmeерischer Arten, welche ich in
Triest im Sommer 1853 beobachtete, eine weitere Ausdeh-nung und folgenden Abschluss erhalten.

Wirft man eine lebende Meduse in kochendes Wasser, so trüben sich augenblicklich die Epithelialzellenschichten und die der Muskelfasern, während die Gallertsubstanz unverändert durchsichtig bleibt, und man kann jene nur leicht als zusammenhängende Hälte erkennen und flockenweise abheben. Dasselbe tritt durch Einwirkung von Sublimat und zum Theil auch durch Alkohol ein. Die Oberflächenschichten lösen sich schon beim Schütteln von der mehr oder weniger durchsichtig bleibenden Gallertscbeibe ab.

Die Epithelialzellen der oberen und unteren Fläche (Tab. XI, Fig. 1, 2) sind zartwandige und leicht vergängliche kernhaltige Zellen. Sie liegen durch äusserst geringe Spuren von Intercellularsubstanz verbunden, nur eine Schichte bildend, aneinander, und sind meist ziemlich regelmässig sechseckig. Doch kommen auch unregelmässig gestaltete Zellen vor und an einzelnen Stellen kleine eckige Zwischenräume zwischen den Zellen, welche von Intercellularsubstanz ausgefüllt sein müssen, wenn sie nicht von abortiven Epithelialzellen eingenommen sind. In destilliertem Wasser quellen sie auf, verlieren ihre scharfen Contouren, und lösen sich, namentlich schnell die der unteren Fläche der Scheibe, ab oder verschwinden durch Diffusion. So ist auch an den durch Strö-
mungen in Flüsse gerathenen Medusen, in deren süssen Wasser die Medusa aurita mehrere Tage leben kann, der Epithelbelag oft nicht mehr zu erkennen. Die Kerne der Zellen sind fein granulirt, central oder excentrisch gelegen, und ebenfalls sehr vergänglich.

Auf der convexen Seite der Scheibe finden sich bei Medusa aurita zwischen den Epithelzellen zahlreiche kleine Häufchen von Nesselorganen (Fig. 1.a), welche als mattweisse Pünktchen auf der durchsichtigen Grundsubstanz schon mit blossem Auge wahrgenommen werden können. Es finden sich dieselben, wenn auch in verschiedener Anordnung, sehr allgemein an dieser Stelle bei den Medusen. Die Nesselorgane, welche aus kleinen birnförmigen Bläschen mit spiral aufgerolltem Faden und kleiner Öffnung bestehen (Fig. 3.), deren Faden beim Hervorschnellen nicht die bei Hydra vorkommenden Spitzen an der Basis zeigt, sind in ein Lager von kleinen granulirten Zellen mit grossen Kernen eingebettet, welches die Bildungsstätte dieser leicht verloren gehenden Organe ist. Auf die bewundernswerte Resistenz dieser Nesselorgane gegen Säuren, selbst concentrirte Schwefelsäure, und ihre leichte Löslichkeit in Kalilauge, sowie auf einige andere chemische Reactionen habe ich bereits in meinen Beiträgen zur Naturgeschichte der Turbellarien, 1851, pg. 15 hingewiesen. Bei jungen, wenige Tage alten, eben zu Polypen auswachsenden Medusen habe ich mich auf das Deutlichste von der kürzlich von Leydig beschriebenen (Müllers Archiv etc. 1854, pg. 275.) Entstehung der Nesselkapseln im Innern von Zellen überzeugen können, und hat Virchow (l. c.) bei erwachsenen Medusen Aehnliches gesehen. Denjenigen, welche stark nesselnde, lebhaftes Brennen auf der Haut erzeugende Medusen frisch zu beobachten Gelegenheit finden, möchte ich eine Prüfung der durch Zerstampfen dieser Thiere erhaltenen Flüssigkeit auf Ameisen säure empfehlen.

Dem Epithel der untern Fläche folgt eine Lage von Muskelfasern. Diese sind concentrisch um den central gelegenen Mund geordnet und reichen bei Medusa aurita bis an
den Rand der Scheibe. Sie stellen 0,001—2" breite, sehr blasse, durchsichtige Bänder dar, an welchen man bei frisch aus Seewasser entnommenen Thieren [deutliche Querstreifung (Fig, 2) erkennen kann. R. Wagner (l. c.) bildete sie von Pelagia noctiluca ab. Die Querstreifung wird durch Zusatz sehr verdünnter Lösung von doppelt chromsaurem Kali deutlicher (Fig. 4), auch werden die Contouren der Muskelfasern scharfer, und gelingt eine Isolirung der letzteren durch Zerzupfen. Bei Zusatz etwas concentrirter Lösungen desselben Salzes (gr j auf 5j Wasser) oder von Chromsäure zerfallen nach mehrständiger Maceration die Muskelbänder in Faserzellen (Fig. 5), welche ebenfalls noch jedoch nicht immer Spuren von Querstreifen zeigen. Solche Muskelfaserzellen findet man an dem bezeichneten Orte auch an einigermassen gut conservirten Spirituspräparaten. Ich sah sie deutlich an einer von Prof. Burmeister gesammelten Pelagia noctiluca. Dieselben isoliren sich leicht, werden in Essigsäure blass, ohne dass ein Kern zum Vorschein kommt, und lösen sich in Kalilauge auf. Die Breite dieser Zellen variiirt bei verschiedenen Species.

Die Muskeln der Medusen liegen nur in der bezeichneten dünnen Lage an der unteren Fläche der Scheibe. Die von Ehrenberg (l. c. pg. 195) als Muskeln angesehenen röthlichen Streifen zur Seite der radiär verlaufenden Magenröhren sind nur zuzammengesetzt aus kleinen pigmentirten runden Zellen in der Wandung dieser Canäle.

Die Muskeln der Scheibenquallen sind demnach aus quergestreiften, kernlosen Faserzellen gebildet, deren Streifung jedoch nur an ganz frischen oder besonders günstig conservirten Exemplaren zu beobachten ist, und mag Agassiz, welcher (l. c.) nur von Faserzellen ohne Querstreifen spricht, letztere übersehen haben.

Ein dünner Schnitt der eigentlichen Gallertsubstanzz der Scheibe von Medusa aurita zeigt bei mikroskopischer Untersuchung Folgendes. In einer vollständig durchsichtigen Grundsubstanzz liegen eingebettet fein granulirte, zartwandige Zellen, etwa von der Grösse der Eiterzellen, aber nicht
gänzlich. Chromsäure färbt die Zellen gelb, Jodtinktur intensiv braungelb.

Ausser den faserartigen Fortsätzen der Zellen bemerkt man in der hyalinen Interzellularsubstanz bei günstiger Beleuchtung noch ein System andersartiger Fasern, welche in mannichfacher Richtung sich durchkreuzen und mit einander verschmelzen, aber ihrer äussersten Blässe und Durchsichtigkeit halber schwer genauer verfolgt werden können. Doch gibt es Mittel, dieselben deutlicher hervortreten zu machen, wie Chromsäure und namentlich Jodtinktur, ferner die oben genannten Metallsalze. Diese Fasern zeigen sich bei *Medusa aurita*, wo sie auch Virchow (l. e.) als selbstständige Fasern erkannte, als 0,001—0,0001“ breite, zum Theil also unmessbar feine Fäden, homogen, glashell, blass contouirt. Sie laufen gestreckt in allen Richtungen, theilen sich häufig und verbinden sich unter einander unter allen mög-

lichen Winkeln (Fig. 7). Oft verbinden sich mehrere Fasern, nachdem sie allmählich breiter wurden, zu einer äusserst blasse, homogenen Platte, in welcher die Faserrichtung durch feinste Strichelung angedeutet ist. Diese Fasern der Interzellularsubstanz stehen nirgends mit den Ausläufern der Zellen in Verbindung, sondern sind ein ganz selbstständiges Fasersystem, welches durch die manichfache Kreuzzung, Teilung und Verschmelzung seiner Elemente ein areoläres Maschengerüst in der Interzellularsubstanz darstellt, welches der fast flüssigen Masse Festigkeit und Elastizität verleiht, welche letztere sich denn auch steigert, je vollkommener dieses Fasernetz entwickelt ist, wie z. B. bei den Rhizostomen. Dass die hyaline Interzellularsubstanz selbst nicht die knorpelartige Consistenz der Scheibe mancher dieser Medusen bedingt, sondern nur eine weiche halbflüssige Masse ist, zeigt das Verhalten einzelner der beschriebenen Fasern, die ich oft ganz frei in weiten Strecken aus der umgebenden Substanz hervorragend oder abgerissen im Inneren der Interzellularsubstanz gekräuselt und korkzieherförmig gewunden sah. Wenn es bei Medusa aurita nur selten gelingt, vollkommen deutliche Uebersichten über grössere Strecken des Faserverlaufs zu gewinnen, so ist dies bei den consistenteren Arten sehr leicht. Bei Rhizostoma Curieri und einer grossen, braunen, dem Rh. Aldorandi verwandten Meduse sah ich die Anordnung der Fasern in überraschender Deutlichkeit. Fig. 8 stellt einen Theil der Gallertsubstanz jenes braunen Rhizostomas dar, wie sie sich in verdünnter Lösung von doppelt chromsaurem Kali, die vortrefflich zur Conservirung der Medusenkörper dient, erhalten hat. Bei Rhizostoma Curieri finde ich die sich verbreiternden und in blasse Fibrillen sich auflösenden Fasern nicht so constant zu breiten Platten verschmolzen, sondern öfter in pinselförmiger Ausstrahlung in die formlose Interzellularsubstanz ausgehend (Fig. 9). Auch zeigen hier die Fasern sehr gewöhnlich das Ansehen, als seien sie hohl, indem die doppelten Contouren auf einen zentralen Kanal deuten. Virchow erwähnt eine ähnliche Bildung bei den breiteren Fasern der Medusa aurita.
Das chemische Verhalten dieser Fasern ist sehr eigen-
thümlich. Aus einer eiweissartigen Substanz bestehen sie nicht, und bei mehrstündigem Kochen geben sie keinen Leim. Chromsäure, Alkohol, Jodtinktur und die oben genannten Metallsalze lassen, wie bereits angeführt wurde, die Fasern deutlicher erscheinen. Verdünnter heisser Essigsäure wider-
sten die, dagegen lösen sie sich in Kalilauge schnell. Ge-
trocknet schwinden sie nicht, sondern lassen sich nach dem Aufweichen in Wasser wieder erkennen.

Dass die Gallertsubstanz der Medusen dem feineren Baue nach zu den Bindewebgebilden zu rechnen sei, kann kaum einem Zweifel unterliegen, und hat, wie schon erwähnt, auch Virchow und früher vermutungsweise Kölliker sich dahin ausgesprochen. Die in einer mächtigen Interzellular-
substanz zerstreut liegenden, durch Ausläufer untereinander zusammenhängenden Zellen sind zu charakteristisch für gewisse Entwicklungszustände des Bindegewebes, als dass vom his-
stologischen Standpunkte aus ein Bedenken geäußert werden könnte. Weniger vollkommen passen die chemischen Eigen-
tersuchung alle im Meerwasser in einiger Menge enthaltenen Salze in derselben wieder. Die auf dem Filtrum zurückgebliebene feste Substanz der Medusen aus Nesselkapseln,
Ueber den Bau der Gallertscheibe der Medusen.

Epithelien, Muskelfasern, Zellen und Interzellularfasern, letztere in grösster Menge, bestehend, wurde mit verdünnter Kalilauge bei 50—60° C. behandelt. Der grösste Theil löste sich. Die Lösung wurde durch Essigsäure nicht getrübt, Kaliumcyanid und -cyanid gab in der mit Essigsäure versetzten Flüssigkeit einen geringen Niederschlag (eiweissartige Substanzen), Gerbsäure wieder einen sehr starken Niederschlag.

Eine auffallende Ähnlichkeit in chemischer wie histologischer Beziehung findet sich auch zwischen den Fasern des ligamentum pectinatum iridis des Menschen und den Fasern der Gallertsubstanz der Medusen.

Erklärung der Tafeln.
Vergrösserung 500.

Tab. XI. Fig. 1—7 von Medusa aurita.

Fig. 1. Epithelialüberzug der convexen Oberfläche der Scheibe, a. Nesselorgane in einem Lager junger Zellen.

Fig. 2. Epithelialüberzug der concaven unteren Fläche der Scheibe, die darüber liegenden quergestreiften Muskelfasern nur unvollständig bedeckend.

Fig. 3. Nesselorgane: a. im ausgestreckten Zustande; b. mit einem spiral aufgewundenen Nesselfaden, von der Seite gesehen; c. von oben gesehen.
Fig. 4. Muskelfasern durch Behandlung mit verdünnter Chromsäure isolirt.

Fig. 5. Muskelfasern durch Behandlung mit einer etwas concentrirteren Chromsäurelösung in Faserzellen zerlegt.

Fig. 6. Zellen der Gallertsubstanz mit ihren unter einander anastomosirenden Ausläufern, im frischen Zustande.

Fig. 7. Ein Stückchen der Gallertsubstanz mit Jodtinktur behandelt. Die Zellen sind geschwollen, die Ausläufer gar nicht mehr sichtbar, dagegen treten jetzt die vorher kaum erkennbaren Interzellulärfasern in ihrem Netzwerk deutlich hervor.

Tab. XII. Fig. 8. Gallertsubstanz eines grossen braunen Rhizostoma von Triest nach Behandlung mit verdünnter Lösung von doppelt chromsaurem Kali. Die Ausläufer der Zellen sind gänzlich geschwunden, die Interzellulärfasern dagegen mit grosser Deutlichkeit erkennbar.

Fig. 9 wie 8 aber von Rhizostoma Cuvieri. Beide Abbildungen sind von dünnen Schnittchen aus der Wurzel der 4 grossen Tentakeln entnommen, an welchen Stellen die Breite der Fasern über die mittlere derjenigen der eigentlichen Gallertscheibe überwiegt.
Ueber spontane Bewegung der Muskelfibrillen.

Erwiderung

von

Prof. Mayer.

In meiner Schrift: „Die Metamorphose der Monaden, Bonn 1840. pg. 7“ (nicht „Elementarorganisation des Seelen-Organes pg. 7“, wie ich unrichtig citirte) findet sich folgende Stelle, nachdem von automatischen Bewegungen der Monaden des Parenchym's der Organe unter dem Mikroskope die Rede war:

„ Eine andere mir öfter vorgekommene Erscheinung ist diese: Ein oder mehrere sehr feine Muskelbündel vom Frosch von 1/300" Querdurchmesser bogen sich bogenförmig und richteten sich wieder, gerade sich streckend, auf, mehrmal hinter einander so oscillirend, also fortgesetzte Contraction und Expansion.“

In meinem Aufsatze, die Beobachtung Hannovers und Mandle's, die oscillatorische Bewegung der Nervenfibrillen des Blutegels betreffend, in Frolicps Notizen 1847. Nr. 7. Januar, sage ich:
,,Es lässt sich dieselbe Bewegung auch an den einzelnen Muskelbündeln des Blutegels wahrnehmen, welche ich in dieser Hinsicht der mikroskopischen Untersuchung unterwarf und daran eine abwechselnde, pendelartige Bewegung, nur langsamer und leiser als bei den Nervenfibrillen, bemerken konnte."

Es erscheint mir übrigens wahrscheinlich, dass die oscillatorische Bewegung der Nervenfibrillen, wenn auch meistens kaum deutlich wahrnehmbar, das excitirende Moment für die oscillatorische Bewegung der Muskelfibrillen, das ἐρούμεν derselben, enthalte. Dagegen bin ich nicht dafür, im Nervensystem selbst mit Marshall Hall besonders excitirende Fasern anzunehmen, und möchten die Wörter excitirende Nervenfasern und Reflexbewegung (statt des früheren Reactionsbewegung) nur erfunden sein, um aus alten Büchern neue zu machen.
Ueber die Entwicklung der Neunaugen.

Ein vorläufiger Bericht

von

AUGUST MÜLLER.

Das Vorkommen des kleinen Neunauges in unseren Gewässern eröffnete mir die Aussicht auf die Entwicklungsgeschichte eines Cyclostomen, welche mir zum Verständniss so origineller Formen als wünschenswerth erschien. Daher beobachtete ich diese kleinste Art der ganzen Gruppe zuerst in ihrem natürlichen Aufenthalte.

Die Thiere erscheinen plötzlich zur Laichzeit; man findet sie alsdann bekanntlich in klaren Bächen, wo sie zwischen Steinen hinschlüpfen und, an diesen sich festsaugend, im starken Strome flottiren. Nach der Laichzeit verschwinden sie, so dass ich aller Nachsuchungen ungeachtet keine Spur von ihnen aufzufinden vermochte; nur sah ich einige ihrer Leichname im Wasser umhertrieben.

Querder finden sich im selben Wasser, und überall sind sie mit den Neunaugen zusammen. Sie haben durchsichtige Eier;
die Neunagen undurchsichtige. Ich hoffte an den einen zu sehen, was mir an den anderen entgehen würde, und gedachte zwei Entwicklungsgeschichten zu geben. Sie sind mir zu einer verschmolzen. —

Die frisch gelegten Eier haben wenig unter 1 Mm. Durchmesser, sind weiss, schwach gelblich und stecken in einer dünnen schleimigen Hülle, welche selbst nach dem Aufquellen im Wasser nur bei aufmerksamerer Betrachtung zu sehen ist. Die Furchung betrifft das ganze Ei wie bei den nackten Amphibien, und beginnt circa 10 Stunden nach der Befruchtung. Die Theilungseinschnitte sind, so lange sie in der Bildung begriffen, klar sichtbar; ist aber die Trennung geschehen, so erhält das Ei wieder eine fast kugelige Oberfläche, und scheint zu ruhen, bis eine neue Scheidung beginnt. Dann schneidet nicht bloß die neue Trennungslinie die Eikugel ein, sondern auch die alten treten mit der früheren Schärfe wieder auf. Denn jeder Theil strebt die Kugelform anzunehmen und drängt sich um sein neues Centrum 1).

1) Zum Härten der in der Furchung begriffenen Neunagen- und Froscheier, welche letzteren ich zur Vergleichung untersuchte, auch zu einigen späteren Präparationen, fand ich verschieden starke Lösun-
Die dritte Furchung, welche gegen das Ende des ersten Tages sich zu bilden pflegt, liegt dem einen Pole, in welchem die beiden ersten Furchen sich schneiden, bedeutend näher. Das kleinere Stück entwickelt den Embryo, zeichnet sich aber durch eine Pigmentbildung vor dem grössern Theile nicht aus. Die Furchungszenellen des kleinern obern Theiles stehen gegen die des untern Stückes in Grösse ebenso zurück, wie die beiden ersten Furchen sich schneiden, und deckt die Höhle alsbald wie eine dünne Platte, während der untere Theil aus grossen Massen besteht. Die innere Höhle verkleinert sich, und zieht sich immer mehr nach dem Kopfeende zurück.

Unterdessen plattet sich das hintere Ende des Eies ab und zeigt oben an dieser abgeflachten Stelle alsbald eine Öffnung (anus); sie ist von unten her über eine Ebene hin zugänglich, dagegen nach oben und seitlich von einem grossen Wulste halb-isenförmig umgeben. Von der Analöffnung gelingt es dann bald, einen engen Canal unter der Rückgratsgegend, an der sich die Cervicale des Nervensystemes zu erheben beginnen, bis über die Mitte des Eies hinaus zu verfolgen.

A. Müller:

der Jungen streifig aus, wie ich das auch an einigen Embryo-
nen von Knochenfischen bemerkt habe. Die Streifen bestehen
aber bei den Neunaugen ans an einander gereihten Zellen, die
theilweis oder ganz von einander getrennt sein mögen.

Der Kopf wächst heraus und zeigt an den Seiten zwei Auft
treibungen; nicht etwa die Augen, sondern die ersten Visceral-
fortsätze. Ein Spalt trennt sie noch in der Mittellinie. Ueber
ihnen senkt der Mund sich ein, und etwas höher bemerkt man
später in derselben Ebene die Nasenöffnung. Die Fläche, auf
welcher sie liegt, biegt sich nach vorn und dann nach oben
um, so dass die Nasenöffnung von der Bauchseite zur Rücken-
fläche nach und nach hinauftritt.

Der hintere Theil des Körpers ist unförmlich dick, wie
der Bauch eines sehr jungen Vogels; er enthält den blasenför-
migen Darm, welchen noch Furchungszellen erfüllen. Ein Dot-
tersack ist niemals vorhanden.

Die Bewegungen des langen Halses beginnen, man findet
an seiner Basis das Herz stets ohne pulsirenden Bulbus, und
das Thier sprengt etwa am 18ten Tage nach der Befruchtung
das Ei. Der Fötus ist jetzt noch undurchsichtig, weiss; nach
und nach klärt sich seine Masse auf, so dass man die Blutbe-
wegung erkennt, wobei sich jedoch auch Pigment entwickelt.

Das Gehirn und Rückenmark haben die Gestalt eines nach
vorn verdickten Fadens, an welchem Einschnürungen entste-
hen. Die Augen erscheinen als dunkle Punkte an den Seiten
des Gehirnes.

Am Halse befinden sich 8 Visceralspalten, deren vorder-
ste, schon durch ihre Richtung verschieden, sich bald wieder
schliesst. Der Meckelsche Knorpel, welcher sie nach vorn
begrenzt, entwickelt nie einen Unterkiefer, dessen Mangel bei
den Cyclostomen J. Müller aus der vergleichenden Anatomie
schon erwiesen hat. Die Mundöhle senkt sich tief ein und
tritt mit der Kiemenöhle durch eine anfangs sehr kleine Öff-
nung in Verbindung.

Der Darm erhält sich am längsten dunkel und undurch-
sichtig; hat er sich mehr aufgehellt, so besteht er gleich dem
Darme der Frösche aus einer feinen Membran, welche mit
Ueber die Entwicklung der Neunaugen.

327

einem sehr langen stabförmigen Epithelium besetzt ist. Im Querschnitte sieht man, dass längs der Rückenfläche des Darmes eine weite und flache Falte sich einsenkt, welche ein Gefäss wie eine Rinne aufnimmt. Die Ureteren steigen an der Dorsalseite des Darms herauf und bilden nur wenige Verzweigungen, in welchen man Flimmerbewegung bemerkt. Im Munde entstehen an der Rückenwand vor dem Mundsegel erst zwei, dann mehrere papillenförmige Erhabenheiten.

Nun zieht ein Organ die Aufmerksamkeit auf sich, welches in der Kehlgegend vor dem Herzen in der Körperwand liegt. Es erscheint als ein langes Ovale, scharf begrenzt, einem Bläschen ähnlich, in der Mittellinie getheilt, und wird zur Muskulatur des Saugapparates, welcher die Neunaugen vor den Querden auszeichnet.

Das Thier ist jetzt in seinen Grundtheilen aufgebaut; die Augen bleiben punktförmig klein, im Munde entwickelt sich ein muskulöses Segel, welches das Wasser nur ein- nicht auslässt. Jene Papillen an der Rückenfläche des Mundes mehren sich der Zahl nach und treiben Verästelungen; sie bilden ein Gitterwerk, welches, wie die Borsten an den Stigmata der Insekten, und gleich dem Gitterwerke im Munde des Branchio-stoma, fremden Körpern den Eingang verwehrt.

Es blieb mir nun noch übrig, der Sache von der anderen Seite beizukommen und die Querder in der Verwandlung aufzufinden. Das ist mir denn auch in diesem Jahre nach vielen Bemühungen gelungen.

Die Querder, welche ich in der Metamorphose betraf, waren schon vorgeschritten, liessen jedoch den intermediären Standpunkt noch klar erkennen. Der Silberschein der Haut, der das Neunauge vor dem Querder schmückt, war schon
Ueber die Entwicklung der Neunaugen.

329

merklich, auch sah man die Rückenflosse verlängert. Das Auge war auf den ersten Blick zu finden, denn es hatte im Durchmesser \(\frac{3}{2}\) vom Auge des kleinen Neunauges, sah aber bei einigen Individuen noch trübe aus, so dass man die Iris nicht deutlich hindurch erkennen konnte; bei anderen war es bereits völlig klar.

Die Mundöffnung war zu einer stumpfen Spitze hervorge-wachsen und zugleich verengt. Der senkrechte Durchmesser der äussersten Mundöffnung betrug beim Querder 3½ Millimeter; während der Metamorphose 3; bei dem ausgebildeten Thiere vom Frühjahre 5½. Das anfängliche Zurücksehreiten und spätere Fortschreiten der Grösse der Öffnung erklärt sich daraus, dass die kesselförmige Erweiterung, welche bei den Neunaugen ganz vorn liegt, und erst durch das Wachsthum der Lippenknorpel entsteht, hier noch nicht ausgebildet war, und dass daher die verengte Mundöffnung ihrer Grösse nach dem hinter dem Kessel gelegenen Isthmus entspricht. Dagegen gibt die Entfernung des Nasenloches vom vordersten Rande der Mundöffnung mit der Entwicklung gerade fortschreitende Zahlen. Die Entfernung beträgt bei dem Querder \(4\frac{1}{2}\) Mm.; in der Metamorphose 6–7; bei dem entwickelten Neunauge 9. Der Spalt, welcher die Oberlippe der Querders von der Unterlippe trennt, war bei einigen Thieren noch ganz deutlich vorhanden, bei anderen schon völlig geschwunden, so dass die äusserste Mundöffnung ganz rund erschien.

Das Gitterwerk des Mundes hatte sich auf längliche Papillen reducir, die aber noch keine Hornbewaffnung trugen. Das Mundsegel, welches den Neunaugen bekanntlich fehlt, war bei einigen Exemplaren noch vorhanden, und zwar bei denen am grössten, welche den Spalt zwischen Ober- und Unterlippe am deutlichsten zeigten; hatte sich die Mundöffnung völlig abgerundet, so hatte auch das Mundsegel bis auf ein kleines Überbleibsel abgenommen.

Das oben erwähnte langeiförmige Organ der Embryonen im Boden der Kiemenhöhle, aus welchem der Saugapparat der Neunaugen entsteht, ist schon von Rathke in den Beiträgen zur Geschichte der Thierwelt IV. pg. 79, bei dem erwachsenen
Querder bemerkt und auch treffend genug gedeutet worden; er vergleicht es dem grossen Muskel, der bei den Pricken den schwerdtförmigen Zungenknorpel einschliesst. Es war bei diesen in der Verwandlung begriffenen Thieren noch nicht in Thätigkeit, da sich keines derselben durch Aussaugen fixirte.

An den äusseren Kiemenöffnungen waren die Klappen des Querders, welche dem Wasser nur den Ausgang gestatten, geschwunden, und die Furche, welche diese Öffnungen verbindet, war fast ausgeglichen. Bei den schon weiter entwickelten waren die äusseren Kiemenlöcher durch einen Saum garnirt wie ein Knopfloch. Die inneren Kiemenöffnungen waren verengt, aber weiter als die der Nennagen. Bei dem Querder misst die innere Kiemenöffnung des 4ten Kiemensackes von vorn nach hinten 2 Mm.; in der Metamorphose 1 1/2; beim Neunauge 1.

an dem Speiserohre der in der Verwandlung begriffenen Thiere an den ähnlich liegenden Stellen auch Erweiterungen um etwa \(\frac{1}{3} \) des Durchmessers, welche bei den fertigen Thieren wieder ausgeglichen sind, was die Bestätigung jener Vermuthung gibt.

Der Herzbeutel ist gebildet, ist aber im Vergleich zu dem des vollendeten Thieres sehr zart und zerreissbar. Die vorde ren Knorpel des Mundes, welche J. Müller treffend als Labialknorpel bezeichnet, waren ebenfalls noch nicht ganz fest, zeigten aber doch die Knorpelzellen schon klar, die ich im Herzbeutel an Weingeistexemplaren kaum erkennen konnte, wogegen sie, wie sich versteht, bei den ausgebildeten Thieren an beiden Orten sehr leicht erkennbar sind.

Die Eier der Eierstöcke waren durch Fettablagerung bereits weiss und undurchsichtig geworden wie eine Emulsion, und liessen das Urbläschen leicht erkennen. In den Hoden waren Zellen entwickelt zur Zoospermienbildung. Der Darm war merklich verengt.

Nach veränderter Form ändert das Thier die Lebensweise. Die blöden Augen der Querder sind lichtscheu, denn die Thiere suchen, in Gefässen gehalten, immer den dunkelsten Ort; ist der Boden mit Sand bedeckt, so wühlen sie sich, wie sie das auch im Freien thun, in den Grund ein, so dass sie nur theil weis sichtbar bleiben, oder auch ganz verschüttet werden, und respiriren das Wasser unter dem Schutze ihres Gitterwerkes. Sie leben von dem, was ihnen so in den Mund läuft, ähnlich dem Branchiostoma, und haben Flimmerepithel im Schlunde. Schalen von Bacillarien fand ich bei allen Querdern, die ich hierauf untersuchte. Die ausgebildeten Thiere dagegen suchen
mit ihren grossen Augen das Licht; sie schwimmen im klarsten Wasser, verkriechen sich jedoch bei rauhem Wetter. Der Saugapparat ist das Mittel, durch welches sich die Neunaugen im Strome fixiren, auch gebrauchen sie ihn zum Festhalten bei der Begattung.

Somit ist nachgewiesen, dass aus den Neunaugen die Querder entstehen, und dass die Querder zu Neunaugen werden. So sind denn auch die Querder, wo sie sich im Systeme blicken lassen, wegen Führung des falschen Namens anzuhalten, und als Unmündige ihren respektiven Eltern zu unterstellen. Der Name *Ammocoetes* kann fortan nur die Larven der Neunaugen bezeichnen, wie *Gyrinus* die der Frösche.

Das Wesentliche der Metamorphose der Thiere liegt, wie mir scheint, in der Entstehung provisorischer Apparate, welche
das Tier, bevor es noch seine endliche Form erreicht hat, in den Stand setzen, unabhängig zu vegetiren, und selbstständig ein Gewerbe zu betreiben, wodurch es sich ernährt. Die Größe und die Gewichtigkeit einer Metamorphose ist zur ermessung nach dem Grade der Verschiedenheit der beiden Formen, welche dem Thiere eigen sind, und nach der Dauer des provisorischen Zustandes.

Was die Formveränderung betrifft, welche bei den Neunaugen durch die Verwandlung herbeigeführt wird, so steht sie der der Frösche an Grösse erheblich nach. Denn bei diesen betrifft sie die Apparate der Respiration, Verdauung und Bewegung höchst wesentlich, und die äussere Gestalt des Thieres verändert sich total. Man würde die Kaulpadden nicht zu den Batrachien zählen, wenn ihre Metamorphose unbekannt wäre; man würde nur die nackte Amphibie darin erkennen. Schon bei den Salamandrinen ist die Formveränderung viel geringer, und die dipnoen Amphibien bleiben, mit den Fröschen verglichen, in der Verwandlung stehen. Dagegen wurde tatsächlich die Neunaugenlarve ihrem Mutterthiere von je her im Systeme ganz nahe gestellt, ungleich die inneren Veränderungen, wie oben kurz angegeben, doch sehr bedeutend sind.

Bezüglich auf die Dauer des Larvenlebens ist zu bemerken, dass die Metamorphose des kleinen Neunauges erst spät eintritt, wie ich, ohne von meinen in der Gefangenschaft gehaltenen Thieren zu schliessen, behaupten kann. Die Laichzeit, welche im Frühlings und nur einmal im Jahre erfolgt, dient hier als Stützpunkt. Im Mai fing ich 6 Querder: drei kleine von 5,8, 6,3 und 6,0 Centimeter Länge; alle drei zusammen wogen 28 Gran, also durchschnittlich 9 1/2 Gran. Drei grössere waren lang 15,3, 15,4, 14,0 Cm., und wogen 86, 88, 87 Gran. Dass die drei kleinen vom vorigen Jahre sein mussten, kann ich nach dem Wachsthume der in der Gefangenschaft gezogenen, nach dem von Zeit zu Zeit im Freien aufgefundenen, und besonders durch den Vergleich mit denen vom laufenden Jahre genau ermessern. Ferner wird man zugestehen, dass die drei grösseren, welche mindestens das Neunfache von dem Durchschnittsgewichte der kleineren haben, auch älter sein.
müßen. Daher müssen sie mindestens ein Jahr mehr, d. h. zwei Jahre haben. Sie zeigten aber noch keine Spur von Metamorphose, können diese also frühestens im dritten Jahre antreten. Weiter fand ich nach der Zeit der Metamorphose noch sehr grosse Querder von 16,2 und 19,3 Cm. Länge und 101 und 142 Gran Gewicht. Der letztere ist der grösste, den ich je gesehen habe. Man wird wieder zugestehen, dass diese Querder mit den drei zuvor genannten grösseren mindestens von gleichem Alter sein mussten, also jetzt über zwei Jahre hatten, und da die Zeit der Metamorphose vorüber war, so konnten sie sich erst nach vollen drei Jahren, d. i. nicht vor dem vierten Jahre verwandeln.

In Rücksicht auf die Dauer des Larvenzustandes übertrifft daher diese Metamorphose alles, was bei den Wirbelthieren in der Art bekannt geworden ist. Der provisorische Zustand wird zur Hauptepoche; das Leben des kleinen Neunauges liegt wie bei vielen Insekten mit dem Schwerpunkte im Larvenzustande, es endigt mit dem Akte der Zeugung.

Als Folge und zugleich als Kennzeichen eines solchen Verhältnisses kann man wohl die Gleichheit des Volumens von Larve und Mutterthier betrachten. Die Querder sind nicht selten grösser als die Neunaugen. Die Larve ist auch hier hauptsächlich zum Fressen und zur Aufnahme des Stoffes bestimmt, denn der Darm verkleinert sich durch die Ver-
wohl sehr auffallend. Während derselben, im tempus climactericum, tritt wohl bei allen Thieren die Aufnahme von Stoffen sehr zurück. Die Frösche setzen dabei offenbar zu, und schreiben unter anderem von ihrem Schwanze. Viele Insekten schliessen sich von der Aussenwelt ganz ab und durchleben diese Periode in einer Kapsel. Nun aber tritt der Unterschied ein. Die einen holen jetzt nach, was sie versäumten, und vergrössern ihren Leib bedeutend, die anderen beenden, ohne zu wachsen, ihr kurzes Leben mit dem, was in früherer Zeit erworben ist. So diese Neunaugen.

Eben so wenig kann der Mangel an Lungen für sich beweisen, dass die Neunaugen Fische sind. Denn es zeigt sich, dass von den Fröschen abwärts bis zu den Proteus die Lungen an Geltung verlieren, die Kiem daran gewinnen. Die Derotreten behalten schon für immer die Kiemenschlöcher zurück; bei den Proteiden perennirt die Kiem und theilt die Funktion mit der Lunge. Ist es nun unwahrscheinlich, dass die Natur noch einen Schritt weiter gehe, die Kiem selbst in den Amphibien zur vollen Geltung bringe, und die Lungen auf Null reducire? Es mag ebenso möglich sein, als dass bei einem Fische die Kiem ganz schwinden. Mir
scheint die Wiederholung ähnlicher Reihen in verschiedenen Abtheilungen ganz im Sinne des natürlichen Systemes zu liegen, und so wenig ich glaube, dass mit der Lunge eines niederen Wirbelthieres die Amphibie gegeben sei, eben so wenig kann ich sie durch das Fehlen der Lunge als negirt erachten. Jedenfalls wird es von Wichtigkeit sein, hier eine Verwandlung zu sehen, welche nicht zur Lunge führt, sondern bei der Kieme stehen bleibt, denn sie involvirt nothwendig entweder die Existenz eines Fisches mit Metamorphose oder einer Amphibie ohne Lunge. Sehen wir daher, wie die übrigen Hauptmerkmale sich stellen.

An Weingeistexemplaren sind diese Peloten nicht recht deutlich sichtbar, weil man sie collabirt und oft zerstört fin-

Um die Fische von den Amphibien zu unterscheiden, ist die Wirbelsäule zuerst von J. Müller benutzt. Die von ihm bei Gelegenheit der Classification der Lungenfische angegebenen Merkmale beziehen sich indessen nur auf die Festgebilde, welche den Cyclostomen nicht eigen sind. In einer früheren Arbeit über die Wirbelsäule, in diesem Archiv 1853, habe ich die Verschiedenheit der Rippen der Fische von denen der nackten Amphibien und höheren Wirbelthiere zu erweisen, und zu zeigen gesucht, dass der Bauchstrahl der Wirbelsäule nur bei den Fischen, der Seitenstrahl stets bei den höheren Classen als Rippe fungirt, dass aber die Wirbelstrahlen als Knochen- oder Knorpelbildungen der Längscheidewände der Thiere zu betrachten sind, d. h. der Membranen, welche die gleichnamigen Wirbelstrahlen, falls diese entwickelt sind, untereinander verbinden. Sind die Wirbelstrahlen nicht vorhanden, so sind doch jene Weichgebilde oft klar sichtbar, wie im vorliegenden Falle. Im Querschnitte eines Flussneunauuges sehe ich das fibröse Gewebe unter der chorda die Gefässe umfassen und sich ohne Unterbrechung (bei immer weiter nach hinten geführten Schnitten) auf die Unterseite des Schwanzes fortsetzen, wo es die Gefässe ebenso umschliesst. Es ist folglich das septum longitudinalia ventrale, welches sonst den Bauchstrahl einwebt. Am vordersten Theile der chorda producirt es bei *P. marinus* sogar Rudimente von Wirbelstrahlen, welche J. Müller abgebildet hat. Wären dergleichen auch hinten vorhanden, so müssten sie in diesem unter der chorda befindlichen Gewebe an den Gefässeen liegen, und sich in die unteren Bogenschenkel des Schwanzes fortsetzen, wie die Rückenstrahlen in dem gleichen Gewebe an dem Rückenmarke wirklich vorhanden sind. Der Seitenstrahl ist nur nach vorn entwickelt, wo er die

mit denen der Neunaugen keine weitere Ähnlichkeit haben, und es kann ja wohl sein, dass in diesen Eiern nur ein Keim sich furcht und ein Dottersack in ihnen sich entwickelt.

Ueber die Organisation der Infusorien, besonders der Vorticellen.

Von

Dr. C. F. J. LACHMANN.

(Hierzu Taf. XIV. XV.)

Als ich im Sommer 1852 das Glück hatte, im Laboratorium des Herrn Professor J. Müller zu arbeiten, machte dieser einen seiner anderen Schüler Hrn. A. Schneider und mich auf die Arbeiten Steins über die Entwicklung der Infusorien 1) aufmerksam.

Durch diese Arbeiten, in Verbindung mit den älteren und gleichzeitigen Fockes 2) und Cohns 3), schien ein neuer Abschnitt in der Lehre von den Infusorien zu beginnen; durch sie bekamen wir erst Aufschlüsse über die Fortpflanzung derselben, von der wir bis dahin nichts kannten, als die Teilung und Knospenbildung. So wichtig und interessant auch die von den drei genannten Forschern gefundenen Thatsachen waren, so bildeten sie doch nur die unvollkommenen Anfänge zu einer Entwicklungsgeschichte der Infusorien, zu deren weiterer Ausbildung Viele beitragen mussten. Die Beobachtungen Steins schienen bei weitem nicht hinzureichen,

1) Untersuchungen über die Entwicklung der Infusorien. Wiegmanns Archiv. 1849. pg. 91—143.
 Neue Beiträge zur Kenntniss der Entwicklungsgeschichte und des feineren Baues der Infusorien. Zeitsehrift für wissenschaftliche Zoologie. III. pg. 475.

2) Amtlicher Bericht der Naturforscherversammlung zu Bremen. 1844. pg. 110.

Um seine Annahme von dem Zusammenhang der Vorticellen und Acineten als etwas mehr, als eine ziemlich vage Hypothese erscheinen zu lassen. Deshalb bemühten wir uns, durch eigene Beobachtungen die Richtigkeit derselben zu prüfen und wo möglich entweder die Lücken in Steins Beobachtungsreihen auszufüllen oder seine Annahme als falsch zu erweisen.

Bald gelang es uns Steins Acinet der Wasserlinsen 1), welche er für die ruhende Form der *Vorticella nebulifera* hält, habhaft zu werden. Herr A. Schneider fand zuerst ein Exemplar mit einem schon rotirenden Embryo, dessen Ausschlüpfen wir dann mit Spannung erwarteten. Diesen aber, wie alle anderen Exemplare, deren Geburt wir noch in dem Sommer beobachteten, verloren wir aus dem Gesehichte, noch ehe er sich festgesetzt und in eine Acinete oder in eine Vorticelle verwandelt hätte.

Einmal fand jedoch Herr Prof. Müller, als er einen ihm entschlüpften Acinetensprössling wieder suchte, ein Thier, das, demselben vollkommen ähnlich, sehr langsam schwamm, endlich ganz zur Ruhe kam und, indem ihm Strahlen wuchsen, zur Acinete wurde.

In jenem Sommer wurde keine entscheidende Beobachtung gemacht. Indem ich aber später diese Beobachtungen in Braunschweig, Würzburg, Göttingen und Berlin fortsetzte und die Organisation der fraglichen Infusorienfamilie und

1) Die Infusionsthierchen auf ihre Entwickelungsgeschichte unter sucht. 1854, pg. 59.
dann auch die anderer Familien genauer studirte, so kam ich zu der Ueberzeugung, dass die Ansicht Steins von der Verwandlung der Vorticellen in Acineten irrig sei, dass seine Beschreibung der Vorticellen, wenn auch weit besser als die seiner Vorgänger, doch noch sehr mangelhaft sei, und dass alle Infusorien weder, wie Ehrenberg will, vielmagig sind, noch, wie Dujardin heuptet, aus formloser Substanz bestehen, soodern dass sie, wie schon Meyen) aussprach, Thiere mit einer grossen Verdauungshöhle sind, die aber nicht, wie dieser wollte, als das Innere einer Zelle betrachtet werden darf, dass vielmehr der Theil, welchen Meyen und die meisten neueren Schriftsteller als Zellmembran ansehen, als Körperparenchym genommen werden muss, welches ebenso wenig wie das der Polypen der Membran einer einzelnen Zelle entspricht; eine Ansicht, welche schon seit Jahren Herr Prof. J. Müller in seinen Vorträgen über vergleichende Anatomie lehrt. In der Hoffnung, dass vielleicht Einiges von Interesse darunter befindlich, will ich es wagen, die Hauptresultate meiner Infusorienstudien mitzuteilen. Es sei mir deshalb erlaubt, den Verdauungssapparat der Vorticellen etwas genauer zu schildern und mit dem der anderen Infusorien zu vergleichen, hierdurch, wie durch die Besprechung der anderen an den Infusorien zu beobachtenden Organysysteme meine vorhin ausgesprochene Ansicht über die Struktur der Infusorien zu stützen und bei der Exposition der bis jetzt bekannten Theile der Entwicklungsgeschichte der Infusorien die oben erwähnte Ansicht Steins zu widerlegen.

Obgleich die Vorticellen zu den ersten von Leeuwenhoek 1675 2) entdeckten Infusorien gehören und grossentheils durch ihre Festheftung mittelst eines Stieles der Beobachtung zugängiger erscheinen, als viele der anderen frei umherschwärmenden Infusorien, so blieb doch ihr äusserer gröberer Bau bis auf Ehrenberg nur sehr unvollkommen be-

1) Müller's Archiv. 1839. pg. 74 u. f.
2) Philosophical transactions. 1676.
Ueber die Organisation der Infusorien, besonders der Vorticellen. 343 kannt (wie schon die grossen Irrfahrten beweisen, die besonders einzelne Entwickelungsformen derselben in den Systemen der Zoologen machen mussten, und die von Ehrenberg vortrefflich in seinem grossen Infusorienwerk ¹) zusammengestellt sind).

Vor Ehrenberg sahen die Autoren die Vorticellen für Thiere an etwa von der Form einer hohlen Halbkugel oder Glocke, welche mit ihrem convexen Theile auf einem Stiele befestigt sei. Vor der angeblichen Öffnung der hohlen Glocke (erst Ehrenberg zeigte, dass diese geschlossen sei und nur eine kleine Öffnung an der Seite der die Glockenmundung verschliessenden Ebene „Stirn“ in das Innere der Glocke führe) sah man einen Strudel entstehen, der alle kleinen im Wasser suspendirten Theilchen der Glocke näherte; trotzdem aber konnten sich nicht alle Autoren überreden zu glauben, dass hier wirklich kleine Theilchen aufgenommen oder gefressen würden, sondern selbst O. F. Müller konnte noch behaupten ²): „In omnibus meis observationibus ne minimum animalculum vel moleculem unquam devorari — vidi. — Pelliculas vegetabiles tangere et quasi rodere amant (Vorticellae) aquam vero nutritioni eorum sufficere facile persuadeor.“ — Auf welche Weise dieser Wirbel verursacht würde, darüber hatte man natürlich lange nicht bei allen auch nur einigermassen ausreichende Ansichten. Bei vielen fand man die diese Bewegung hervorrufenden Wimpern noch nicht, so dass Wrisberg ³) und selbst noch Agardh ⁴) und Wiegmann ⁵) die Anziehung der kleineren Infusorien nach der Glocke der Vorticellen durch eine Zauberkraft ähnlich jener berüchtigten der Klapperschlange erklärten, und Bory de St. Vincent aus diesen wimperlosen Vorticellen noch eine

¹) Die Infusionsthierchen als vollkommene Organismen. 1838. pg. 275 und 286.
²) Animalcula infusoria pg. XII.
³) Observat. Infus. pg. 63.
⁵) Ebendas. III. 2. pg. 557.

1) *Dictionnaire classique*. IV. pg. 412.
2) Insektenbelustigungen. III. pg. 602.
3) I. c. III. pg. 614. tab. C. Der Hespelein-oder Mespelförmige Afterpolyp.
4) Vergleichende Anatomie.
5) Abhandlung über die Samen- und Infusionstbierchen pg. 140.
6) Eine ähnliche Erklärung gibt Laurent, dessen in einer bestimmten Richtung arbeitende Phantasie seine schwache Beobachtungs-
Ueber die Organisation der Infusorien, besonders der Vorticellen. 345

min zur Nahrung, um dadurch vielleicht innere Theile gefärbt zu sehen, wie die Knochen von mit Färberröthe gefütterten Tauben roth würden, nicht aber um durch die Lagerung der gefressenen Farbetheilchen als leichter kenntlicher Substanzen im Innern des Verdauungsapparates die Form dieses kennen zu lernen; in dieser Absicht wendete zuerst Ehrenberg die Farbfütterung an.)

Am Stiel auch der contractilstieligen kannte man noch keine Differenzirung der Theile, vielleicht nur sah Gleichchen 1) den innern (Muskel-) Faden und hielt die einzelnen Stellen desselben, die er bei der Contraction erkannte, für Eier, die durch die Legeröhre (den Stiel) gelegt würden.

Ehrenberg 2) erst gab, wie bei den meisten Infusorien, so auch bei den Vorticellen den Schlüssel zur Erkenntniss ihrer Organisation dadurch, dass er den eigentlichen Anfangs- und Endtheil ihres Verdauungsapparates auffand (über seine Ansicht von dem mittleren Theile desselben werden wir später weiter zu sprechen haben). Indem er zeigte, dass die angeblich offene Mündung des glockenförmigen Vorticellenkörpers durch eine mit einem Kranze von Wimpern besetzte Scheibe „Stirn“ verschlossen sei, an deren Kante eine Grube befindlich, welche Mund und After enthalte, übersah er nur den vorspringenden, oft selbst nach hinten umgeschlagenen Saum, welcher noch nach aussen von den Wimpern und jener Grube die „Stirn“ umgibt, und den schon Rösel und O. F. Müller zeichnen. Auf diesen Saum macht nun Stein 3) wieder aufmerksam 4); er zeigt, dass derselbe, den er „Peb-
ristom" nennt, durch eine Furche von der die Wimpern tragenden Scheibe getrennt ist, so dass diese nur die obere Fläche eines "mützenförmigen" innerhalb des Peristoms vorstehenden Fortsatzes bildet, den er "Wirbelorgan" nennt; er unterscheidet daran die obere vom Wimperkranz begrenzte Fläche als "Scheibe" und die Seitenwandungen als "Stiel" des Wirbelorgans. Das Wirbelorgan können die Vorticellen tief in den Körper zurückziehen und dann durch sphincter-artiges Zusammenziehen des Peristoms einen kappenartigen Verschluss über demselben bilden.

Während Ehrenberg nach der Ansicht, welche er vom Bau seiner "Polygastren" hatte, vom Munde aus einen Darm ausgehen zu sehen glaubte, an welchem Magenblasen seitlich angesessen, und der schlingenförmig gekrümmt zu jener seitlichen Grube am Glockenrande zurückführte, war nach Stein die Speiseröhre nur eine Einstülpung der äussern Haut, die als eine kurze unten abgestutzte Röhre in das weiche Körperparenchym hineinähnle; durch das Körperparenchym drängten sich die am Ende des Oesophagus gebildeten Nahrungsballen in Curven, bisweilen mehr als einen Umlauf beschreibend, hindurch und sollten durch die Speiseröhre rückwärts wieder ausgeworfen werden; nur bei Opercularia berberina St. 2) (Epistylis berberiformis Ehbg.) sah er Knötchen nicht durch die Speiseröhre, sondern die untere Wand des Rachens (so nennt er den Anfangsteil der Speiseröhre bei den Opercularien, bei denen er weiter ist, als bei den meisten anderen Vorticellinen) in diesen treten und dann herausbefördert werden.

Betrachten wir das Verhalten der Wimperreihe etwas genauer, welche den Vorticellen die Nahrung zuführt, so fin-

Zeichnungen das richtige Verhältniss ziemlich an, wenn sie auch, wie alle seine Infusorienzeichnungen, sehr unbestimmt und nachlässig ausgeführt sind.

1) In unseren Figuren ist er mit a a bezeichnet.

den wir ¹), dass dieselbe nicht einen geschlossenen Kreis, sondern eine Spirallinie bildet ²). Diese beginnt in der Nähe der von Stein Mund genannten Öffnung (Fig. 1–3. cd) etwas nach rechts davon auf der Wimpernscheibe (Fig.1–5. b), verläuft über diese Öffnung nach links und umkreist den Rand der Wimpernscheibe; ehe sie aber ihren Anfangspunkt wieder erreicht, steigt sie an dem Stiel des Wirbelorgans in den Anfangsteil des Verdauungsapparates hinab.

Diesen Anfangsteil (Fig. 1. cde. Fig. 2. ce. Fig. 3. cdef. Fig. 4. cef) können wir noch nicht wohl als Rachen oder Theil der Speiseröhre betrachten (wie Stein es thut), da der After (bei e) in ihn einmündet, wir wollen ihn deshalb nach dem Vorschlage des Herrn Prof. J. Müller durch den Namen Vestibulum von den übrigen Theilen des Verdauungsapparates unterscheiden. Ehrenberg zeichnet diesen Theil als seitliche Grube, in welcher Mund und After gelegen, zu flach, während Stein ihn nur bei den Opercularien, bei denen er durch seine Weite sich auszeichnet, von der eigentlichen Speiseröhre unterscheidet, bei den meisten Vorticellen ihn aber als Anfang der Speiseröhre betrachtet.

Dieses Vestibulum setzt die von der Wimperreihe gebildete Spirallinie fort, indem es eine bogenförmig gekrümme Röhre darstellt, welche einen Theil dieser Wimperspirale enthält. Gemäss der Richtung dieser Spirale sieht die Convexität der Röhre nach rechts, die Convexität nach links; an der convexen Seite ist das Lumen der Röhre noch erweitert, besonders in dem am weitesten nach innen gelegenen...

1) Um die fernere Beschreibung zu erleichtern, müssen wir um Körper der Vorticellen eine Bauch- und Rückenseite und ein vorn und hinten unterscheiden, und folgen darin der Bezeichnungsweise Ehrenbergs, indem wir den angehefteten Theil des Körpers den hintern, die Stirn oder den Wirbelapparat den vorderen nennen und die Seite des Glockenmantels, an welcher der Mund am nächsten liegt, als Bauchseite bezeichnen.

2) Als eine Spirale bildet schon Ehrenberg bei einigen Vorticellen diese Linie ab, nur meist nach der verkehrten Seite gewunden, während Stein sie als Kreis angibt.
Theile, wo der After (bei e) einmündet. Zwischen dem After und dem weiter nach innen in den Oesophagus führenden Munde (Fig. 3 u. 4. ef) entspringt eine gebogene Borste (Fig. 1–5. eg), welche meist lang genug ist, um noch über das Peristom nach aussen vorzuragen. Diese Borste ist starr und wird nur bisweilen, wenn Kothballen, die zu dick sind, um zwischen ihr und der Wand des Vestibulum durchzugehen, durch den After ausgestossen werden, von diesen etwas zur Seite gedrängt, um gleich darauf wieder in ihre alte Lage zurückzukehren.

Vom Munde führt eine kurze Röhre Oesophagus (Fig. 3 und 4. efh. Fig. 5. h), von weit geringerem Lumen als das Vestibulum, zu einem etwas weiteren spindelförmigen Theile (Fig. 4 und 5. hi), den wir Pharynx nennen wollen. Die Längsaxe des Vestibulum und Oesophagus läuft bei den meisten Vorticellinen (den contractilstieligen, den Epistylis- und Trichodina-Arten) ziemlich parallel der Ebene der Wimper-

1) *Trichodina pediculus* Ehbg. und *Tr. mitra* Siebold. Die anderen Arten der Ehrenbergschen Gattung: die *Trichodina grandinella* (*Halteria grandinella* Duj.), *tentaculata* und *vorax* sind keine Vorticellinen, ebenso das *Urocentrum*. Dagegen schliesst sich an diese Gruppe der Vorticellinen die Gattung *Scyphidia* Dujardin-s an, welche er für die nicht gepanzerten, stiellosen, sitzenden Formen gründete. Freilich sind die von ihm und Perty in dieser Gattung beschriebenen Arten alle daraus zu streichen, da sie einen kurzen Stiel haben, und nur Zustände von gestielten Vorticellinen zu sein scheinen, deren Stiel noch nicht seine gewöhnliche Länge erhalten hat; dagegen müssen zwei andere Arten in sie eintreten, welche beide auf den nackten Theilen von kleinen Süßwasserschnecken festsitzen, nie einen Stiel ausscheiden, vielfach von mir in der Theilung beobachtet wurden und durch ihre hinten abgestützte Form und einen am Rande des hintern Endes vorspringenden Wulst sich leicht von anderen, erst eben festsetzenden Formen unterscheiden. Die Art *Sc. limacina m.*, welche schon O. F. Müller als *Vorticella limacina* beschrieb, lebt auf kleinen Planorbisarten. Der Körper ist fast cylindrisch, an beiden Enden etwas verjüngt, geringelt, das Peristom ist eng und nicht zurückgeschlagen, die Wimper scheibe eng, in der Mitte mit einem vorspringenden Nabel versehen, die hintere abgestützte Fläche ist mit einem dicken wulstigen Rand versehen. Länge des Thieres $1/20-1/30''$. Die zweite Art,
Ueber die Organisation der Infusorien, besonders der Vorticellen. 349

Der Theil der Wimperspirale, welcher ausserhalb des Vestibulum liegt, ist nicht bei allen Vorticellinen gleich lang; während er bei vielen (Vorticella, Carchesium, Zoothermnium, Scyphidia, Trichodina²), einigen Epistylisarten etc.) kaum mehr als einen Umlauf um die Wimperscheibe ausmacht, umläuft er bei Opercularia articulata und Epistylis flavicans diese dreimal ³) (bei anderen liegt die Länge zwischen beiden Ex-

Sc. physarum m., lebt auf den nackten Theilen von Physaarten. Sie ist länger und mehr gleichmässig cylindrisch als die vorige, ihr Peristom ist länger, oft nach hinten zurückgeschlagen, der hintere Rand dünner und kürzer.

2) Für Tr. pediculus gibt auch der neueste Beschreiber dieses Thierchens Dr. Busch die Anwesenheit einer zum Munde führenden Wimperspirale an, welche Stein für einen Kreis gehalten hat. Müllers Archiv. 1855. pg. 357.

3) Daher Stein bei der ersteren 3 Kreise von Wimpern auf der Wimperscheibe angibt.

Um die beschriebenen Details zu sehen, ist es besonders vorteilhaft, in der Expansion gestorbene Thiere zu beobachten, wie unsere Fig. 2 die Umrisse eines solchen darstellt.

Durch den Wirbel, welchen die Wimpern der Spirale im Wasser bewirken, werden die kleinen in der Nähe schwimmenden Theilchen angezogen und gelangen endlich in das Vestibulum; ein Theil derselben wird beständig wieder ausgestossen, ein anderer wird bis in den Pharynx durch den Oesophagus hinabgewirbelt. Vor dem Munde im Vestibulum stehen ausser den Wimpern der Spirale noch einige stärkere Wimpern (e und f), welche nicht an der regelmässigen Thätigkeit jener Theil nehmen, sondern nur bisweilen kräftig schlagen, wie es scheint, um gröbere in das Vestibulum gelangte Stoffe, auch die Excrementhaufen aus demselben zu entfernen. (Diese sind auch von Stein in allen Vorticellinen gezeichnet.) In dem spindelförmigen Pharynx (hi) werden nun die Nahrungsstoffe zu einem Bissen angehäuft, der,

1) Auf unserer Tafel sind die Wimpern der äussern Reihe immer nur am Rande der Figuren gezeichnet, im übrigen Verlauf der Wimperspirale aber weggelassen, um die Figuren nicht zu complicirt erscheinen zu lassen.
Ueber die Organisation der Infusorien, besonders der Vorticellen

wenn er eine gewisse Grösse erlangt, in das Innere des Körpers gestossen wird \(^1\). Meyen\(^2\) nennt diesen spindelförmigen Theil einen Magen, worin ich ihm nicht beistimmen kann, da derselbe offenbar nur zur Anhäufung der Nahrungsmittel in Bissen dient, und die Verdauung erst weiter im Innern des Körpers geschieht; ich habe deshalb den wenig verständlichen Namen Pharynx dafür vorgeschlagen. Dieser Pharynx ist nicht etwa nur eine Lücke in der umgebenden zäHNigen Substanz, die nur durch das hinein gewirbelte Wasser entsteht, sondern hat eigene Wandungen, welche ihm, auch wenn keine Nahrungsstoffe in ihm enthalten sind, die spindelförmige Gestalt bewahren.

Der vom Pharynx in das Innere des Körpers gestossene Bissen läuft bis in die Nähe des hinteren Endes der Vorticelle und steigt dann umbiegend (Fig. 4.1) an der dem Pharynx entgegengesetzten Seite des Körpers in die Höhe. Während dieses Theils seines Laufes behält er gewöhnlich noch die ihm vom Pharynx ertheilte Spindelform bei und geht erst hier oft ziemlich plötzlich in die Kugelgestalt über; dies veranlasste mich anfangs zu glauben, der Bissen sei während dieses Theils seines Laufes noch in einem Schlauch eingeschlossen; für diese Ansicht schien noch der Umstand zu sprechen, dass man vor und hinter dem Bissen nicht selten zwei Linien (Fig. 4.1), wie die Contouren eines von ihm erweiterten Schlauches, erblickt, die sich eine kurze Strecke vor und hinter ihm vereinigen. Spätere Beobachtungen haben mir jedoch diese Ansicht wieder unwahrscheinlicher erscheinen lassen, denn die angegebenen Thatsachen werden auch eintreten müssen, wenn ein spindelförmiger Bissen mit einiger Kraft und Geschwindigkeit durch eine ruhende oder lang-

2) Müller's Archiv. 1839. pg. 75 etc.
sanier bewegte zählflüssige Masse gestossen wird; die erwähnten Linien vor und hinter dem Bissen werden durch das Auseinanderweichen und Wiederzusammentreten der gelatinösen Masse entstehen müssen, auch wenn kein Schlauch den Bissen umgibt. Gegen die Anwesenheit eines vom Pharynx herabhängenden Schlauches scheint aber direct zu sprechen, dass eine Linie die Curven, welche der Bissen beschreibt, bald größer bald kleiner sind, andererseits auch der Bissen bald früher bald erst später die Kugelform annimmt, wie es scheint, je nachdem er mit geringerer oder grösserer Kraft und Geschwindigkeit aus dem Pharynx gestossen ist. Nicht immer werden im Pharynx die hier einge- wirbelten Massen zu einem Bissen geballt, sondern bisweilen sieht man unter noch nicht genügend ermittelten Verhältnissen alle in den Pharynx gelangenden Massen ihn durchstreifen, ohne in ihm zu verweilen; sie strömen dann in einem hellen Streifen, der am Grunde der Glocke wie sonst der Bissen eine Curve beschreibt, durch die sie umgebende Masse, mit der sie sich erst mischen, wenn ihre Geschwindigkeit abgenommen hat. Den hellen gebogenen Streifen mit den in ihm strömenden Partikelchen könnte man leicht geneigt sein für einen Darm zu halten, und dies ist auch wohl von Ehrenberg geschehen, der bei einigen Vorticellinen den gebogenen Darm deutlich gesehen zu haben angibt, besonders z. B. bei Epistylis plicatilis, bei welcher ich gleichfalls das beschriebene Phänomen ganz besonders genau studiren konnte. Allein auch hierbei sprechen dieselben Gründe gegen die Annahme eines Darmschlauches, wie bei den vor und hinter einem spindelförmigen Bissen erscheinenden Linien; auch hier wechselt nicht nur die Form, sondern auch die Länge des Bogens, während er das eine Mal nur kurz ist und sehr bald damit endet, dass die in ihm enthaltenen Theilchen sich der sie umgebenden Masse beimischen, kann er gleich darauf dop-

1) Ein rundlicher Bissen, den man für einen angefüllten Magen halten könnte, wird dann nie gebildet.
pelt so lang und länger 1) sein, eine Verschiedenheit, welche nur von der Kraft abhängen scheint, mit welcher die Wimpern des Wirbelorgans wirken; daher werden wir uns wohl die ganze Erscheinung nicht anders deuten können, als dadurch, dass das mit einziger Geschwindigkeit in die den Körper anfüllende Masse strömende Wasser mit den in ihm enthaltenen Theilchen sich nicht sogleich mit dieser mischen kann, sondern erst wenn seine Geschwindigkeit durch die Reibung vermindert ist; ähnlich wie wir einen schnell fließenden Strom, der in einen langsamer oder gar nicht fließenden Teich oder das Meer fällt, noch eine Strecke weit in diesem seine Selbstständigkeit behalten sehen, und wenn er sich durch Farbe oder Trübe vor dem Wasser des Meeres oder Teiches auszeichnet, ihn als einen oft langen Streifen von diesem unterscheiden können, dem er sich erst spät mischt.

Haben die Nahrungstheilchen im Körper der Vorticellen das Ende des hellen Streifens unter immer abnehmender Geschwindigkeit erreicht, und hat im andern Falle der Bissen seine Spindelform verloren und ist kuglig geworden, so haben sie keine gesonderte Bewegung mehr, sondern nehmen nun nur noch an einer kreisenden Bewegung Theil, in welcher alle im Innern des Körpers sich befindlichen Theile ausser dem bandförmigen Organe (Hoden nach Ehrenberg, Nucleus nach Siebold und den meisten neueren Autoren2) begriffen sind. Diese kreisende Bewegung ist meist ziemlich langsam (langsamer als bei dem grünen Paramecium Bursaria Focke) und daher meist übersehen, nur selten hört sie für einige Zeit ganz auf. Mit der rotirenden Masse macht der Bissen bald mehr bald weniger Umläufe, bis er endlich einmal in der Gegend des Afters (bei einer unserer Figuren) an-

1) Er kann selbst, einen ganzen Umlauf machend, bis nahe an seinen Anfangstheil unterhalb des Pharynx zurückkommen.

2) Wir wollen, da wir später sehen werden, dass sich die Bedeutung dieses Organes noch nicht mit Sicherheit feststellen lässt, vorläufig den Namen Nucleus beibehalten, ohne jedoch damit die Idee eines Zellenkernes verbinden zu wollen.

Müller's Archiv, 1856.
gelangt aufhört herumzukreisen, der After sich öffnet und den Bissen in das Vestibulum austreten lässt (Fig. 3.e).

Aus dieser Beschreibung der Vorgänge beim Fressen der Vorticellinen ersieht man sogleich, dass es unmöglich ist, denselben einen Darm mit vielen anhängenden Magenblasen, einen polygastrischen Verdauungsapparat, wie ihn Ehrenberg annimmt, zu vindiciren. Die Existenz der Circulation des sämtlichen Körperinhalts widerlegt diese Annahme. Dass die erste Erklärungsweise, welche Ehrenberg für die damals erst bei wenigen Infusorienarten von Focke 1) gesehene Bewegung der inneren Körpertheile 2) versuchte, sie nämlich auf Verschiebung des Körperparenchymys zurückzuführen, nicht ausreichte, sah er bald selbst und erkannte, dass die wirklich Cirkulationen zur Annahme einer weiten Höhle zwan- gen, in welcher die cirkulirenden Massen enthalten seien. Ehrenberg glaubte jedoch 3) diesen Zustand der Thiere nicht als den normalen betrachten zu müssen, wie dies Meyen 4) gethan, sondern hielt ihn nur für einen vorübergehenden, durch Erweiterung eines Magens auf Kosten der anderen entstandenen pathologischen Zustand. Es sollte hier also offenbar der Inhalt aller früheren Magen in den einen ergossen sein; es konnte jeder früher in einem Magen enthaltene Theil die Kugelgestalt behalten haben, welche er durch die Form des Magens angenommen hatte. Diese Annahme schien die Erscheinungen zu erklären, so lange die Rotation nur als vorübergehender bei einzelnen Arten vorkommender Zustand betrachtet werden konnte 5); war diese Annahme aber richtig, so konnten während der Dauer der Rotation die neu aufgenommenen Massen nicht mehr die Kugelform annehmen,

1) Isis 1836. pg. 786.
2) Die Infusionsthierchen als vollkommene Organismen pg. 262.
3) Müllers Archiv 1839 pg. 81.
4) Ebendas. pg. 74.
5) Ehrenberg liess sich um so weniger von seiner Ueberzeugung abbringen, als er ja den verzweigten Darm, wie er ihn für alle entrodelen Polygastren annahm, bei Trachelius Ovum direct zu sehen glaubte (wir werden unten davon zu sprechen Gelegenheit haben).
sondern mussten einfach dem Inhalt des grossen Magens beigemengt werden. Wir sehen nun aber, dass die Bildung der kugelförmigen Bissen vor sich geht, selbst wenn die Rotation der in der grossen Körperhöhle enthaltenen Massen noch so lebhaft ist, ausserdem finden wir, dass bei den meisten Infusorien (1) der Zustand der Rotation der gewöhnliche ist und der der Ruhe der inneren Massen nur ein vorübergehender, so dass wir wohl gezwungen sind, jenen Zustand, in welchem der Körper eine grosse Verdauungshöhle einschliesst, als den normalen anzusehen.

Den Ansichten Ehrenbergs gegenüber entwickelte bekanntlich Dujardin seine Sarcode- und Vacuolen-Theorie (2), nach welcher der ganze Körper der Infusorien nur aus formloser, beweglicher; thierischer Substanz besteht, in welche die Nahrungsstoffe hineingedrückt, oder von Wimpern hingewirbelt werden, und in der sich an beliebigen Stellen Hohlräume (vacuoles) bilden können, welche sich mit einer durchsichtigen Flüssigkeit anfüllen, die wie die ganze Masse, aus der das Thier besteht, von Dujardin Sarcode genannt wird. Diese Ansicht wird in ihrer ursprünglichen Fassung jetzt nur wenig anerkannt (3), und wir können sie mit der

1) Bei allen, welche einen offen stehenden bewimperten Oesophagus haben (siehe unten).

2) Histoire naturelle des Zoophytes. — Man kann diese Theorie als eine Ausführung der Idee betrachten, welche im vorigen und dem Anfange dieses Jahrhunderts bis auf Ehrenberg die meisten Anbänger zählte, nach der die Infusorien nur belebter Schleim seien.

3) Perty stützt sie in seinem Buch: „Zur Kenntniss kleinsten Lebensformen“, durch möglichst oberflächliche und ungenaue Abbildungen. — Im vergangenen Jahre bat Herr Perty ein Sendschreiben erslassen, in welchem er Ehrenberg auf die schonungsloseste, man kann wohl sagen unverantwortlichste Weise angreift und vollkommen die grossen Verdienste dieses Forschers um die Infusorienkunde vergisst. Ganz ohne Rücksicht darauf, ob und wie weit die ausgesprochenen Vorwürfe wahr sind, ist doch jedenfalls die Fassung derselben durchaus nicht anzuerkennen, und möchte am wenigsten Herr Perty Ursache zu einer solchen Sprache haben, da man einen grossen Theil seiner Beschuldigungen mit geringer Veränderung einiger Namen mit demselben oder grösserem Rechte gegen Perty selbst wenden könnte.

23
Modification, welche sie in Deutschland erlitten hat, gemeinschaftlich besprechen, da wir in beiden besonders die Ansicht zu bekämpfen haben werden, dass die im Innern des Infusorienkörpers rotirende Masse als ein Theil des Körperepithelialen zu betrachten sei, während wir sie vielmehr mit Ehrenberg nur als Chymus, als Inhalt einer Verdauungskohle betrachten können.

Die Hauptmodification, welche man in Deutschland mit Dujardins Ansicht vornahm, ist bekanntlich die weitere Ausbildung der von Meyen 1839 ausgesprochenen Analogie eines Infusoriums mit einer tierischen oder pflanzlichen Zelle, deren sich besonders v. Siebold und Kölliker angenommen haben. Nach ihnen sollte der ganze Infusorienkörper also aus einer Zellmembran und dem zähflüssigen Inhalt bestehen, welche beide contractil seien (die contractile Stelle oder „Samenblase“ nach Ehrenberg war dann nur ein contractiler Theil des Zellinhaltes), als Zellkern sah man den von Ehrenberg als Hoden betrachteten Körper und fand in einem, nicht selten in demselben, bei vielen aber (wunderbar genug für die Zellentheorie) neben demselben liegenden Körperchen den Nucleolus der Zelle. Daran, dass die Zelle eine Oeffnung, den Mund hatte, von der ein Rohr als Oesophagus in das Innere derselben herabging, nahm man keinen Anstoss. Eine Afteröffnung leugnete man meist,

Man entschuldige, wenn ich als Beweis einen der stärksten Ausdrücke Pertys hier in solcher Veränderung abdrucke, wobei ich die Abweichungen vom Pertyschen Originale durch Hinzufügung seiner Ausdrücke in Parenthese angebe: Aufstellung jenes lächerlichen Monstros: Phytozoiden (Polygastern), in welchem die unerträglichsten Dinge: sicher tierische, fressende Infusorien, Wesen zweifelhafter Stellung, entschiedene Pflanzen mehrerer Gruppen (Rhizopoden, Infusorien, Phytozoiden, entschiedene Pflanzen mehrerer Gruppen) — zu einem ungeheuerlichen Ganzen verkoppelt sind....

nahm an, dass die unbrauchbaren Stoffe an irgend einer Stelle durch die Zellwand herausgedrängt würden, höchstens nahm man eine besondere Gegend der Zellwand als Afterregion an, welche besonders dazu geeignet sei.

Mag man nun auch a priori das Dasein einzelliger Thiere für möglich halten, so wird man sie doch nicht in den Infusorien sehen dürfen, wenigstens nicht in denen, welche der Beobachtung zugänglicher sind: den grösseren, besonders den Enterodelen Ehrenbergs; die kleineren, daher schwerer zu beobachtenden, müssen dann doch wohl der Analogie nach beurtheilt werden, bis wir sie besser zu beobachten verstehen. Will man auch an der merkwürdigen Lage des Nucleolus ausserhalb des Nucleus bei vielen Infusorien, der Anwesenheit von einer, bei Acinetinen, wie wir unten zeigen werden, vielen Mundöffnungen, von Oesophagus und von einer zweiten, der After-Offnung (deren Vorhandensein wir beweisen werden) keinen Anstoss nehmen 1), so ist doch nach Vieles gegen die Zellenthentheorie einzuwenden, was wir besonders den Beobachtungen Cohn's verdanken.

Cohn zeigte 2), dass bei den Ciliaten ausser der dünnen Wimpern tragenden Haut des Körpers, also der Zellmembran nach den früheren Anschauungen, noch zwei Schichten des Körpers zu unterscheiden sind, die innere rotirende und eine oft ziemlich dicke, diese umgebende, ruhende „Rindenschicht“ 3); er betrachtet nun diese Rindenschicht als die Zellmembran, welche nach aussen von einer bewimperten Cuticula umgeben sei, und sieht nur die innere, häufig rotirende Schicht als Zellinhalt an.

Die Cuticula, welche bei den Pflanzen meist als ein erhärtetes Zellsecret angesehen wird, soll nun bei den rings bewimperten Infusorien kleine viereitige Pyramiden tragen, auf deren Spitzen je eine Wimper; diese sind in meist spi-

1) Der Begriff der Zelle würde freilich dadurch schon merkwürdig verschoben und verloren durch zu grosse Ausdehnung alle Bedeutung.
3) Man unterscheidet sie sehr gut an mit Chrohnäure behandelten Infusorien.
ralen sich kreuzenden Reihen angeordnet¹). Die angebliche Zellmembran oder Rindenschicht schliesst die contractile Blase und von ihr ausgehend ein System von Gefässen ein (siehe unten); ausserdem enthält sie häufig Chlorophyllkugeln oder farblose Kugeln von derselben Gestalt, von Ehrenberg für Eier gehalten, über deren Bedeutung noch keine Beobachtungen vorliegen; in manchen Infusorien, besonders den Ophryoglenen (hier das Zerfliessen des Thieres lange überdauernd), und (weniger resistent) in mehreren Paramecienarten (P. Bur-saria Focke, P. Aurelia, P. caudatum und Bursaria Leucas²) finden sich spindelförmige Stäbchen, aus denen Allman Nesselfäden hervortreten gesehen haben will³), in der Rindenschicht. Bei den Vorticellen werden wir weiter unten noch in derselben eine contractile Schicht als Fortsetzung des Stielmuskels zu beschreiben haben. Einen so complicirten Theil können wir wohl nicht als die Membran einer Zelle betrachten; ich glaube vielmehr, dass diese „Rindenschicht“ (nach Cohn) vielmehr als das Körperparenchym der Infusorien

1) Bei dem Stentor polymorphus (zu dem auch St. Roeselii und Mülleri zu ziehen sind) stehen dazwischen noch einzelne längere Haare, ähnlich den Haaren mancher Turbellarien (Fig. 9), ebenso bei einer den Stentoren verwandten, weiter unten zu beschreibenden Infusorienart. Die in den Familien der Oxyrichinen und Euploeten (und den Aspidiscinen Ehbg.s.) vorkommenden fussartigen Haken (nclni) und am Körper eingelenkten Griffel (stili) sind bekannt; von jenen ist ein Theil, die nachschleppenden, bei verschiedenen Euploeten, z. B. Euploetes patella, an der Spitze in mehrere bis 8 Theile zerschlit, von den Griffeln trägt bei E. patella der eine eine Anzahl kleiner Seitenweige.

2) Siehe O. Schmidt 1849 pg. 5.

Über den Organisation der Infusorien, besonders der Vosticellen. 359

anzusehen ist, während die rotirende Masse nur den Inhalt einer grossen Verdauungshöhle oder eines Magens ausmacht, also als Chymus betrachtet werden muss, und die „Cuticula“ Cohns die eigentliche Körperhaut der Infusorien bildet.

Die „Rindenschicht“ ist nämlich allein contractil, bei zerrissenen Infusorien sieht man nicht selten Stücke derselben noch sich contrahiren, während die hervorquellende innere Masse, der Chymus, dies nie thut. Wird ein Infusorium von einer Acinete ausgesogen, so kann sich die Rindenschicht oder das Körperparenchym oft noch lange contrahiren, und die in ihm gelegene contractile Blase bisweilen noch Stunden lang ihre Contractionen fortsetzen; ja ich beobachtete eine Stylonychia, welche, obgleich ihr ein bedeutender Theil des Chymus von einer Acinete ausgesogen war, sich noch theilte, so dass der eine Theilungssprössling lustig davonschwamm, und nur die andere Hälfte des alten Thieres zu Grunde ging. Dies scheint doch einigermassen zu beweisen, dass die ausgesogene Masse nicht das eigentliche Körperparenchym darstellt, und da sie nur als eine zähflüssige Masse die grosse Leibeshöhle ausfüllt und mit den Nahrungsstoffen, besonders wenn keine Bissen gebildet werden, vermischt wird, so ist es wohl das Natürlichste, sie als Chymus zu betrachten. Dass wir bei solchen Infusorien, welche Chlorophyllkörperchen in ihrer Körpersubstanz enthalten, bisweilen auch einzelne derselben in der rotirenden Masse antreffen, kann noch nicht gegen diese Ansicht sprechen, da sie ja leicht vom Körperparenchym losgelöst und so in die Chymusmasse gekommen sein können. Der Nucleus ragt freilich in die Chymusmasse binein; allein für gewöhnlich scheint er doch an das Körperparenchym angeheftet zu sein, da wir ihn nicht mit der Chymusmasse rotiren sehen 1); Stein sah bei Opercularia berberina den Nucleus bisweilen durch einen dagegen

1) Wenn er sich theilt, wie dies gewöhnlich zur Entwicklung von Embryonen geschicht (siehe unten), so lösen sich meist einzelne Theilungsstücke und rotiren mit dem Chymus. Wenn Siebold in seiner vergleichenden Anatomie pg. 24 sagt, er habe oft ein Infusorium um seinen Nucleus rotiren gesehen, so ist es nicht unwahrscheinlich, dass
stossenden Bissen ein wenig aus seiner früheren Lage kommen, da er aber bald wieder in dieselbe zurückkehrte, so kann dies eher für, als gegen seine Anheftung sprechen. Bei verschiedenen Individuen derselben Art nimmt der Nucleus nicht immer dieselbe Stellung ein, ein Umstand, der sich wohl durch die Theilung erklären lässt, da bei der Quertheilung eines Infusoriums, z. B. bei welchem der sich gleichfalls theilende Kern etwa in der Mitte liegt, der eine Theil des Kerns in den hintern Theil des vorderen Theilungsprosslings zu liegen kommen wird, während der andere Theil den vorderen Theil des hintern Sprösslings einnehmen wird.

Das Körperparenchym der Infusorien gleicht in manchen Beziehungen dem der Turbellarien, in anderen dem der Polypen; sie nähern sich den letzteren besonders auch durch den Besitz einer grossen Verdauungshöhle, in welche, wie bei den Actinien, meist ein unten offener Schlauch (Oesophagus) hinabläuft. Ob die Wand dieser Verdauungshöhle oder dieses Magens mit dem Körperparenchym eins, oder von ihm geschieden ist, lässt sich meist jetzt nicht entscheiden, doch scheint das erstere der Fall zu sein; nur bei Trachelius Ovum sehen wir eine besondere Magenwand durch mit Flüssigkeit erfüllte Lücken von dem übrigen Körperparenchym getrennt, und so einen baumartig verzweigten Canal darstellen, den man freilich nicht mit dem gleichzeitig vorhandenen Nucleus verwechseln muss 1).

Die Verdauungshöhle der Infusorien (sicher wenigstens die

er einen rotirenden Embryo (die damals ja noch nicht bekannt waren) für den Nucleus gehalten habe.

Ueber die Organisation der Infusorien, besonders der Vorticellen. 361

der bewimperten und einiger geisselführenden) besitzt ausser dem Munde eine zweite Oeffnung, den After. Dieser ist freilich von den meisten Gegnern Ehrenbergs geleugnet, allein eine sorgfältige, längere Beobachtung eines Individuums wird immer zeigen, dass die Faeces stets an derselben Stelle des Körpers excernirt werden; bei manchen Infusorien kann man oft selbst längere Zeit vor und nach einer Excretion den After als eine kleine Grube auf der Oberfläche des Thieres erkennen (häufig bei *Paramecium Aurelia*, *P. Bursaria Focke, Stentor*). Dass nicht die Faeces an irgend einem Theile der Körperoberfläche durch das Parenchym durchgedrängt werden können, beweist besonders die genauere Beobachtung des *Spirostromum ambiguum* und einiger neuer mit den Stentoren in eine Familie zu vereinigender Thiere. Bei dem ersteren liegt der After an dem hinteren Ende des Thieres, dicht vor demselben die sehr grosse contractile Blase; bei voller Expansion scheint diese Blase nur von einer dünnen Haut umgeben, dennoch sieht man Kothballen; oft mehrere gleichzeitig an verschiedenen Seiten der Blase, die beiden Blätter der scheinbar einfachen Bedeckung auseinanderdrängen, und sowohl nach der Blase als nach der Körperoberfläche oft fast halbkuglige Hervorragungen bilden. Wenn Kothmassen durch das Körperparenchym durchzudringen pflegten, so müsste man dies wohl hier bei so bedeutender Spannung desselben erwarten; ebenso müsste man ein Hineintreten der Kothmassen in die contractile Stelle erwarten, falls sie nicht eine Blase, sondern nur eine Lücke im Körperparenchym ohne eigene Wände wäre. Keines von beiden aber erfolgt, die Kothmassen werden nicht eher aus dem Körper ausgeschieden, als wenn sie bei dem After am hintern Körperende angelangt sind. Eine ähnliche starke Expansion eines dünnen Körpertheils durch Fäcalmassen, ohne dass diese ihn durchbrächen, sehen wir, wie erwähnt, bei einigen neuen Stentorinen, die sich dadurch von der Gattung *Stentor* unterscheiden, dass der Theil des Körperparenchyms, welcher die Wimperspirale und den After (der bei allen Stentorinen auf der Rückseite des Körpers dicht unter
der Wimperspirale liegt (Fig. 6, 7. und 8. e), nicht mit dem Munde in einer gemeinschaftlichen Grube) trägt, zu einem dünnen Fortsatz ausgezogen ist. Bei der einen Gattung, von welcher ich gemeinschaftlich mit Herrn Claparède im Meere an der norwegischen Küste zwei Arten (die eine ist O. F. Müllers Vorticella ampulla) beobachtete und an einem andern Orte beschreiben werde, ist dieser breit, blattförmig, am Rande die Wimperreihe tragend, während der After weit oben auf der Rückseite des dünnen Blattes liegt. Bei der andern von mir im Süßwasser bei Berlin beobachteten Gattung Chaetospira m. (Fig. 6 u. 7) ist der Fortsatz schmal stabförmig, die Wimperreihe beginnt an seinem freien Ende und wird erst bei der Action durch Aufrollen des Fortsatzes zu einer Spirale; der Fortsatz trägt auch hier den After. Bei beiden treten oft Fäcalmassen (z. B. bei m Fig. 6), die dicker sind als der Fortsatz bei seiner Ausdehnung, durch ihn bis zum After (e), ohne, trotz der grossen Expansion der Wände des Fortsatzes, sie zu durchbrechen.

Vor dem After vereinigen sich nicht selten mehrere Kothballen zu einem grossen Haufen, um gemeinschaftlich excernirt zu werden. Soll eine Excretion erfolgen, so sieht man den After sich öffnen (oft schliesst er sich noch einmal, ehe der Austritt der Massen erfolgt, um sich dann erst wieder zu öffnen) und dann die Kothmassen oft langsam ausgestossen werden.

Am deutlichsten sieht man den innen mit feinen Wimpern besetzten Schlund, der, ohne sich zum Pharynx zu erweitern, unten schrag abgestutzt endet, bei den Paramecien und verwandten Gattungen. Bei diesen theils rings, theils nur
auf einer grössern Strecke des Körpers mit gleichmässigen feinen Wimpern versehenen Thieren, bei denen nicht eine Reihe stärkerer Wimpern zum Munde führt, sieht man, nachdem ein Bissen vom Oesophagus in die Verdauungshöhle abgestossen ist, deutlich diesen etwas schräg enden, bald wird dann durch sein unteres Ende ein Tröpfchen Wasser mit den darin enthaltenen kleinen Theilchen gegen die zähflüssige ihn begrenzende Chymusmasse gewirbelt, der Tropfen wird immer grösser und ist rings vom Chymus umgeben, nur an der einen Seite legt sich das untere Ende des Oesophagus an ihn an. Hat der so gebildete Bissen eine gewisse nicht immer gleiche Grösse erlangt, so wird er in die Chymusmasse gestossen, wo er sich dann ebenso verhält, wie dies von dem anfangs spindelförmigen Bissen der Vorticellinen beschrieben ist, auch bald an den Rotationen des Chymus Theil nimmt. Wie bei den Vorticellinen kann auch bei diesen, wie bei allen mit bewimpertem Schlund versehenen Infusorien, offenbar bei geänderter Beschaffenheit des Chymus, das Wasser mit der Nahrung, statt in Tropfen oder Bissen vereinigt zu werden, gleich dem Chymus beigemischt werden. Der After liegt bei diesen Infusorien (den Colpodeen Ehbgs., mit Ausnahme der Amphileptus- und Uroleptus-1)

1) Ich ziehe mit Focke Loxodes Bursaria Ehbg. zu Paramecium, da mir die Lage des Afters am hintern Ende des Thieres zu einer generischen Trennung dieses Thieres von den vollkommen verwandten Paramecien nicht zu genügen scheint, indem bei Paramecium colpoda der After schon dem hintern Ende sehr nahe gerückt ist, was noch mehr bei einem farblosen dem farblosen P. Bursaria sehr nahe stehenden neuen Paramecium der Fall ist. Jedoch glaube ich nicht mit Party den Namen O. F. Müllers Paramecium versatum wieder aufnehmen zu dürfen, da die Synonymie vor Ehrenberg fast nie Sicherheit gewährt, ich glaube deshalb nie einen ältern Speciesnamen für ein Infusorium wieder einzuführen zu dürfen, wenn ein Ehrenberglicher für dasselbe existirt, selbst wenn es nicht unwahrscheinlich ist, dass ein älterer Name von ihm übersehen worden. Diese Maxime scheint mir ebenso berechtigt, wie die, in anderen Theilen des Thier- oder Pflanzenreichs die Speciesnamen Linnés selbst den älteren vorzuziehen, da man sonst in eine nicht zu lösende Namensverwirrung gera-
Arten, Cyclidinen Ehbg., Glaucoma) an der Bauchfläche nahe dem hintern Ende oder am hintern Ende selbst. Eine Anzahl dieser Infusorien besitzt vor dem Munde noch einen eigenen Apparat, der aus Borsten oder einer gefalteten Membran besteht; welches von beiden der Fall ist, ist schwer zu entscheiden (Paramecium Chrysalis Ehbg. = Pleuronema Duj., Cyclidium Ehbg., Alysctum Duj., Pertys Aphthonier); bei einigen scheinen die Ränder der Mundspalte zu zwei beständig bewegten Klappen verlängert (Glaucoma, Cyclidium margaritaceum Ehbg. = Cinetochilum margaritaceum Pertys; die Familie der Cinetochilinen Pertys).

Ebenso wie bei diesen (Colpodeen etc.) ist der Verdauungsapparat bei vielen anderen Infusorien, nur führt noch eine besondere Reihe von Wimpern, die sich durch grössere Stärke und Länge von den übrigen den Körper bedeckenden Wimpern unterscheiden, zum Munde (so bei den Bursarien, Spirostomum, den Stentorinen). Diese Wimpern bilden dann meist eine nach rechts offene Bogenlinie, oder wie bei Spirostomum und den Stentorinen eine Verlängerung einer solchen, nämlich eine links gewundene Spirale (Fig. 6-8. b). Bei den Bursarien und Spirostomum liegt der After am hintern Körperende, bei den Stentorinen (Fig. 6-8. e) auf dem Rücken dicht unter der Wimperreihe 1).

then muss, da verschiedene Autoren manche der älteren Speciesnamen auf sehr verschiedene Specien beziehen.

1) Die neue Stentorinengattung Chaetospira habe ich schon oben charakterisirt. Ich habe bis jetzt 2 Arten derselben aus dem süßen Wasser bei Berlin kennen gelernt: die eine Ch. Mulleri m. (Fig. 6 u. 7) ist schlank, die Anfangswimpern (b) der Wimperreihe etwas, doch nicht auffallend länger und stärker als die übrigen; bei der Aufrollung bildet die die Wimperreihe tragende Fortsatz mehr als einen Umlauf der Spirale; das Thier bewohnt flaschenförmige, hornig erhärtete Hülsen, welche ich bis jetzt nur in den geöffneten Zellen zerrissener Blätter von Lemna trisulca fand. Die zweite Art, Ch. mucicola m., bewohnt Schleimröhren, ist kürzer, gedrungener, der aufgerollte Fortsatz bildet nicht einen ganzen Umlauf der Spirale, die Anfangswimpern sind bedeutend länger als die übrigen, besonders die erste fast noch einmal so lang und stark als die meisten. Beide Arten sind, wie alle
Über die Organisation der Infusorien, besonders der Vorticellen. 365

In den Ehrenbergschen Familien der Oxytrichinen, Euploteen und Aspidiscinen finden wir ebenso wie in den vorigen einen innen bewimperten Oesophagus (Fig. 10. h) und eine nach rechts offene Bogenlinie von starken zum Munde (Fig. 10. f) führenden Wimpern (Fig. 10. bf). Ausser den Wimpern der Körperoberfläche oder noch häufiger ohne diese finden wir aber eigenthümliche stärkere Bewegungsgorgane, deren Zahl und Anordnung zur Unterscheidung der Arten und Gattungen dienen können. Es sind dies zum Theil reihenweise gestellte sehr verdickte Wimpern, die ich Wimperborsten nennen möchte (Oxytrichinen), zum Theil eigenthümlich gruppirte kräftige, als Füsse dienende, besonders an der Basis sehr starke Fortsätze, von Ehrenberg Haken (uncini) genannt1) (bei allen drei Familien); ausserdem kommen endlich noch die von Ehrenberg Griffel (styli) genannten, deutlich an der Basis eingelenkten, dünnen, borstenartigen Fortsätze am hintern Ende einiger Oxytrichinen und Euploteen2) vor. Der After liegt bei diesen Thieren in dem hintern Theile der Bauchseite (Fig. 10. e). Der innen bewim-

Stentorinen, rings mit feinen Wimpern besetzt; ob Ch. Müller1 auch wie Ch. mucicola und Stentor polymorphus längere Haare zwischen den Wimpern hat, kann ich noch nicht mit Gewissheit behaupten. Möglich ist es, dass die frei schwimmende Stichotricha secunda Per-
ty, die er zu den Oxytrichinen stellt, mit meinen Chaetospiren ver-

wandt ist; doch ist seine Zeichnung sehr ungenau, könnte vielleicht auch einen Loxodes oder Amphileptus Fasciola darstellen; da Per-
ty auch die Lage des Afters, der er ebenso wie die contractile Blase
und den Nucleus nie zeichnet, nicht angiebt, so wage ich nicht, seine Stichotricha zu den Stentorinen zu stellen; sollte sich herausweisen,
dass sie zu denselben gehört, so würde sie als nicht hülselfbewoh-
nende Gattung der analogen hülselfbewohnenden Chaetospira zur Seite
gestellt werden müssen.

1) Die vorderen dienen zum eigentlichen Kriechen oder Klettern, die hinteren könnte man passend Schleppfüsse nennen, da sie meist nachgeschleppt werden und nur bisweilen zum Nachschieben benutzt werden, diese sind bei einigen Arten, z. B. Euplotes patella, am Ende
gespult.

2) Dass von diesen Griffeln bei Euplotes patella einer kleine bor-
stenförmige Zweige trägt, ist schon oben bemerkt.
C. F. J. Lachmann:

perte Oesophagus, der bei den vorigen immer eine offene Röhre bildete, collabirt bei diesen häufig an seinem innern Ende und bildet so einen Uebergang zu dem Oesophagus der folgenden Gruppen.

Viele Infusorien haben nämlich einen ganz collabirten Oesophagus (der als vom Körperparenchym gesondertes, frei in die Verdauungshöhle hängendes Rohr vielleicht bei einigen ganz fehlt, wenigstens bis jetzt bei Amphi leptus, den meisten Trachelinsarten, Enchelys, Coleps, Trachelocerca nicht von mir nachgewiesen werden konnte, sondern nur ein Canal durch das Körperparenchym zu sein schien), diese können dann meist nicht wie die bisher betrachteten rundliche Bissen formiren, sondern verschlingen meist grösseere Theilchen, die dann jeder für sich, oft selbst ohne mitverschlungenes Wasser in die Leibeshöhle gelangen. Ob der Oesophagus dieser Thiere innen mit Wimpern versehen ist, ist sehr schwer zu bestimmen. Bei einigen, z. B. Coleps, scheint es fast so; diese schwimmen an irgend welche schleimige Masse, etwa ein zerflossenes Infusionsthier, heran, drängen das vordere Körperende dagegen, öffnen den gewöhnlich geschlossenen Mund und den Oesophagus weit, so dass dieser einen weiten Canal bildet; dann bewegt sich die vor ihnen liegende Masse scheinbar ohne Schlingbewegungen des Coleps durch diesen Canal in seine Leibeshöhle, kann also wohl nur durch Wimperbewegung hineingetrieben sein. Bei anderen scheinen dagegen die Wimpern im Oesophagus zu fehlen, so bei Amphi leptus, Enchelys, Trachelius; diese machen nämlich förmliche Schlingbewegungen, um ihre Beute, meist nicht unbedeutende Infusorien, zu bewältigen, sie schieben sich gleichsam mit Schlingbewegungen, ähnlich wie die Schlangen, über dieselbe, bei ihnen gelingt dann Farbfütterung nur sehr selten, und die Farbe bildet nie magenartige Bissen, anser wenn sie als solche in gefressenen Infusorien sich befand. Der Mund liegt bei diesen Thieren bald am vordern Ende (Coleps, Enchelys), bald nicht (Trachelius, Amphi leptus), der After bald hinten, bald nicht.

Dieser Gruppe von Infusorien schliessen sich nun dieje-
Ueber die Organisation der Infusorien, besonders der Vorticellen. 367

nigen mit eigenen stäbchenartigen Verdickungen, fischreusenartigen Zähnen Ehbg., des gleichfalls collabirten Oesophagus an. Meist erstreckt sich hier der Oesophagus als zusammengefallener Schlanch noch viel weiter als dieser Stäbchenapparat, z. B. bei Chilodon cucullulius fast bis an das hintere Ende des Thieres. Der Mund, der nicht selten hervorgestreckt werden kann, liegt bald am vorderen Ende des Thieres (Prorodon), bald nicht (Chilodon, Nassula, Liosiphon, Trachelius Octum 1). Der After liegt meist am hintern Ende des Thieres, bei einigen jedoch nahe dem hintern Ende am Bauch (Chilodon cucullulius, hier fast am rechten Körperrande).

In ähnlicher Weise wie bei den letzten genannten Gruppen von bewimperten Infusorien scheint auch bei dem grössten Theil der mit Geisseln versehenen die Nahrungsaufnahme zu geschehen. Obgleich schon Ehrenberg bei Monadinen und Cryptomonadinen Nahrungsaufnahme gesehen und Farbetheilchen in Thieren aus diesen Familien abgebildet, so leugneten doch Viele diese und glaubten sie entweder ins Pflanzenreich als einzellige Pflanzen verweisen zu müssen, oder sahen sie als mundlose Thiere an. Erst Cohn bestätigt wieder 1) das Fressen dieser Thiere, und auch mir gelang es, dies bei vielen zu sehen; ich sah nicht nur Farbetheilchen im Innern des Körpers, von denen man immerhin wegen der Kleinheit des Objects hätte zweifelhaft sein können, ob sie wirklich im Innern desselben enthalten seien, sondern ich beobachtete auch ein paar Mal Monadinen, welche eine kleine Bacillarie enthielten, deren bald darauf erfolgende Excretion in der Nähe des hintern Endes der Monadine mir auch die Anwesenheit eines Afters wahrscheinlich machte. Im vorigen Sommer beobachtete auch Herr Prof. J. Müller gemeinschaftlich mit Hrn. E. Claparède und mir ein Thierchen in grosser Anzahl, das vielleicht Bodo grandis

1) Bei dem letzten verdanke ich die Kenntniss des Stäbchenapparates Herrn Dr. Lieberkühn.

Ehbg., vielleicht aber auch eine Astasie war, und Vibrionen, welche es selbst 2-4 mal an Körperlänge übertrafen, frass; die Thierchen nahmen dadurch die wunderlichsten Formen an, der Mund war dicht neben der Insertion der Geissel. In allen durchsichtigen Thieren aus diesen Familien kann man mit einiger Auffassung eine bis mehrere contractile Blasen erkennen, von undurchsichtigeren liessen mich Chilomonas Paramecium und Cryptomonas ovata gleichfalls eine solche im vorderen Theile des Körpers mit ihren Contractionen beobachten.

Diesen Thieren scheinen die Volvocinen, Astasiäen und Dinobryinen angereiht werden zu müssen, wenigstens die, welche eine contractile Stelle besitzen, wenn man auch das Fressen bei ihnen noch nicht beobachtet hat. Dass sie wirklich keine Nahrung in eine Verdauungshöhle aufnehmen, ist noch gar nicht bewiesen. Perty will in einzelnen Fällen sehr feine Pflanzenfasern in Euglenen gefunden haben; aber selbst wenn wir diese Angabe nicht für genügend betrachten, um das Fressen zu beobachten, so haben wir doch in neuester Zeit bei Infusorien Arten der Nahrungsaufnahme kennen gelernt, die möglicherweise auch bei Volvocinen etc. vorkommen könnten, wo es dann gar nicht wunderbar erscheinen würde, dass man sie erst so spät entdeckte. Hat nicht erst Claparède 1) uns den Vorgang des Fressens bei Actinophrys genauer kennen gelehrt? wenn eine solche Art des Fressens durch Aufnahme der Speise in einen plötzlich hervortretenden Fortsatz auch bei den genannten Wesen stattfände, so würde er bei ihnen selten zu beobachten sein, und nur ein günstiger Zufall würde es sein, wenn man den kurzen Augenblick des Fressens wahrnahme; bestände die Nahrung nun aus leicht zerfiessenden kleinen Monaden, so wären wir sie auch nicht im Körper des Thieres als solche erkennen. Ebenso schwer und selten würde die Beobachtung gelingen, wenn diese Thiere ähnlich wie die Acineten (siehe unten) andere Thiere durch zurückziehbare Saugrüssel aus-

1) Über Actinophrys Eichhornii. Müller’s Archiv 1854 pg. 54.
sogen; dies ist um so weniger unwahrscheinlich, als Dr. Wagen er') der Gesellschaft naturforschender Freunde in Berlin eine Beobachtung des Dr. Lieberkühn mittheilte, der ein gegeisseltes Infusorium an ein anderes heranschwimmen, dann sich mit einem aus dem hintern Ende vortretenden Fortsatz an dieses anheften und es durch denselben aussaugen sah. Allein selbst so lange das Fressen dieser Wesen noch nicht gesehen ist3), glaube ich, müssen wir sie der Analogie nach zu den Thieren rechnen. Eine contractile Stelle, wie ich sie bei einer grossen Zahl der genannten jetzt mit Sicherheit gesehen habe 3), ist noch in keiner Pflanzenzelle oder der Spore einer sicheren Pflanze gesehen worden; direct darauf verwandte Bemühungen sind bis jetzt noch immer erfolglos gewesen. Deshalb glaube ich mit A. Schneider 4), müssen wir diese mit contractiler Stelle versehenen Wesen denen beigesellen, welche ihnen äusserlich am meisten ähnlich sind und auch eine contractile Stelle besitzen: den Monadinen, also den tierischen Infusorien, so lange nicht bei unzweifelhafter Pflanzenzelle eine solche gefunden ist.

1) in der Julisitzung 1855.
2) Doch wird sich wohl bei allen im Wasser lebenden Infusorien ein Mund auffinden lassen und nur eine Anzahl der entozoischen, die Opalinen, als wirklich mundlos herausstellen. Zu den Opalinen sind jedoch Bursaria cordiformis Ehbg. und B. intestinalis Ehbg. nur fälschlich gerechnet, da sie einen Mund besitzen.
4) Müller's Archiv 1854 p. 203.

Müller's Archiv. 1860.

Der Streit über die Stellung der Bacillarien und Closteriinen oder Desmidiaceen und Diatomeen ist wohl noch immer nicht als entschieden zu betrachten. Eine contractile Blase ist bekanntlich noch nicht bei ihnen gefunden; die Bewegung, die Theilung, die Entdeckung von Wimpern im Innern der Closterien durch Focke\(^2\) können den Streit nicht entscheiden. Die von Ehrenberg beschriebenen retractilen Pseudopodien haben die übrigen Forscher nicht erkennen wollen, die von Ehrenberg nachgewiesene Anwesenheit von Farbe in Wesen dieser Gruppen glaubt man auf andere Weise als durch das Fressen von unaufgelösten Farbtheilen erklären zu können, da leider der Act des Fressens nicht beobachtet wurde, und die Anhäufung der Farbe an bestimmten Stellen, die man dann für die Zellkerne dieser einzel-

2) Physiologische Studien Heft I.
ligen Pflanzen hält, in der Entdeckung Hartigs¹), dass die Zellkerne aller Pflanzen Farbe stärker annehmen, als andere Theile derselben, eine Analogie zu finden scheint.

Eine eigenthümliche, bis jetzt immer verkannte Art der Nahrungsaufnahme bleibt nun noch zu besprechen. Schon seit langer Zeit (schon seit O. F. Müller) weiss man, dass an den tentakelartigen, meist am Ende verdickten Strahlen der Acinetinen häufig andere Infusorien haften bleiben und dann, wenn es ihnen nicht gelingt, sich bald loszureissen, sterben. Schon O. F. Müller glaubte deshalb, dass die Acineten diese Thiere aussögen, auf welche Weise, darüber sagt er nichts, und konnte es auch mit seinen unvollkommenen Instrumenten nicht beobachten. Ehrenberg glaubte, die gefangenen Thiere würden einem zwischen den Strahlenbüscheln liegenden Munde genähert und durch diesen ausgesogen. Stein und Perty sprachen den Thieren einen Mund ab und warfen sie mit den Actinophryen zusammen; der erste unterschied deshalb wieder die fressenden (die eigentlichen Actinophysarten A. Eichhorni, sol. mit difformis Ehrenberg und A. oculata St.) und die nicht fressenden Actinophryen (ungetielte Individuen von Podophrya fixa, also wirkliche Acinetinen²)). An den Strahlen der letzteren sollten die sie berührenden Infusorien sterben, sich auflösen und dann die so entstehende Flüssigkeit endosmotisch von den Strahlen aufgenommen werden. Nach Perty würde der Tod der Infusorien durch ein Aufspiessen an den äussersten feinen Fäden der Acineten und Actinophrys bewirkt. Beide Vorstellungen waren wohl so paradox wie unrichtig, die eigentliche Art der Nahrungsaufnahme, wie sie am besten an den grösseren Arten, besonders der Acineta ferrum equinum Eh b g.³), nicht schwer zu beobachten, ist nämlich folgende. Berührt

¹) Mitgetheilt in der Naturforscherversammlung in Göttingen 1854.
²) Zu diesen und zwar mit Podophrya fixa in dieselbe Gattung gehört auch Actinophrys octata Weisses, die ich hier bei Berlin Gelegenheit hatte zu beobachten.
³) Sie ist später von Weisse als Acineta cothurnata, von Stein als diademartige Acineta beschrieben.
ein Infusorium die knopf- oder tellerartig erweiterte Spitze eines Acinetenstrahls, so bleibt es gemeiniglich daran haften, die Spitze dehnt sich noch mehr tellerförmig zu einer Saugscheibe aus, der Strahl verdickt und verkürzt sich; zugleich machen andere Strahlen des Thieres zugreifende Bewegungen und versuchen ihre sich zu Saugscheiben erweiternden Spitzen dem Gefangenen anzuheften. Gelingt es diesem nicht bald mit Hülfe grosser Anstrengungen sich loszureissen, wobei die Strahlen der Acineten oft gewaltig in Unordnung gerathen und verletzt werden, so beginnt die Acinete ihn auszusaugen. Jeder Strahl ist nämlich ein Saugrüssel und man sieht bald, wie in der Axe der Strahlen, welche nach Er greifung einer Beute sich verkürzt und verdickt haben, ein Strom von Chymustheilchen aus der Verdauungshöhle des gefangenen Infusoriums bis in den Körper der Acinete verläuft. Im Körper der Acinete laufen die Chymustheilchen anfangs noch in einer schmalen Reihe, dann aber sammeln sie sich in einen Tropfen (Fig. 14), der, wenn auch durch andere Saugrüssel Tropfen im Chymus der Acinete gebildet sind, meist bald mit diesen verschmilzt. Ist erst eine etwas beträchtlichere Masse von dem Chymus des gefangenen Thieres in den Körper der Acinete übergewandert, so tritt allmälig eine auffallende Veränderung in seinem Aussehen ein: war er vorher blass und fast durchsichtig, nur ganz fein grauniert (Fig. 14), so treten jetzt hie und da grössere, dunkle, Fett tropfen ähnliche Kügelchen auf, die sich bald mehrern, so dass der Körper, der gleichzeitig natürlich an Dicke zunimmt, ein dunkles, grobkörniges Aussehen gewinnt und undurchsichtig wird (Fig. 15). Die auftretenden Kügelchen oder Tröpfchen müssen erst im Acinetenkörper gebildet sein, da sie weit grösser sind, als die Chymustheilchen, welche man durch die Rüssel strömen sieht 1). Das so ausgesogene Thier collabirt allmälig und stirbt, manche zerfliessen, wenn erst sehr wenig Chymus ihnen ausgesogen ist, andere leben

1) Diese Veränderungen im Aussehen des Körpers treten auch in anderen Infusorien auf, wenn sie Thiere, Infusorien gefressen haben.
noch lange; bei grossen Thieren, *Stylonychia Mytilus*, *Paramecium Aurelia* etc., dauert das Aussaugen oft mehrere Stunden. — Ob die Acinetinen einen After besitzen, oder auf welche Weise sie die untanglichen Stoffe wieder von sich geben, konnte noch nicht ermittelt werden.

Über die Struktur und besonders den Verdauungsapparat der Rhizopoden (ausser den Foraminiferen d’Orbignys oder Polythalamien, die Amöben, Arcellinen und Actinophyren umfassend) 1) kann ich den Angaben der neuesten Autoren (besonders Max Schultzes über Polythalamien und Claparèdes über *Actinophrys*) nichts Neues hinzufügen. Ich sah das Strömen der Körnchen in den Fortsätzen der Polythalamien und *Actinophrys*, das Übertreten derselben aus einem Fortsatz in einen andern mit ihm verschmolzenen bei Polythalamien, das Fressen und die Conjugation der *Actinophrys*, wie es durch die Genannten beschrieben ist; da wir über die Fortpflanzung derselben gleichfalls so gut wie gar nichts wissen, werde ich sie im Folgenden unberücksichtigt lassen.

Von anderen Organen ausser der Haut und dem Verdauungsapparat sind als allen Infusorien gemeinschaftlich nur noch zwei zu nennen, welche Ehrenberg beide zum männlichen Geschlechtsapparat rechnen zu müssen glaubte. Die von Ehrenberg als Eier betrachteten Kügelchen oder Pertys Blastien wirklich als solche zu betrachten, haben wir wohl bei dem jetzigen Stande der Infusorienkunde, da niemals das Ausschlüpfen von Jungen aus denselben beobachtet worden ist, und durch Auffindung von auf andere Weise gebildeten sehr kleinen Embryonen (die wir weiter unten besprechen werden), das theoretische Bedürfniss, das die For-

1) Denen sich in der Struktur nach den neuesten Beobachtungen Claparèdes (Monatsbericht der Akademie d. Wiss. zu Berlin 1855 pg. 674 u.f.), die ich so glücklich war, gleich nach seiner Entdeckung nachbeobachten und bestätigen zu können, die Acanthometren und wahrscheinlich noch andere Kieselskelette führende Wesen zweifelhafter Stellung (die Polycystinen Ehrbg.s., und vielleicht die Spongien und Thalassicollen) anzuschliessen scheinen.
scher zu dieser Deutung veranlasste, befriedigt ist. Die als Eier und als „Blastien“ betrachteten Kugelchen sind theils die im Körperparenchym einiger Infusorien theils gefärbten, theils farbloosen (oben erwähnten) rundlichen Körper, theils Chymusheilchen, theils endlich die öltropfenartigen Kugelchen, welche wir nach tierischer Nahrung in den Infusorien auftreten sehen.

Dass die von Ehrenberg für die beiden zu betrachtenden Organe, die contractile Stelle und den drüsenartigen Körper, vorgeschlagene Deutung der sichern Basis entbehrt und besonders für jene sehr unwahrscheinlich ist, ist schon von Andern genügend erörtert, doch hat man sich über ihre wahre Bedeutung noch nicht einigen können.

Die contractile Stelle (Samenblase nach Ehrenbergs Deutung) wird von den meisten Neueren, ausser O. Schmidt und E. Claparède, nach Dujardins Vorgang als ein wandlungsloser Hohlraum (vacuole) betrachtet, der bald mehr ein Analogon eines Herzens, bald mehr das eines excretorischen oder respiratorischen Wassergefäßsystems darstellen soll. Um über diese Ansichten urteilen zu können, müssen wir zuerst das Verhalten der contractilen Stelle etwas genauer ins Auge fassen, und da erscheinen uns besonders die Infusorien wichtig, bei denen wir Fortsätze oder Ausläufer an derselben erkennen können.

Bei Paramecium Aurelia und einigen anderen Infusorien sind zuerst von Ehrenberg strahlige Ausläufer der contractilen Stellen erkannt. Ist die contractile Stelle gefüllt und weit offen, so sind die Strahlen nur als feine Linien

1) Auch die gelben Eier der Bursaria flava Ehbg. scheinen gefärbte Fetttröpfchen zu sein.
Ueber die Organisation der Infusorien, besonders der Vorticellen.

oder bei ungünstigem Licht selbst gar nicht zu bemerken; bei der plötzlichen Contraction jener aber schwellen sie plötzlich zuerst dicht an der Stelle der verschwundenen contractilen Blase mit birnförmigem Anfang an. Bei günstiger Beleuchtung und Thieren, die den richtigen Grad der Durchsichtigkeit besitzen, kann man die Strahlen bei *Paramecium Aurelia* bis über die Hälfte des Thieres verfolgen, und es gelingt bisweilen eine gabelige Theilung eines oder des andern derselben zu sehen. Bei dem langsameren Wiedererscheinen der contractilen Stellen schwellen sie allmählich ab und sind fast ganz verschwunden oder auf feine Linien reducirt, wenn jene ihre volle Ausdehnung erlangt hat. Diese Ausläufer sowohl, als die contractilen Stellen liegen, wie bei allen Infusorien, dicht unter der Haut (Cuticula nach Cohn) in dem Körperparenchym (Rindenschicht oder Zellhaut nach Cohn).

Bei vielen Vorticellen finden wir von der contractilen Blase gleichfalls Fortsätze ausgehend (Ehrenberg gibt schon an, die contractile Blase des *Carchesium polypinum* häufig ziemlich gelappt, fast strahlig gesehen, zu haben); von diesen konnte ich besonders einen bei *V. nebulifera*, *campanula*, *Carchesium polypinum* bis dicht unter die Haut der Wimperscheibe verfolgen, der von oben gesehen einen länglichen Durchschnitt darbot (Fig. 3. k). Von diesem scheint ein feiner Ausläufer an der obem Wand des Vestibulum quer über daselbe zur andern Seite zu verlaufen; wenigstens sah ich einen dünnen Fortsatz, welcher wie ein kurzer Vorhang von der der Wimperscheibe zugekehrten Seite in das Vestibulum herabhängt (in Fig. 3 stellt ihn die breite punktierte Linie, welche von k quer über das Vestibulum verläuft, dar), anschwellen, wenn der erwähnte Fortsatz in Folge der Contraction der contractilen Stelle anschwellt.

Im *Dendrosoma radians* Ehrenbg. läuft ein feines Gefäss durch die ganze Länge des Körpers und schickt Äste in die Äste desselben; theils in den Ästen, theils im Stamm ist es mit einer Anzahl von contractilen Stellen versehen.

Ausgezeichnet deutlich sieht man bei dem grossen *Stentor polymorphus* (*Roeseli* und *Mülleri* inbegriffen) die Ausläufer
der contractilen Stelle und kann bei ihm einen nicht unbedeutenden Theil eines Gefässsystems erkennen. Die grosse contractile Stelle liegt etwas links vom Oesophagus nahe der Stirnenebene (Fig. 8. k). Von ihr aus geht ein Längsgefäss bis an das hintere Ende des Thieres und ein Ringgefäss um die Stirn dicht unter der Stirnwimperreihe. Beide sind auch während der Expansion der contractilen Blase sichtbar, schwellen aber wie die Gefässse bei den schon erwähnten Infusorien bei der Contraction derselben plötzlich an; das Längsgefäss zeigt hierbei gewöhnlich bedeutende Erweiterungen, die man leicht bei oberflächlicher Beobachtung für selbstständige, nicht verbundene Hohlräume (vacuoles) halten kann (Fig. 8 und 9, letztere Figur zeigt einen schematischen Durchschnitt eines Theils vom hintern Ende des Stentor, in dessen Parenchym man links die Dilatationen des Längsgefässes sieht). Das Ringgefäss zeigt ein mehr gleichmässiges Lumen, nur ein paar rundliche Dilatationen treten an ihm auf, eine dicht neben dem After auf der Rückseite des Thieres, die andere dicht neben dem Oesophagus auf der Bauchseite (Fig. 8. oo). Beide Gefässse schwellen beim Wiedererscheinen der contractilen Blase scheinbar ohne eigene Contraction ebenso wie die Gefässse der Paramecien allmälig wieder ab. Das Längsgefäss der Stentoren und ein ähnliches bei Spirostomum ambiguum sind zuerst von Siebold 1) beschrieben und irrthümlicher Weise von Eckhardt 2) gelegnet.

Da wir so bei den Stentoren ein Gefässsystem finden 3) und bei anderen Infusorien die dem Centrum, der contractilen Stelle, zunächst liegenden Theile bei einigen leichter, bei anderen schwerer erkennen, so können wir wohl schliessen, dass ein solches bei allen Infusorien vorhanden ist, welche eine contractile Stelle haben, selbst wenn noch keine Ausläufer derselben erkannt sind. Dass dies System nicht

1) Vergleichende Anatomie pg. 21.
2) Wiegmanns Archiv 1846 pg. 237.
Über die Organisation der Infusorien, besonders der Vorticellen.

Nicht aus zufälligen Lücken im Körperparenchym (vacuoles Dujardins) besteht, geht schon aus der Regelmässigkeit desselben hervor. Wenn als Beweis für das Unbeständige dieser Vacuolen behauptet wird, dass ganz gleichwertige häufig an den verschiedensten Stellen des Körpers auftreten, so scheint mir das auf einer Verwechslung sehr verschiedener Sachen zu beruhen. Häufig gewiss sieht man die anschwellenden Erweiterungen in vorhandenen Gefässen für solche Vacuolen an, ohne zu beachten, dass diese Erweiterungen immer langsam wieder abschwellen, während die eigentlichen Gefäßcentra, die contractilen Stellen, bei lebenskräftigen Thieren immer plötzlich sich verkleinern. Ausserdem scheint bei kranken Infusorien eine Exsudation von normal das Parenchym tränkender Flüssigkeit aus demselben auch in die Körperröhle und vielleicht in Parenchymlücken stattfinden zu können, wie wir sie bei Infusorien und vielen anderen niederer wirbellosen Thieren häufig auf der Körperoberfläche geschehen sehen. Diese Sarcodetropfen scheinen nie wieder resorbirt werden zu können, sondern ihre Bildung scheint immer, wenn auch langsam, zum Tode des Infusoriums zu führen.

Wenn wir nun auch mit Sicherheit behaupten können, dass die contractile Stelle das Centrum eines Gefäßsystems ist, das nicht in durch zufälliges Auseinanderweichen des Parenchym's gebildeten Lücken desselben besteht, so bleibt doch eine andere schwieriger zu entscheidende Frage über die Natur desselben zu erörtern, nämlich die, ob die Gefässe und die contractile Stelle eigene Wände haben, oder nur wenn auch regelmässige und constante Lücken im Parenchym sind, ob die contractile Stelle eine Blase ist oder nicht. Die Art der Contraction, verschieden von den übrigen Contractionerscheinungen des Körperparenchym's, scheint entschieden für die Blasennatur derselben zu sprechen. Die Erscheinung, dass sie häufig vor ihrer vollständigen Expansion in zwei oder drei getheilt erscheint, spricht nicht dagegen, da eine Blase sehr wohl durch partielle Contraction von ringförmigen Partien, durch Stricaturen in zwei und mehr
Theile geschnürt werden kann. Für die Blasennatur der contractilen Stelle scheinen nun noch einige Thatsachen zu sprechen; so das schon oben erwähnte Verhalten bei *Spirostromum ambiguum*, wo Kothballen zwischen der contractilen Stelle und der äussern Haut des Thieres durch zum After gelangen, und obgleich sie die Wand der contractilen Stelle oft halbkuglig vorwölben, doch nie in dieselbe durchbrechen. Bei *Actinophrys* scheint wohl wenigstens auf der äussern Seite der contractilen Stelle die Annahme einer häufigen Begrenzung kaum von der Hand gewiesen werden zu können, da die Wand derselben an der äussersten Körpervorderfläche gelegen bei der grossen Expansion bersten müsste, wenn sie nur von dem gelatinösen Körperparenchym gebildet wäre 1).

Das Verhalten der contractilen Blase bei *Actinophrys* lässt auch schwerlich die Annahme einer Öffnung derselben nach aussen zu. Auch bei anderen Infusorien ist es mir nie gelungen, die Behauptung O. Schmidts 2) zu bestätigen, nach welcher die contractile Stelle sich nach aussen öffnen soll; man sieht bei vielen Infusorien über der contractilen Blase einen oder mehrere helle Flecke, die leicht für Öffnungen gehalten werden können, sich jedoch bei genauerer Beobachtung nur als dünn Stellen im Körperparenchym und der Haut erweisen, durch die freilich die Einwirkung des äussern Wassers auf den Inhalt des Gefässsystems erleichtert wird, die also wohl respiratorischen Zwecken dienen. Besonders zahlreich sind diese runden hellen Stellen über der contractilen Stelle des *Spirostromum ambiguum*. Da uns also noch der sichere Nachweis eines der wesentlichsten Erfordernisse für ein Wassergefäßsystem, der Mündung desselben nach aussen, fehlt und Einiges direct gegen die Existenz desselben zu sprechen scheint, können wir in dem Gefäßsystem der Infusorien

2) Froieps Notizen 1849 pg. 6 und Vergleich. Anatomie pg. 220.
rien mit Wiegmann 1), Siebold und Anderen nur ein Blutgefässsystem sehen.

Ehe wir zur Betrachtung des Nucleus übergehen, wollen wir noch von dem, was von anderen, wenn auch nur bei einzelnen Infusorien erst nachgewiesenen, Strukturverhältnissen zu sagen ist, sprechen, da sich die Betrachtung des Nucleus nicht von der der Fortpflanzung, die dann noch zu besprechen bleibt, trennen läßt.

Von anderen Organsystemen ausser den besprochenen Verdauungs- und Circulations-Apparaten läßt sich verhältnismässig nur wenig, meist nur Negatives sagen.— Wenn nicht die eben erwähnten hellen Flecke über der contractilen Blase als Andeutungen eines Respirationssystems zu betrachten sind, so ist noch nichts von einem solchen bekannt, da Pouechets angeblicher Respirationsapparat der Vorticellen nur der Pharynx derselben ist. Die erwähnten dünnern Stellen in der Haut mögen die Respiration begünstigen, die wohl sonst durch die ganze Haut stattfindet.

Von Secretionsorganen ist nichts·bekannt, nur Ehrenberg gibt solche bei Nassula elegans, Chilodon ornatus und anderen als Quellen eines gefärbten Verdauungssätes an, die gefärbten Flecke, welche sie darstellen sollen, werden aber von Anderen (v. Siebold) nur für Pigmentflecke gehalten. Die ganze Körperoberfläche vermögen bei den meisten, wo nicht allen Infusorien eine Gallerte auszuschwitzen. Einige thun dies regelmässig, indem die ausgeschwitzte Gallerte entweder die gallertige Consistenz behaltend (Stentor, Chaetospira mucicola und andere), oder hornartig erstarrend (Arcellinen, Ophrydinen, Tintinnus, Chaetospira Müller und andere) eine Hüse (urceolus) bildet, in welche das Thier sich mehr oder weniger vollständig zurückziehen kann. Bei einigen Arten der Gattung Diffugia werden Sandkörnchen in diese erhärtende Hülse eingeklebt, bei den Polythalamien verkalkt sie. Ausser dieser Gallertauschwitzung zur Hül-

1) Wiegmanns Archiv 1535. I. pg. 12.
Die Cystenbildung kommt noch die bei sehr vielen Infusorien beobachtete Gallertausschwitzung vor, welche zur Bildung einer rings geschlossenen meist rundlichen Hülle um das secernierende Thier führt, die zuerst von Guanzati beschriebene, neuerdings so vielfach beobachtete Cystenbildung, deren Hauptszweck der zu sein scheint, das encystirte Thier gegen ungünstige Verhältnisse in dem von ihm bewohnten Wasser und gegen den Tod durch Austrocknen zu schützen. In wie weit die Encystirung mit der Fortpflanzung im Zusammenhange steht, werden wir später sehen. Die Cysten sind nicht immer glatt; so sah Cienkowski die *Podophrya fixa* quergeringlete Cysten bilden und beschreibt noch andere Cysten mit sternförmiger Oberfläche (*Stylonychia pustulata*); Stein beobachtete längsgeriefte Cysten bei *Epistyli brancliophila*, ich sah fein chagrinirte bei einer noch unbeschriebenen kleinen Epistylisart.

Ein Nervensystem ist noch nicht nachgewiesen, ob die von Ehrenberg bei einigen Infusorien für Augenpunkte gehaltenen Pigmentflecke wirklich solche sind, steht dahin, ein besonders lichtbrechender Körper an einem derselben ist noch nicht nachgewiesen, ein solcher kommt ohne Pigmentfleck als convex-concave Linse bei *Bursaria flava* Ehbg. dicht beim Munde vor. Ob die hellen Körper, welche Ehrenberg bei einigen geisseltragenden Infusorien als Markknoten (Ganglien) deuten zu müssen glaubt, und die von Stein im Peristom der *Opercularia articulata* gefundenen nierenför-

2) Stein hatte diese Cysten für Übergangsstufen zwischen *Vorticella microstoma* und *Podophrya fixa* gehalten und dachte sie durch Encystirung der ersteren nicht der letztern entstanden. Weisse beschrieb dieselben (Bulletin de l'Academie impériale de St. Petersbourg) als selbstständige Infusorienform unter dem Namen *Orcula Trochus*.

3) Ich sah diese Cysten gleichfalls und bin der Ansicht, dass es nur solche Cysten sind, welche Weisse (Bulletin etc.) unter dem Namen *Discodella multipes* beschrieben hat.

4) l. c. pg. 117.
Über die Organisation der Infusorien, besonders der Vorticellen. 381

migen Körper einem Nervensysteme angehören, ist noch sehr problematisch.

1) Stein behauptet, dass diese nicht bei allen contractilstieligen Vorticellinen vorkämen, mir ist es immer gelungen sie zu sehen, auch bei den von Stein ohne dieselben abgebildeten Vorticella microstoma und Zoothamnium affine St.
tilen Stiels handeln genauer Stein 1) und besonders Czermaks 2), auf deren Darstellung ich verweise kann. Da die einzige Function des innersten Theils dieses Stiels die Contraction zu sein scheint, und er nicht vollkommen strukturlos ist, so glaube ich unbedenklich ihn einen Stielmuskel nennen zu dürfen, und kann auch Steins Einwurf nicht gelten lassen, dass sich derselbe nämlich noch contrahire, selbst wenn der Stiel nicht mehr an einem andern Gegenstande befestigt ist, da der Muskel dadurch seine Insertion gar nicht eingebüsset hat, da er an der Scheide des Stiels selbst, nicht am fremden Körper mit seinem hintern Ende befestigt ist. — Vielleicht sind auch die Querringel, welche der Körper einiger Vorticellinen zeigt, auf Muskelfasern zurückzuführen, sie gehören wenigstens nicht der Haut, sondern dem Körperparenchym an.

Nachdem wir so besprochen haben, was von nicht zur Fortpflanzung gehörigen Organen bis jetzt bei den Infusorien nachgewiesen ist, bleibt uns nur noch diese, die Fortpflanzung zu betrachten.

Ohne uns mit einer Besprechung oder Controversen über die Generatio aequivoca aufhalten zu wollen, die glücklicherweise für die Wissenschaft jetzt fast nur noch von Männern 3) verteidigt wird, deren Benachtigungen so oberflächlich und ungrundlich sind, dass sie keine Kritik nöthig machen, gehen wir gleich zu den wirklichen Vermehrungsweisen der Infusorien über. Wir finden hier eine sicher ungeschlechtliche Vermehrung, und eine Fortpflanzung, für die vielleicht in der Zukunft der Nachweis geliefert wird, dass sie eine geschlechtliche ist, oder die doch als Analogon der

1) l. c. pg. 78 u. ff.
3) Pinean, Dr. Gros u. A.
Ueber die Organisation der Infusorien, besonders der Vorticellen

Die geschlechtlichen Fortpflanzung höherer Thiere betrachtet werden muss, eine Fortpflanzung durch Embryonen.

Jene rein vegetative Vermehrungsweise besteht in Theilung und Knospung.

Die Theilung ist bekanntlich die ausgebreiteteste und am längsten bekannte Vermehrungsweise der Infusorien; dennoch ist sie nicht so genau studirt, als sie es vielleicht verdient hätte; seit der schönen Beschreibung Trembleys über die Theilung der Stentoren sind in der Kenntniss derselben wenig Fortschritte gemacht. Durch Verallgemeinerung einiger Beobachtungen ist man in neuester Zeit grossentheils mit Rücksicht auf die Zellentheorie zu dem Glauben gekommen, als leite der Nucleus die Theilung immer ein, dadurch, dass er sich selbst theile oder wenigstens einschnüre. Diese Ansicht ist jedoch nicht richtig, es gibt allerdings Fälle, in welchen der Nucleus sich zuerst theilt, allein in anderen Fällen beginnt seine Theilung erst, wenn der übrige Körper schon weit in der Theilung vorgeschritten ist, und in anderen Fällen führt die wirkliche Theilung des Nucleus nicht zur Theilung des Körpers, sondern es entwickeln sich in ihm, wie wir bald zeigen werden, Embryonen. Meist wird die Theilung vielmehr durch eine Neubildung von contractilen Blasen eingeleitet 1), wie es nach Beobachtungen an Stentor scheint, aus Erweiterungen der vorhandenen Gefässe. Bei den Infusorien, bei welchen eine eigene Reihe von stärkeren Wimpern zum Munde führt (z. B. Oxytrichinen, Euploteen), sieht man darauf oder gleichzeitig sich die Rinne, in welcher diese Wimperreihe liegt, über den Mund hinaus nach hinten verlängern; in dieser Verlängerung entstehen Wimpern, und ihr hinterstes Ende vertieft sich zu Mund und Speiseröhre, die sich dann nach der Verdauungshöhle des Thieres öffnet;

1) In einigen Fällen führt dies schon Ehrenberg an; Wiegmann führt es mit als Grund für seine Ansicht an, dass die contractile Blase als Herz zu deuten sei. Den grössten Theil der folgenden Beobachtungen über Entwickelung der Infusorien habe ich gemeinschaftlich mit meinem Freund E. Claparède angestellt, so dass er ebenso viel Antheil an denselben hat als ich.
dann wird gleichzeitig mit der äusseren Einschnürrung des Thierkörpers die neue Rinne von der alten getrennt. (Bei
Stentor tritt die neue Stirnwimperreihe zuerst als seitliche gerade Wimperreihe, crista lateralis nach Ehrenberg, am
alten Thiere auf.) Bei Thieren, welche noch eigene Körperfortsätze als Bewegungsorgane (Haken, Griffel etc.) be-
sitzen, geschieht die Theilung meist so, dass jedes der neu-
gebildeten Thiere einen Theil derselben vom alten Thiere bekommt, während sich der andere Theil neu bildet. Stein
gibt eine unrichtige Darstellung der Theilung der Vorticellini-
en, indem er glaubt, dass vor derselben die Wimper scheibe,
Oesophagus etc. des alten Thieres resorbirt, und wenn die
Theilung schon weiter vorgeschritten ist, zwei neue Wimper-
apparate gebildet würden. Dies ist jedoch nicht der Fall; bei
sorgfältiger Beobachtung sieht man während des ganzen
Vorganges der Theilung die Bewegung der Wimpern auf dem
Wirbelapparat und im Vestibulum und Oesophagus des durch
das Peristom geschlossenen Thieres. — Früher war in der
Familie der Acinetinen Theilung noch nicht beobachtet, und
ist erst in neuester Zeit von Cienkowski
1) von *Podophrya fixa* beschrieben: der eine der beiden Theilungssprosslinge bekommt Wimpern, zieht die Rüssel ein und schwimmt als rings bewimpertes Thier davon, um sich bald darauf unter
Verlust der Wimpern wieder in eine *Podophrya* zu verwandeln; dasselbe findet bei *Acineta mystacina* Statt, auch hier
der eine Theilungsspross rings bewimpert.

Weit weniger verbreitet als die Theilung ist die Knospung,
bis jetzt nur bei Vorticellinen, Acinetinen (hier nur bei *Den-
drosoma radians* Ehbg.) und bei *Spirochona gemmipara* St.,
deren Stellung mir noch zweifelhaft scheint, bekannt
2). Bei den Vorticellinen bildet sich die Knospe als ein Wulst des

2) A. Schneider beschreibt in Müllers Archiv 1854 pg. 205 eine
Vermehrungsweise der *Difflugia Enckelyts* als Sprossung oder Knos-
pung, die jedoch vielleicht mit grösserem Recht als Theilung zu be-
trachten ist. Auch von *Urella bodo* Ehbg. = *Phacelomonas bodo* St.
wird Vermehrung durch Knospenbildung von Stein pg. 191 angegeben.
Parenchymus an irgend einer Stelle des Körpers, in welchen eine Aussackung der Verdauungshöhle des Mutterthieres sich erstreckt. Die so gebildete Verdauungshöhle der Knospe wird später von der der Mutter abgetrennt, und endlich löst sich die ganze Knospe unter Entwicklung eines hintern Wimperkrankes ab. Bei *Dendrosoma radians* Ehbg. wächst in die mit dem Mutterthier verbunden bleibende Knospe ein Zweig des Nucleus hinein. — Theilung und Knospung geben fast unmerklich in einander über, da nicht immer die Knospensprösslinge dem Mutterthier bedeutend an Grösse nachstehen; will man eine scharfe Grenze zwischen beiden ziehen, so kann man sagen, bei der Theilung bekommt jedes der neu gebildeten Thiere einen vorher bestehenden Theil des Nucleus des alten Thieres, bei der Knospung dagegen bekommt der eine Theil, die Knospe, nur einen neu gebildeten oder gar keinen Theil des alten Nucleus (im letzteren Falle muss sich natürlich in der Knospe selbstständig ein Nucleus entwickeln).

Die eigentliche Fortpflanzung ist erst in neuester Zeit bekannt geworden. Die erste dahin gehörige aber gänzlich unbeachtet gebliebene Beobachtung machte v. Siebold an einem im Darm der Frösche parasitisch lebenden Infusorium (*Bursaria* oder *Opalina*); er fand in demselben in einer Höhle am hintern Körperende eine Anzahl kleiner Embryonen. Später wurden Embryonen zuerst wieder von Focke* 2) entdeckt bei *Paramecium Bursaria* Focke = *Loxodes Bursaria* Ehbg. (dessen Beobachtungen bestätigt und erweitert wurden durch Cohn* 3) und Stein* 4)); dann von Eckhardt* 5) bei *Stentor polymorphus* und *coeruleus* (bestätigt durch O. Schmidt* 6)), von

1) In seiner Arbeit über die Entwicklung des *Monostomum mutabile* in: Wiegmanns Archiv 1835 I.
2) Amtlicher Bericht d. Naturforscherversammlung zu Bremen 1844 pg. 110.
4) a. a. O.
5) Wiegmanns Archiv 1846 I.
6) Forcieps Notizen 1849 pg. 7.

Müller’s Archiv. 1856. 25
Stein ¹) bei vielen Acineten und Chilodon und von Cohn ²), wenn auch weniger genau, bei Urostyla grandis. Aus den Beobachtungen Fockes und Steins schien eine Beteiligung des Nucleus bei der Embryonenbildung hervorzugehen, während Eckhardt diesen nicht berücksichtigte, und Cohn seine Beteiligung für unwahrscheinlich hält. Ich war so glücklich, die Embryonenbildung nicht nur bei vielen Acineten, sondern auch bei mehreren anderen Infusorien zu beobachten. Da die Beschreibung dieser grossentheils gemeinschaftlich mit Herrn E. Claparède angestellten Beobachtungen hier zu weit führen würde, so werden wir beide sie in einer andern Arbeit liefern, und ich gebe hier nur das Schema der Entwicklung, wie wir sie bald mehr bald weniger vollständig beobachtet haben.

Die Entwicklung der Embryonen geht im Nucleus oder einem Theile desselben vor sich; meist sieht man zuerst den Nucleus sich in zwei oder mehrere Theile theilen und dann in einem oder mehreren dieser Theile dieselben Vorgänge statthaben, welche in anderen Fällen im ungetheilten Nucleus vorkommen. Der Nucleus ist meist rundlich oder länglich, selbst (wie bei vielen Vorticellinen und Stentor) lang gestreckt, fast bandförmig; er wird von einer besonders Membran umgeben, wie Stein nachwies, und bietet meist ein homogenes oder sehr schwach feinkörniges Aussehen dar; er scheint beständig eine von dicken Wänden, der Nucleussubstanz, umgebene Höhle einzuschliessen, welche bisweilen (Chilodon) noch einen kleineren Körper, Nucleolus, einschliessst, der in anderen Arten neben dem Nucleus liegt. An oder in der Wand des Nucleus oder eines Theilungsproductes desselben erblickt man nun bisweilen kleine runde Kügelchen, welche an Grösse zunehmen, endlich eine contractile Blase bekommen und zu Embryonen werden, welche endlich mit Wimpfern versehen aus dem Mutterthier hervortreten und frei umherschwimmen, meist in einer von der des Mutterthieres mehr

¹) a. a. O.
²) a. a. O.
Ueber die Organisation der Infusorien, besonders der Vorticellen. 387

oder weniger abweichenden Gestalt. In einem Theile des Nucleus kann sich eine sehr verschiedene Anzahl von Embryonen bilden, man findet bei denselben Arten bald viele, bald nur einen in demselben gebildet; ein in einem Nucleusstücke allein entwickelter Embryo pflegt fast die Grösse zu erlangen, welche viele in einem Nucleus oder Nucleusstück gemeinschaftlich entstandene Embryonen zusammen besitzen.

Welche nun eigentlich die Bedeutung des Nucleus ist, wird natürlich durch diese Darstellung nicht entschieden; ob er als Keimstock zu betrachten ist, in welchem ungeschlechtlich Keime gebildet werden, ob als Eierstock, in welchem sich zugleich die Eier entwickeln, oder ob, wie es die Ansicht Fockes war, als Uterus, in welchem die Eier oder Keime, die an einem andern Orte (vielleicht im Nucleolus?) gebildet wären, weiter entwickelt würden.

Das Schicksal der der Mutter unähnlichen Embryonen nach ihrer Geburt ist für die meisten noch nicht bekannt. Für die Acineten stellte bekanntlich Stein eine eigene Theorie auf, die er mit vielen Beispielen zu belegen suchte; die Acineten sollten metamorphosirte Vorticellen sein, die in dieser umgewandelten Gestalt durch Erzeugung von Embryonen zur Fortpflanzung dienten; die Embryonen sollten, so glaubte Stein, wieder zu Vorticellen werden; leider beobachtete er dies nie direct, er verlor stets die Embryonen aus dem Gesicht, ehe ihr Schicksal sich entschieden hatte. Für die Umwandlung der Vorticellen in Acineten brachte er vermeintliche Uebergänge, in deren Reihe jedoch stets bedeutende Lücken waren. Manche von diesen Zwischengliedern, stets Cystenzustände, haben so wenig scharfe Charaktere, dass man sie auch als Cystenzustände zu sehr vielen anderen Infusorien ziehen könnte, und können deshalb nur dann einen Beweis für den behaupteten Uebergang liefern, wenn man sicher ist, bei einer Reihe von Beobachtungen über die Verwandlung einer Art es stets mit denselben Individuen zu thun zu haben, und die Möglichkeit ausschliesst, Individuen anderer Arten mit denselben zu verwechseln. Denn der Grund, welcher bei den meisten Acineten, ausser der Analogie mit
den anderen Acineten, für die ihm die Verwandtschaft mit den Vorticellen wahrscheinlich geworden ist, fast der einzige ist, welchen Stein für seine Ansicht anführen kann: das häufige Zusammentreffen gewisser Acineten und Vorticellen beweist begreiflicherweise so wenig hier wie bei anderen Thieren eine Verwandtschaft. Das häufige Schmarotzen gewisser Acineten auf gewissen Vorticellinen ist natürlich ebenso wenig ein Beweis, wir finden nicht selten auf denselben Vorticellinen noch andere infusorielle Schmarotzer, so dass wir die Auswahl hätten, welchen wir als den Verwandten des Wirths betrachten wollen.

Für die Verwandtschaft einiger Acineten und Vorticellinen führt Stein ein Wechseln im Auftreten derselben an, so dass in einem Gefäss, in welchem anfangs eine grosse Zahl z. B. von Vorticella microstoma sich befand, nach einer Zeit diese mehr und mehr an Zahl abnimmt, während allmälig immer mehr Individuen einer bestimmten Acinetenart, im angeführten Fall Podophrya fixa, auftreten. Hier können ja sehr wohl Veränderungen in dem umgebenden Medium Verhältnisse herbeigeführt haben, welche der ersten Art ungünstig waren und sie zur Encystirung zwangen, während sie der andern Art vielleicht erst die günstigen Bedingungen zum Leben und zur Vermehrung geben. Einen solchen Wechsel im Auftreten der Arten sehen wir bei vielen Arten 1), so dass die Annahme der Verwandtschaft derselben uns wie Pinneau 2), Dr. G. Gros 3) und Laurent 4) zwingen würde.

den grössten Theil der Infusorien als Entwicklungsstadien derselben Art zu betrachten, ja diese noch mit Räderthieren, Würmern und Krebsen in verwandtschaftliche Beziehung zu setzen. Bei dem angeführten Verhältniss zwischen *Vorticella microstoma* und einer Acinetie finden wir noch einen sehr natürlichen Grund für die gleichzeitige Vermehrung der Acineten und Verminderung der Vorticellen darin, dass die letzteren sehr häufig von den ersteren ausgesogen werden, oft 3-4 Vorticellen zugleich von einer Acineten. — Die angeblichen Zwischenstufen zwischen beiden Infusorienformen sind, wie Cienkowski 1) durch directe Beobachtung bewiesen hat, zum Theil irrig gedacht. Die quergrippte Cyste Steins (Taf. IV. Fig. 30) 2), von der er supponirt, dass sie aus einer Vorticellen-cyste entstanden sei und durch den in Fig.31 dargestellten Zustand in eine Podophrye übergehe, ist nach Cienkowski vielmehr durch die Zwischenstufe Fig. 31 aus einer Podophrye entstanden, ohne jedoch in eine Vorticellen-cyste sich zu verwandeln.

Ein solcher Wechsel im Auftreten gewisser Infusorien kann erst dann einen Schluss auf Verwandtschaft derselben erlauben, wenn man sich durch strenge Isolirung überzeugt hat, dass in einem bestimmten kleinen Raume nur Individuen der einen Art befindlich sind und keine der andern, und wenn man Sorge trägt, dass auch keine solche von aussen hinein kommen können, wenn man sich in die Möglichkeit versetzt, die Individuen zu überwachen. Dies hat Stein immer versäumt; eine einzige von seinen Beobachtungen 3) scheint beinahe dieser Anforderung zu entsprechen, so dass sie ihm zu der unrichtigen Aeusserung 4) verleitet zu haben scheint, er habe „durch unmittelbare Beobachtung 5) die *Vaginicola crystallina* sich in die *Acineta mystacina* verwandeln sehen. Doch auch diese Beobachtung war nicht scharf. Stein fand näm lich an einer Anzahl Conservenfäden, welche er, da sie be-

2) *Orcula Trochus Weisses*.
3) a. a. O. pg. 39.
4) a. a O. pg. 36.
sonders reich mit Vaginicolens besetzt waren, in ein mit rei-
inem Brunnenwasser gefülltes Glas geworfen hatte, nach meh-
neren Tagen „statt der Vaginicolens fast nur noch Acineten“.
Stein sagt nichts davon, dass er sich davon überzeugt, dass
im Anfange gar keine Acinete an den Conhervenfäden geses-
sen, dass er sich etwa durch die Identität der Stelle, an
welcher eine Acineta sасс, mit der, an welcher früher eine
Vaginicola angeheftet war, einige Sicherheit über die Iden-
tität der Individuen verschafft habe, zwei Obliegenheiten, die
doch um eine direkte Beobachtung des Uebergangs einer Form
in die andere zu beweisen, nothwendig hätten erfüllt werden
müssen, und doch lässt er sich, da er die vielleicht abgefal-
lenen Vaginicolenshülsen nicht mehr findet, zu einer kühnen
Hypothese verleiten, die das schwierige Problem der Um-
wandlung einer harten, am Grunde weiten Vaginicolenshülse
in eine am Grunde enge Acinetenhülse lösen soll.

Ich bemühte mich nun durch strenge Isolirung die vor-
handenen Zweifel zu lösen. Seit drei Jahren habe ich sol-
che zu verschiedenen Malen mit verschiedenen Vorticellinen,
mit: Vorticella microstoma, campanula, nebulifera, Carchesium
polypinum, Epistylis plicatilis und Opercularia nutans angestellt;
ich bewahrte bald in einem kleinen Gläschen, bald auf
einem Objectgläschchen jedesmal eine Anzahl von etwa 20 bis
30 Individuen einer der genannten Arten auf, indem ich sie
feucht stellte und bisweilen durch Hinzufügen von destillir-
tem Wasser das Austrocknen verhinderte. Auf diese Weise
erhielt ich häufig genug Cysten von Vorticella microstoma,
aber weder aus diesen noch aus den anderen Vorticellinen
entwickelten sich je Acinetinen. Aus den Cysten von Vorti-
cella microstoma schlüpften bisweilen noch nach 3 ja selbst
4 Wochen unveränderte Vorticellen aus.

Nachdem ich mich nun überzeugt hatte, dass auf diesem
Wege der Uebergang von Vorticellen in Acineten nicht zu
beleiben war, vielmehr durch die angestellten Experimente
immer unwahrscheinlicher wurde, suchte ich den andern Theil
der Hypothese Steins zu prüfen, das Schicksal des Acineten-
embryo zu eruiren. Eine Beobachtung des Herrn Prof.

1) Steins Acineten der Wasserlinsen kann wohl eine eigene Art sein.

Durch das Angeführte scheint mir der Beweis hinlänglich geführt, dass die Ansicht Steins von der Verwandtschaft der Vorticellinen und Acineten nicht nur der thatsächlichen Basis vollkommen entbehrt, sondern selbst als Hypothese höchst unwahrscheinlich ist. Man entschuldige, wenn ich mich zu lange bei derselben aufhalten habe, allein sie schien wohl einer gründlichen Kritik wert, da sie eine ganz neue Art der Fortpflanzung in die Wissenschaft einführte, die sich auf keine der bekannten Fortpflanzungsweisen, auch nicht auf das Gesetz des Generationswechsels zurückführen liess; und es war wohl hohe Zeit, den Maassstab einer gründlichen Kritik an sie zu legen, da sie leider schon von zu vielen Seiten voreilig als sicher erwiesene Thatsache angesehen wurde. Einen Generationswechsel in der Weise, wie er bis jetzt bei
anderen Thieren bekannt ist, können wir auch in dem Wechsel der Fortpflanzungsarten der Infusorien, der Vermehrung durch Theilung oder Knospung und der Fortpflanzung durch Embryonen 1), nicht erkennen, denn dasselbe Thier, das sich eine Zeitlang durch Theilung und Knospenerzeugung vegetativ vermehrt, also als Amme fungirt hat, sehen wir später durch Entwicklung von Embryonen die Rolle der Mutter übernehmen; ja zu gleicher Zeit kann ein Thier sich durch Theilung vegetativ vermehren und durch Entwicklung von Embryonen fortpflanzen, wie es Beobachtungen an Stentoren mir beweisen. Sollte ein Generationswechsel in dem angenommenen Sinne bei den Infusorien vorkommen, so könnte es nur in der Weise sein, dass die im Nucleus entstandenen oder die gleich zu erwähnenden sehr kleinen Embryonen ungeschlechtlich entstanden wären und selbst geschlechtsreif sich nicht vegetativ vermehren, sondern geschlechtlich fortpflanzen, eine Annahme, die aber durch nichts unterstützt und durch die Beobachtung an den Acineten widerlegt wird.

Es sei nun noch erlaubt einer Art der Fortpflanzung zu erwähnen, welche bis jetzt erst in wenigen Fällen und auch in diesen noch nicht genügend beobachtet ist, um entscheiden zu können, ob sie als Modification der besprochenen Entstehung der Embryonen im Nucleus oder als selbstständige Fortpflanzungsart zu betrachten ist. Sie wurde bis jetzt nur von Stein 2) bei Vorticella microstoma und nebulifera und von Cienkowsky 3) bei Nassula viridis beschrieben 4).

In diesen Fällen wurde die Fortpflanzung durch Encysti-

1) Auch wenn dieselbe als geschlechtliche Fortpflanzung nachgewiesen würde.
2) a. a. O.
4) Vielleicht gehört hierher auch die von Weisse und Stein beschriebene Fortpflanzung des Chlorogonium eucnlorum (falls sie nicht nur eine Theilung in viele Theile nach vorhergegangener Häutung ist),
Ueber die Organisation der Infusorien, besonders der Vorticellen. 395

... rung eingeleitet, dann traten in dem Körper, welcher allmählich sich in eine einfache Blase ohne erkennbare Organe, Mutterblase St., umwandelte, mehrere grosse umschriebene Körper, vielleicht vergrösserte Theile des Nucleus auf, die sich später in die Cyste durchbrechende Fortsätze verlängerten, diese liessen an der Spitze aufbrechend eine grosse Zahl kleiner monadenartiger Wesen austreten, welche sich bald im Wasser zerstreuten. Stein sah nur in seinen neuesten Beobachtungen bei Vorticella microstoma das Auftreten von grösseren Kugeln, „Tochterblasen“, innerhalb der „Mutterkugeln“, früher hatte er nichts dergleichen bemerkt; es muss dahin gestellt bleiben, ob er sie überschien, ob vielleicht statt mehrerer nur eine sehr grosse Kugel entstanden war, die die „Mutterblase“ ganz ausfüllte, oder oh wirklich zwei verschiedene Entwickelungsweisen hier vorkommen. Dies ist die einzige Fortpflanzungsweise der Infusorien, welche bis jetzt nur an encystirten Thieren beobachtet ist, doch weisen von Herrn E. Claparède und mir an einem noch unbeschriebenen, eine Hülse bewohnenden Infusorium gemachte Beobachtungen darauf hin, dass die Encystirung auch für diese Art der Fortpflanzung nicht nothwendige Bedingung ist. Innere Embryonenbildung ist bei Chilodon von Stein besonders an encystirten Thieren beobachtet, doch kommt sie nach ihm auch an freien vor. Theilung ist sehr häufig innerhalb der Cysten; manche Infusorien scheinen sich häufiger in Cysten, als frei schwimmend zu theilen, so dass es wohl scheinen kann, als diene die Cyste zum Schutz für das sich theilende Thier, doch ist sie keinenfalls dazu nothwendig, da kein Beispiel bekannt ist von einem Infusorium, das sich zur Theilung immer encystirt. So scheint der Haupt-, wo nicht einzige Zweck der Encystirung der des Schutzes vor äusseren ungünstigen Verhältnissen zu sein.

Ueber den eigenthümlichen Prozess der Copulation oder Zygose der Infusorien will ich, da sein Zweck noch voll-

...

Fassen wir noch einmal kurz die Resultate der gegebenen Darstellung zusammen, so sehen wir: dass die Infusorien nicht als einzellige Thiere betrachtet werden dürfen, dass sie aber auch nicht einen polygastrischen Verdauungsapparat haben, sondern eine grosse mit einem After versehene Verdauungshöhle besitzen, in welche vom Munde meist ein Oesophagus herabhängt; dass im Körperparenchym Aller ein Gefässsystem enthalten ist, dessen Mittelpunkt die contractile Blase darstellt; dass sie außer der Theilung und Knospung noch eine Fortpflanzungsweise besitzen, bei welcher im Nucleus kleine Embryonen gebildet werden, dass jedoch noch nirgends bei den Infusorien ein Generationswechsel nachgewiesen ist; dass endlich Stein's Ansicht vom Zusammhange der Vorticellen und Acineten eine unbegründete und unwahrscheinliche Hypothese ist.

1) Ich sah mehrere Arten in Conjugation, unter andern auch die Acineta mystacina.
Über die Organisation der Infusorien, besonders der Vorticellen 397

Erklärung der Abbildungen.

Die Vergrößerungen aller Figuren, mit Ausnahme der schwächer vergrößerten Fig. 8, sind etwa 300. Die Bezeichnungen der einzelnen Theile sind in allen Figuren möglichst übereinstimmend, so dass aa das Peristom, b den Anfang der zum Munde führenden Wimperreihe, cd bei den Vorticellen den Eingang in das Vestibulum, das zwischen cd und eJ liegt, e den After, f den Mund, g das äussere Ende der im Vestibulum gelegenen Borste, h oder fh den Oesophagus, hi den Pharynx, k die contractile Blase bezeichnet.

Fig. 1—5. Vorticellinen. Von den Wimpern der äusseren Reihe sind immer nur die am Rande der Figur sichtbaren gezeichnet.

Fig. 1. Vorticella campanula, von der Bauchseite gesehen. Bei e sieht man durch den Mund in das Lumen des Oesophagus, der Pharynx ist in dieser Stellung nicht zu sehen; von den vor dem Munde gelegenen stärkeren Wimpern ist nur eine gezeichnet. Der blaue gebogene Körper stellt einen Theil des Nucleus vor.

Fig. 2. Vorticella nebulifera, im Tode aufgetrieben, so dass das Peristom verstrichen ist. Der Theil der Wimperspirale, welcher auf dem Rücken des Thieres gelegen ist, ist nur durch eine punktierte Linie angedeutet.

Fig. 3. Carchesium polypinum, von vorn gerade auf die Wimper scheibe gesehen; die Wimper spirale ist nur durch eine punktierte Linie angegeben. Den Pharynx sieht man nur im Durchschnitt. k stellt den Durchschnitt des von der contractilen Blase nach der Wimper scheibe verlaufenden Fortsatzes dar.

Fig. 4. Opercularia berberina St., vom Rücken gesehen. Der im Vestibulum gelegene Theil der Wimper spirale ist nur durch eine Linie angedeutet. Bei l dieser und der folgenden Figur ist ein noch spindelförmiger Bissen gezeichnet. Der blaue Körper links über h stellt einen Durchschnitt des Nucleus dar.

Fig. 5. Scyphidia limacina m. Durch ein Verschlagen sind die Wimpern nicht auf dem äussersten Rande der Wimper scheibe gezeichnet, wie sie es sollten.

Fig. 6 und 7. Chaetospira Muelleri m., in ihrer Hülse n sitzend. Von den feinen den ganzen Körper bedeckenden Wimpern sind nur in Fig. 6 einige gezeichnet.

Fig. 6. Ein wirbelndes Thier. Bei m ist ein Kothballen auf dem Wege zum After.

Fig. 7. Ein Thier, eben erst ausgestreckt, noch nicht wirbelnd.

Fig. 8. Stentor polymorphus, schwach vergrössert. Man sieht an der rechten Seite der contractilen Blase k das verschiedene Auswul stungen zeigende Seitengefass nach hinten verlaufen. aa sind die bei-
den Erweiterungen des Ringgefäßes. Der After e liegt auf der dem Beobachter abgewendeten Rückenseite.

Fig. 9 gibt den Durchschnitt durch einen Theil des hintern Endes des Stentor. Der dünne, blasse, äusserste Theil stellt die Wimpern und Haare tragende Haut, der dunkle weiter nach innen gelegene das Körperparenchym dar, in welchem links einige Erweiterungen des Längsgefäßes gelegen. Die Pfeile in der Verdauungshöhle geben hier wie bei allen Figuren, bei denen sie angebracht, die Richtung der Chymusströmung.

Fig. 10. Euplotes Charon, vom Bauch gesehen.
Fig. 11. Schematischer Durchschnitt eines Paramecium. Zu äusserst die Wimpern tragende Haut, dann das die beiden contractilen Blasen enthaltende Körperparenchym, die Verdauungshöhle einschliessend; hinter dem Munde der After.

Fig. 12. Amphileptus fasciada.
Fig. 13. Enchelys farcimen, ein kleines, verschlucktes Infusorium enthaltend; das Thier selbst wird von
Fig. 14, einer kleinen Acineta ferrum equinum Ehbg., ausgesogen; diese ist in Folge langen Hungerns blass, so dass man den hufeisenförmigen Nucleus erkennt, nach dem Fressen erhält sie das dunkle Aussehen der Fig. 15.
Zur Entwicklungsgeschichte der Spongillen.

(Nachtrag.)

Von

N. Lieberkühn.

(Hierzu Taf. XV.)

Dass die Gemmulae sich aus Schwammzellenhaufen bilden, beobachtet man sehr vollständig an demjenigen verästelten Schwamm, welcher Gemmulae mit glatten Schalen besitzt. Man findet auf Längsdurchschnitten eines geeigneten Stückes: 1) Gemmulae, welche vollständig entwickelt sind und aus einer glatten Schale und einer grossen Menge von den zuerst von Meyen genau untersuchten Ballen bestehen; jeder solcher Ballen ist kugelig und enthält in seinem Innern eine eierweissartige Flüssigkeit und viele das Licht stark brechende Bläschen; er ist etwa so gross wie eine Schwammzelle, und zerfällt schnell im Wasser; 2) mit deutlicher Schale versehene Gemmulae, welche die Meyenschen Ballen und ausserdem Körperchen in sich bergen, welche die Meyenschen Ballen haben, aber sich dadurch von diesen unterscheiden, dass sie veränderliche Fortsätze bilden, wie Spongillenzellen; 3) Gemmulae mit deutlicher Schale und dem Porus versehen, welche nur die Fortsätze bildenden Körperchen enthalten; einige dieser Körperchen enthalten denselben Nucleus und Nucleolus, wie die Schwammzellen, und unterscheiden sich von diesen nur dadurch in ihrem Aussehen, dass sie von den bereits erwähnten Bläschen fast vollständig erfüllt sind; 4) kugelige mit den Gemmulae in der Grösse übereinstimmende Haufen, welche aus den eben beschriebenen, Fortsätze streckenden Körperchen und aus entschiedenen Spongillenzellen bestehen.
Die Spongillenzellen haben einen deutlichen Nucleus und Nucleolus in ihrem Innern und ausserdem eine äusserst feinkörnige Masse, welche entweder gleichförmig durch die ganze Zelle verbreitet ist, oder sich zu kleinen kugeligen Häufchen zusammengelagert hat; diese kugeligen Häufchen haben die Grösse der vorher erwähnten Bläschen und in manchen Zellen finden sich ausser ihnen mehrere solcher Bläschen. Auf einigen der kugeligen Zellenhaufen erblickt man bereits eine äusserst feine strukturlose Membran.

Was aus dem Inhalte der Gemmulae wird, ist von Carter mitgetheilt worden. (Descriptive Account of the Freshwater Sponges in the Island of Bombay, with observations on their structure and Development in the Annals and Magazine of Natural History 1849 pg. 81.) Dieser Beobachter berichtet, dass der reife Inhalt einer Gemmula, unter Wasser in einem Glasgefass ausgedrückt, in Schwammzellen übergehe; es sollen die einzelnen Zellen alsdann zerplatzen und der Inhalt derselben, nämlich die grösseren Bläschen (germs)
und die weit feineren, eine lebhaft zitternde Bewegung zei-
genden Körnchen nebst der eisweissartigen Substanz der Zel-
len sich auf dem Boden des Gefässes ausbreiten; nach eini-
ger Zeit sollen die grösseren Bläschen (germs) verschwinden
und an ihrer Stelle die bewegungsfähigen Schwammzellen
auftreten. Carter gibt ferner an, dass er denselben Vor-
gang auch bei Gemmulis beobachtet habe, welche ohne vor-
ausgegangenen Druck freiwillig ihren Inhalt entleerten; er
bildet auch eine junge Spongille ab, welche mehrere regel-
mässig sich zusammenziehende und wieder ausdehnende Bla-
sen in ihrer durchsichtigen Substanz gezeigt haben soll; ob
dies wirklich eine Spongille war, lässt sich aus Carters
Angaben wohl kaum entscheiden, wenigstens habe ich weder
bei den aus Schwärmsporen erzogenen, noch bei sonst irgend
einer Spongille jemals contractile Behälter auffinden können;
dagegen sie sehr häufig bei den grösseren und kleineren
Amöben beobachtet, welche öfters in den Spongillen para-
sitisch vorkommen.

Auch habe ich oft den Versuch gemacht, den unter Was-
ser ausgedrückten Inhalt der Gemmulae zur Entwicklung zu
bringen, indessen immer vergeblich. Es zerplatzten wohl
die meisten Zellen und die darin enthaltenen Bläschen brei-
teten sich auch auf dem Boden des Gefässes aus, lagen hier
bisweilen wochenlang in einer dünnen Schicht bei einander,
Schwammzellen entstanden aber in keinem Fall daraus. Eben
so wenig trat eine Entwicklung von Schwammzellen ein, wo
binnen wenigen Minuten der ganze Inhalt von Gemmulis, die
ich in Wasser gelegt hatte, freiwillig ausfloss und sich in
ähnlicher Weise auf dem Boden des Gefässes ausbreitete,
wie es oben beschrieben wurde. Der Vorgang der Entwick-
elung des Inhaltes der Gemmula ist ein ganz anderer und
zwar folgender. Im Spätherbst hatte ich eine grosse Anzahl
Gemmulae in verschiedene mit mehreren Quart Wasser an-
gefüllte Glasgefäss vertheilt. In einzelnen Gefässen lagen
die Gemmulae vereinzelt umher, in anderen steckten sie noch
in den Skeletten fest und zwar ohne von irgend freier Zel-
lenmasse begleitet zu sein. In der Mitte des März war der

In einigen Fällen löste sich der ausgetretene Inhalt der Gemmula in Form einer oder zweier Kugeln von der Gemmulaschale ab und blieb so auf dem Boden des Gefässes liegen; wurden solche Kugeln ohne Anwendung eines Deckglases
Zur Entwicklungsgeschichte der Spongillen.

403

mit dem Mikroskop untersucht, so zeigten sie zuweilen hier und da leichte Erhebungen und spitze Fortsätze auf ihrer Oberfläche, welche wieder verschwanden, während andere hervortraten.

Die von grünem Schwamm entnommenen Gemmulae wurden dunkler und der Inhalt trat in eben derselben Weise aus dem Porus heraus, wie bei den farblosen. Schon mit blossem Auge erkannte man seine grüne Farbe. Auch hier verschwinden allmählich die grüseren Bläschen der Zellen und es treten an ihrer Stelle die sich grün färben den feinen Körnchen auf; und zwar deuten folgende Formen die mögliche Entstehung der letzteren aus den ersteren an: es kommen Körperchen von der Form und Grösse der Bläschen vor, welche eine zerrissene und unregelmässige Oberfläche haben und in ihrem Innern feine zum Theil grüne Körnchen bergen; ferner finden sich zusammenklebende Körnchenhaufen von der Grösse jener Bläschen. Die Grösse der Zelle schwankt zwischen 0,03 und 0,02 Mm., die der Nuclei zwischen 0,01 und 0,007 Mm., die der Nucleoli beträgt ungefähr 0,003, die der feinen Körnchen 0,001 Mm.

Auch an den Gemmulis, welche noch in den Skeletten steckten, wurde der eben beschriebene Vorgang wahrgenommen. Die herausstretende Zellenmasse breitet sich hier allmählich gleichmässig über das ganze Skelet aus und es entsteht so wieder ein Schwammstück von demselben Aussehen wie vorher, ehe die Gemmulabildung stattgefunden hatte. Der Inhalt der verschiedenen Gemmulae fliesst so vollständig zusammen, dass man bald die ursprünglichen Grenzen der einzelnen nicht mehr erkennt.

Die mitgeteilten Vorgänge habe ich sowohl bei glattschaligen als auch bei den mit sternförmigen Amphidiskinen besetzten Gemmulis beobachtet.

Der Inhalt einer grünen Gemmula verhielt sich am achten Tage nach seinem Austritt folgendermassen: das Ganze bildet einen scheibenförmigen, nach der Mitte hin sich mehr und mehr erhebenden Körper von 3 Mm. im grössten Breitendurchmesser. Am Rande ist dieser Körper farblos und durchsichtig, nach der Mitte zu wird er mehr und mehr grün. Im Zentrum liegt die entleerte Gemmulaschale (2/₃ Mm. im Durchmesser), welche ihre kugelige Gestalt beibehalten hat. Die Bewegungsserscheinungen dieses Körpers nimmt man nicht direct wahr, weil sie zu langsam geschehen; erst nach Stunden sieht man bisweilen, dass Hervorragungen und Einbuchtungen der farblosen Substanz verschwunden sind, welche vorher sichtbar waren.

Zur Entwicklungsgeschichte der Spongillen.

405

Stacheln hinein erstreckte. Eine vierte Form der Gemmulae bietet das Charakteristische, dass ihre Schalen statt mit Amphidischen mit kleinen stacheligen, meist ein wenig gekrümmten Kieselnadeln besetzt sind, während die dazu gehörigen weit längeren Skelettnadeln eine glatte Oberfläche haben. Solche Gemmulae liegen gewöhnlich dicht gedrängt an einander, entweder in kugeligen Haufen von fünf und mehrern, oder in einer einfachen Lage; sie hängen oft so fest zusammen, dass sie nur mit grosser Schwierigkeit von einander getrennt werden können. In der Regel liegen die Belagsnadeln dicht neben einander auf der ganzen Oberfläche der Gemmula, bisweilen kommen sie nur vereinzelt darauf vor.

Eine Spore, welche von Keimkörnern angefüllt war, wurde in ein Glasnäpfchen gebracht, nachdem sie drei Tage in einem grossen Gefäss gelebt und ihre Bewegungen eingestellt hatte; sie hatte bereits die Wimpern verloren, nur an einer Stelle hingen noch einige Zellen mit ihrem Wimperhaar. Spicula und Keimkörper sah man unmittelbar unter der Corticalsab-
N. Lieberkühn:

スタンツ、 welche keine Struktur und nur hier und da leichte Erhebungen zeigte. Am folgenden Tage sass die Spore so fest auf dem Glase, dass sie selbst bei starken Erschütterungen desselben nicht aus der Stelle gerieth. Von Wimpern und deren Zellen erkannte ich jetzt keine Spur mehr; an einer Stelle ragte ein breiter durchsichtiger Fortsatz hervor, welcher auf die Glasfläche ergossen war und ungefähr die Hälfte von der Länge des Durchmessers der Spore hatte; im Uebrigen war die Spore noch kugelig. An einzelnen anderen Stellen wurden weit kleinere durchsichtige, strukturlose Fortsätze hervorgehoben und wieder zurückgezogen, meist jedoch so langsam, dass die Bewegungen nur aus der binnen einigen Minuten veränderten Gestalt geschlossen werden mussten. Im Verlaufe von zehn Minuten verlängerte und verbreiterte sich der grössere Fortsatz mehr und mehr und es drangen die feinen Körnchen und Keimkörner allmälig in ihn ein; die Dicke der Spore verriegerte sich dabei zusehends. Mittlerweile bildete sich auch auf der entgegengesetzten Seite ein ähnlicher Fortsatz, welcher sich gleichfalls mit Körnchenmasse füllte. Die Corticalsubstanz setzte sich nun nicht mehr gegen eine Medullarmasse ab, sondern das Ganze gewährte einen ähnlichen Anblick wie eine grosse Amöbe, welche Keinkörner und Spicula in ihrem Innern tragen würde. Wenn die Corticalsubstanz jetzt noch bliebe, so könnte sie nur als eine feine, äusserst elastische Membran fortexistiren; ihre Isolirung ist mir in diesem Stadium niemals gelungen. Die in der äussersten Umgrenzung der jungen Spongille liegende Substanz bricht das Licht sehr schwach und bildet nur eine äusserst düne Lage; hin und wieder finden sich in ihr kleine Vacuolen, welche sich mit den nicht contractileu der Infusorien vergleichen lassen. Diese Substanz war nun eine Zeit lang in einer direct wahrnehmbaren Bewegung begriffen, sie floss langsam hin und her, dehnte sich über neue Stellen des Glases aus und zog sich von daher wieder zurück; bisweilen erschienen auch Zackige Fortsätze. Zur Beobachtung dieser Vorgänge ist besonders die schiefse Beleuchtung geeignet; die Spongille bleibt dabei immer in einer hinreichenden Quantität Wasser und geht während dessen nicht zu Grunde,
selbst wenn man sie mit einem Deckgläschchen bedeckt. Am folgenden Tage hatte sie sich nach allen Seiten hin auf dem Glase ausgebreitet, wie sich schon mit bloßem Auge erkennen liess. Der peripherische Theil war durchsichtig und erst in einiger Entfernung vom Rande lagen die Körnchen, Keimkörner und Spicula; die letzteren lagen unregelmässig durch einander, einige ragten mit ihren Spitzen bis an den durchsichtigen Rand. Die Keimkörner befanden sich in einem sehr verschiedenen Zustande; einzelne verhielten sich genau so, wie die, welche oben als Theile der Keimkörnerconglomerate beschrieben sind; man unterschied in einigen die strukturlose, das Licht stark brechende Hülle und einen sich gegen dieselbe absetzenden strukturlosen Inhalt; andere hatten ihre kugelige oder linsenförmige Gestalt verloren und zeigten viele mehr oder weniger tiefe Einschnürungen; wieder andere bestanden zur Hälfte aus kleinen kaum noch zusammenhängenden Stückchen und waren zur andern Hälfte noch unversehrt; andere waren in viele kleine Stücke zerfallen, welche zusammen noch die Form des Keinkornes darboten. Schon allein aus diesem Verhalten der Keimkörner geht hervor, dass die Keimkörnerconglomerate nicht aus den Schwärsporen entstehen können, wohl aber kann die Schwärspore aus dem Keimkörnerconglomerat entstehen, letzteres brauchte nur eine dickere Umschlagssubstanz und ein Wimperepithelium zu erhalten, um die Form der Schwärspore zu besitzen. Ob dies wirklich so stattfindet, und wie das Keimkörnerconglomerat selbst entsteht, ob vielleicht einfach durch eine Zusammenlegung von Schwammzellen, welche ihren Nucleus und Nucleolus verlieren: über alles dies fehlen noch die Beobachtungen. Ein Keimkorn nimmt ganz das Ansehen einer Schwammzelle an, wenn man es mit Essigsäure behandelt, es verschwindet nämlich sogleich die scharfen dicken Contouren und im Innern erscheint eine Körnchenmasse, von welcher man vorher nichts wahrnahm.

Am achten Tage ergab die Untersuchung folgendes Resultat. Die Nadeln lagen an ganz anderen Stellen und fanden sich in grösserer Anzahl vor. Die meisten lagen in der Mitte,
Grösse, sie hatten die Grösse von den kugeligen Anschwel-
lungen mancher ausgewachsenen Nadeln; alle waren feuерbe-
ständig. Man kann beobachten, dass jene Kieselgebilde wach-
sen; wenn man sie in Zwischenräumen von einigen Wochen
misst, überzeugt man sich von der Zunahme der einzelnen
Durchmesser. Im abgestorbenen Schwamm zeigen sie in ih-
rem Innern meist eine Aushöhlung, wie Ehrenberg dies
vielfach abgebildet hat. Es kommen auch sehr unregelmässige
Formen dieser Kieselgebilde in verschiedenen Schwärmporen
vor, z. B. Kugeln mit drei oder vier Spitzen, kreuzförmige
Gebilde u. s. w.; in anderen Schwärmporen finden sich nur
die regelmässigen, oben angeführten, Formen vor. Alle diese
Gebilde sind weit kleiner wie die im ausgebildeten Schwamm
vorkommenden, von Ehrenberg vielfach abgebildeten und
mit Namen belegten Formen.

Nach sechs Wochen verhielt sich die vorher besprochene
Spongille folgendermaassen. Die Breite des Körpers hatte un-
gefähr um die Hälfte der ursprünglichen Grösse zugenommen,
die Höhe vielleicht um das Sechsfache. Die Nadeln hatten eine
charakteristische Lagerung schon ganz wie bei den ausgebil-
deten Spongillen. Sie ragten in Bündeln zu dreien oder meh-
ren verein in über die Oberfläche der Spongille nach oben und
nach den Seiten heraus, theils in vertikaler, theils in mehr
oder weniger geneigter Stellung. Auf dem breiten Gipfel der
Spongille standen etwa zwanzig solcher Bündel nahezu im
Kreise. Die Bündel waren wieder durch einzelne Nadeln oder
durch Nadelbündel unter einander verbunden; die Richtung
der einzelnen Nadeln eines Bündels ist eine sehr verschiedene
und ändert sich zuweilen während der Beobachtung. Grösse
und Anzahl der Nadeln haben beträchtlich zugenommen; ich
zählte allein in den oberen Bündeln etwa siebenzig, während
bei der Fixirung der Spore nur zehn im Ganzen gezählt wur-
den. Diese Nadelbündel entsprechen denjenigen Nadelbündeln,
welche man bei den ausgewachsenen Spongillen als Spitzen
schon mit blossem Auge hervorragt sieht. An einzelnen Bün-
deln war auch eine feine strukturlose Membran zu sehen, wel-
che ich nun auch bei allen lebenden farblosen und grünen ver-
ästelten und unverästelten Schwämmen mehrfach gefunden habe und deren bereits Meyen erwähnt; es werden dadurch die einzelnen Nadeln zu Bündeln und die Bündel zum Skelet zusammengehalten, welches oft noch lange Zeit fortbesteht, nachdem die Gallertsubstanz längst zu Grunde gegangen ist und von Neuem der Wohnsitz junger Spongillen wird, die es mit ihrer Zellenmasse und ihren Nadeln wieder überziehen und durchdringen.

Während des Sommers und Herbstes habe ich nun viele Hunderte von Schwärmsporen auf die angegebene Weise zur Entwicklung kommen sehen. In vielen Fällen vermehrten sich die Nadeln weit weniger, als es so eben dargestellt ist, und war auch die Grösse der Spongille viel geringer. So beobachtete ich mehrere Exemplare, welche selbst nach acht Wochen sich nur wenig über die Fläche des Glases erhoben hatten und zwar nur in ihrem mittleren Theile; man konnte hier noch deutlich die einzelnen Zellen unterscheiden, was bei dem vorher beschriebenen Exemplar nicht mehr anging, ohne es vorher zu zerstören. Am Rande dieser sechswöchentlichen Spongillen rückten die Zellen bisweilen so weit aus einander, dass sie nur mit dünnen Fortsätzen, welche sie hervorstreckten, noch unter einander zusammenhingen. Daher ist der ganze Körper eines solchen Exemplares noch in einem beständigen Wechsel der Form begriffen; man sieht im Laufe eines Tages an den verschiedensten Stellen längere und kürzere Fortsätze hervor- und wieder zurückfließen. In dem mittleren Theile einer achtwöchentlichen Spongille hatten sich mehrere Hohlräume gebildet, deren jeder etwa den fünften Theil des Breitendurchmessers der Spongille in der Breite besass; ein solcher Hohlraum war rings umgeben von einer mehrfachen Lage Zellen, in der sich mehrere Nadelbündel befanden; die Basis des Hohlraumes bestand aus einer einfachen Zellschicht, in der man Nuclei und Nucleoli bei der geeigneten Einstellung des Mikroskops erkennen konnte; nach oben war der Hohlraum ebenfalls geschlossen und zwar von einer äusserst dünnen schleimartigen Masse, in der bisweilen ein Nucleus und Nucleolus zu sehen war, es war wohl die sehr ausgedehnte Zellensubstanz.
Am folgenden Tage waren die Zellen und Nadeln wieder aus einander gerückt und von diesem eigenthümlichen Aufbau nichts mehr zu sehen.

Die Schwärmsporen, welche in ihrem Innern noch Keimkörner tragen, sind nicht die häufigeren; in der Regel ist der Prozess der Zerlegung der Keimkörner schon in der Schwärmspore wenigstens zum grossen Theil abgelaufen, während sie die Wimpern trägt. Hat eine Spore vielleicht gerade noch eins, zwei oder etwa drei unversehrte Keimkörner, wenn sie sich zur Entwicklung festsetzt, so ist die Gelegenheit gegeben, an ein und demselben Keimkorn den Prozess der Zerlegung in Körnchen binnen wenigen Tagen zu beobachten, da man sie bei der Durchsichtigkeit der ausgebreiteten Spongille leicht wiederfindet. Das Zerfallen der Keimkörner in Körnchen ist keine Verwandlung derselben in Fett: denn Essigsäure macht die Körnchen sogleich durchsichtig und bald unsichtbar.

Wie das Zerfallen der Keimkörner so häufig schon in der bewimperten Spore eintritt, so kommt es auch vor, dass bereits die Zellenbildung hier beginnt; man sieht dann schon an dem unversehrten Körper der Spore die einzelnen jungen Zellen hindurchschimmern, indem sie dicht unter der Oberfläche in den verschiedensten Formen ausgebreitet liegen, und bisweilen während der Beobachtung die Gestalt verändern. Zerdrückt man eine solche Spore vorsichtig mit dem Deckglase, so erhält man die Körnchenhaufen mit dem Nucleus und Nucleolus in grosser Zahl unversehrt, vielfach aber auch freie Kerne mit ihren Kernkörperchen; bisweilen platzt auch ein Nucleus auf und der Nucleolus tritt hervor.

Die Membran der Zelle habe ich bei den jungen Spongillen noch nicht isolirt gesehen; bei den alten dagegen habe ich mehrmals Folgendes beobachtet: eine grosse Zelle platzte an einer Stelle, und es trat die zähe Substanz als ein zusammenhängendes Stück mit Körnchen, Nucleus und Nucleolus aus der Umbüllungsmembran heraus; letztere blieb unbeweglich liegen; der Zellinhalt vollstreckte jedoch noch lange Zeit amöbenartige Bewegungen, indem Kern und Kernkörper dabei ständig hin und her geschoben wurden.
Einige Schwärmsporen überzogen gleich nach dem Verschwinden des Wimperepitheliums fremde Körper, welche gerade in der Flüssigkeit lagen; so legte sich eine in der Weise um eine Baumwollenfaser herum, dass diese das ganze Innere der Spongille durchzog und nur mit ihren beiden Enden frei hervorragte. Im Laufe eines Tages hatte die Spongille den Faden zum größten Theil wieder verlassen und sich auf dem Boden des Glases festgesetzt. Eine andere Spongille überzog ein Bündel von alten Kieselnadeln so vollständig, dass es ganz und gar in seinem Körper steckte.

An vielen jungen Spongillen bemerkt man etwa vom fünften Tage der Festsetzung ab eine kegelförmige, von gallerthiger Substanz gebildete Hervorragung, welche sich bisweilen auch auf eine oder mehrere emporragende Nadeln stützt; bei Bewegungen des Wassers schwingt dieselbe hin und her; eine Öffnung habe ich an ihr ebenso wenig wie an einer andern Stelle des Embryo wahrgenommen.

Wenn junge Spongillen etwa am achten Tage nach der Festsetzung oder etwas früher oder später abstarben, so begann dies meist damit, dass eine Anzahl Nadeln aus dem Bereich der weichen Körpersubstanz herausgeschoben wurde; die gallertige
in einen Klumpen zusammengezogene Masse wurde allmählich kleiner, und wenn man sie in Stücke zerdrückte, so zeigten diese die Bewegungsercheinungen nicht mehr; gewöhnlich fanden sich Schaaren von Monaden, Glaucomen, Amoeba diffluens und anderen Infusorien in ihrer Nähe ein; schliesslich blieben nur die Nadeln unregelmässig zerstreut übrig. An vierwöchentlichen Spongillen, welche zu Grunde gingen, blieb das Kieselskelet fast in seiner ursprünglichen Lage und Gestalt; die Zellenmasse zog sich innerhalb desselben zu einem einzigen, das Licht stark brechenden Haufen zusammen, welcher nach und nach verschwand unter gleichzeitigem Erscheinen von grossen Mengen von Infusorien. In einzelnen Fällen zerfiel die absterbende Spongille nur in viele Körnchen, welche bei der Entfernung des Wassers grossentheils mit fortswammen, während die Nadeln an ihrer ursprünglichen Stelle liegen blieben. Es kommt aber auch vor, dass die Schwammzellen sich in der Mitte des Skeletes zusammenlegen und noch Wochen lang so fortleben.

Anmerkung. Es ist die Frage, ist eine Spongille ein Individuum, oder ist sie eine Colonie? Im ersteren Falle wäre die Spongille ein Organismus, der aus Zellen von ein und derselben Form besteht. Im letztern Falle wäre jede Schwammzelle ein Rhizopode; die Gemmulabildung wäre eine Art Incystirung einer ganzen Colonie; ein Meyenscher Ballen wäre ein Rhizopode im Ruhezustande; die Skelete wären Stöcke, welche jene Rhizopoden bewohnen; die Schwärmsporen wären Behälter, in denen die Rhizopoden entstehen, wie Ceracrien in Ammen.

Figurenerklärung.

Fig. 1. Eine aufplatzende Spongillenzelle, aus welcher der Inhalt heraustritt.

Fig. 2. Eine Zelle mit Nucleus und Nucleolus mit amöbenartigen Fortsätzen.

Fig. 3. Eben solche Zelle, aus einem Zellenhaufen entnommen, um den sich bereits die Gemmulamembran gebildet hatte; im Innern der Zelle liegen Körnchenbaufen und Bläschen.

Fig. 4. Nucleus mit Nucleolus solcher Zelle.

Fig. 5. Eben solche Zelle mit Bläschen erfüllt, aus einer jungen Gemmula.

Fig. 6—12. Keimkörner von verschiedener Größe.

Fig. 13 und 14. Dieselben mit Essigsäure behandelt.

Fig. 15. Ein Körnchenhaufen, aus dem zersetzenden Keimkorn entstanden.

Fig. 16. Eine junge Schwammzelle mit Nucleus und Nucleolus und einer kleinen Kieselnadel im Innern.

Fig. 17—21. Kieselbildungen aus Schwärmsporen.

Fig. 22. Eine Zelle aus einer festsetzenden jungen Spongille mit Nucleus und Nucleolus und einer Nadel im Innern.

Fig. 23. 24. Nadelformen aus vierwöchentlichen Spongilleo.

Fig. 25. 26. Kieselbildungen aus ausgebildeten Spongillen.

Fig. 27. Eine Nadel aus altem abgestorbenen Schwamm.

Fig. 28—30. Amphidisken in Bläschen, wie sie auf den sich bildenden Gemmulae vorkommen.

Fig. 31. 32. Amphidisken aus Spongilla Erinaceus.

Fig. 33. Belagsnadel einer Gemmula aus verästeltem Schwamm.

Fig. 34. Spermatoziden.

Fig. 35. Eine Schwärmspore.

Fig. 36. Wimperepithelium derselben.

Fig. 37. Eine Spongille, welche nach dem Verschwinden der Wimpern sich auf eine Baumwollenseide festgesetzt hat.

Fig. 38. Ein Fortsatz einer solchen, in welchem bereits die Nuclei sichtbar sind, stark vergrößert.

Fig. 39. Eine junge Spongille, acht Wochen nach dem Abwerfen der Wimpern.

Fig. 1—34 sind bei 450maliger, Fig. 35 und 39 bei 100facher, Fig. 37 bei 50facher, Fig. 36 bei 450facher und Fig. 38 bei 300maliger Vergrößerung gezeichnet.
Als ich behufs des Studiums der Pigmentzellen ein Stück pigmentirter Haut, welches einer Froschlarve abgezogen war, unter dem Mikroskope ausgebreitet hatte, beobachtete ich unter anderen eine sternförmige Pigmentzelle (Fig. 1), deren eines Ende, in welchem sich ein heller Fleck (Kern) befand, in eine feine schwarze Spitze ausgezogen war, welche wieder eine kleine Kugel trug, die selbst heller gefärbt war und in welcher die Pigmentkörnchen in lebhafter molekularer Bewegung waren. Nach einiger Zeit, als ich die Zelle wieder ins Auge fasste, sah ich, wie jene Kugel von der ausgezogenen Spitze der Zelle getrennt war, und glaubte schon fehlerhaft beobachtet zu haben, indem ich vorher einen Zusammenhang angenommen hatte. Zu meinem grossen Erstaunen bemerkte ich jedoch, wie jene feine Spitze allmählich und sehr langsam mehr und mehr von der Zelle eingezogen wurde, so dass die Entfernung zwischen ihr und jener hellen Kugel zunahm, während sie selbst kürzer und breiter wurde (Fig. 2). Die Bewegung war eine so langsame, dass man sie mit den Augen selbst nicht verfolgen konnte, sondern erst am Resultate wahrnahm, dass sie überhaupt stattgefundet hatte. Nachdem sich die Spitze so weit zurück gezogen hatte, dass sie nur noch ein wenig über den ründlichen Contour des obersten Zellenausläufers hervor ragte, fand plötzlich eine Bewegung im entgegengesetzten Sinne statt. Die Spitze plat-
tete sich oben ab, wurde rundlicher und breiter und schob sich von dem Zellenausläufer, an welchem sie befestigt war, fort. Während dies geschah, wurde die schwarze Pigmentmasse in diesem Stücke heller; man sah einzelne Pigmentmoleküle in lebhafter Bewegung. So zog sich die vorher feine Spitze zu einem rundlichen Fortsatz aus, dessen Gestalt in Fig. 3 abgebildet ist. Kurze Zeit blieb die Zelle unverändert, dann bemerkte man eine Einschnürung an dem Uebergang des rundlichen Fortsatzes in seinen Stiel, welcher ganz wie bei der ersten Pigmentkugel zunahm, bis Stiel und Kugel vollständig von einander getrennt waren. Hierauf zog sich die Spitze des Stieles wieder in der Richtung nach der Zelle hin zurück und zwar soweit, dass über den rundlichen Contour des obersten Zellenausläufers nichts mehr hervorragte (Fig. 4. a).

Während dieses langsamen Zurückweichens der Spitze hatten sich in der zuletzt abgeschnürten Kugel, die ganz in der Nähe der ersten lag, die Pigmentmoleküle im Grunde zusammengeballt, so dass hier eine continuirliche schwarze Masse sich befand, während in dem übrigen Raum der Kugel die einzelnen Körnchen getrennt lagen (Fig. 4. b).

Einige Zeit nachdem dieses vorgegangen war, fing wieder derselbe Fortsatz der Pigmentzelle an, einen neuen Ausläufer zu treiben und zwar in Form eines zweiwackigen stumpfen Fortsatzes (Fig. 5). Dieser zog sich weiter aus, so dass er mittelst eines Stieles mit der Zelle zusammenhing, während gleichzeitig sein oberes Ende kugelförmig ausgebuchtet war. In diesem Zustand, der in Fig. 6 abgebildet ist, verharrte die Zelle und veränderte sich nicht weiter. Der Zeitraum, während dessen die verschiedenen Metamorphosen vor sich gegangen waren, betrug zwei Stunden.

Die Idee, dass die eben geschilderten Vorgänge, die in einer vom lebenden Körper getrennten Membran beobachtet wurden, rein physikalischen Einflüssen zuzuschreiben seien, lag nahe, jedoch war einmal die Membran von einer Stelle genommen, die auch in dem lebenden Thiere beständig vom Wasser umspült wird, sodann aber hätte sich wohl zwar die

Ich brauche wohl nicht zu erwähnen, dass, wenn Verdacht einer Täuschung durch Verletzung einer Zellenwand und teilweises Austreten des Inhalts vorgelegen hätte, ich die Beobachtung nicht mitgetheilt hätte. Die Zelle befand sich ziemlich in der Mitte der abpräparirten Membran, und wenn sie ihren beweglichen Fortsatz eingezogen hatte, wie in Fig. 4, liess sich die Integrität der Contouren deutlich sehen.

Ehe ich die weitere Untersuchung, die ich über diesen Gegenstand anstellte, beschreibe, will ich noch bemerken, dass es mir bei allen dreien der kugelförmigen Fortsätze aufgefallen war, dass die in ihnen sich bewegenden Pigmentmoleküle sich stets an der Peripherie hielten, niemals aber ihren Weg von einem Punkte derselben nach dem andern durch das Centrum der Kugel nahmen, so dass hier im Innern ein begrenzender Körper vorhanden zu sein schien, der ebenso wie die Umhüllung der Kugel ein Vordringen nach aussen, hier ein weiteres Vordringen der Moleküle nach innen verhinderte. Als daher die grosse Pigmentzelle nach Verlauf von zwei Stunden durchaus keine weiteren Veränderungen mehr einging, setzte ich zu dem Präparate Essigsäure, um mich zu überzeugen, ob in jenen Kugeln ausser den

Müller's Archiv. 1856. 27
Pigmentmolekülen nicht etwa eine als Kern zu deutende Portion des Inhalts der alten Zelle enthalten sei. Es zeigte sich jedoch nichts dem Ähnlichen.

Viele Stunden wurden nun zwar nutzlos gleichsam auf dem Anstande verbracht, wenn man eine Gruppe von sternförmigen schwarzen Pigmentzellen überwachte, die sich zufällig gerade nicht veränderten, aber dann traf man auch wieder eine glücklichere Stelle, wo einzelne Zellen Fortsatz auf Fortsatz von sich schickten, welche letztere aber mit der Mutterzelle in Zusammenhang blieben. Nur ein einziges Mal fand ich in einem Tritonenschwanze die Zelle, welche in Fig. 7 abgebildet ist. Diese buchtete sich an der Seite in zwei Zacken aus, welche zuerst nur bis b reichten, dann aber sich bis c vorschoben. In der Mitte dieses zackigen
Fortssatzes entstand dann eine Einschnürung, welche allmählich zunehmend das vordere Ende vom Mutterboden ganz ablöste. Das zurückbleibende Stück des Fortsatzes zog sich dann noch etwas weiter aus und löste sich von der alten Zelle in Form einer rundlichen Kugel, die ziemlich dicht neben dem ersten getrennten Sprossen Platz fand (Fig. 8). Die beiden vom Mutterboden abgeschnürtcn Körper enthielten zerstreute Pigmentkörner, die jedoch keine molekularbewegung zeigten. Von nun an trieb die Zelle nur noch Zackige Ausläufer an ihren kohligen Endigungen, die sich aber bald mit solider Pigmentmasse füllten und im Zusammenhange blieben.

An den ganz mit schwarzer Pigmentmasse gefüllten Fortsätzen alter sternförmiger Zellen wurde sehr häufig ein Löstrennen eines festen Pigmentklumpens beobachtet, ja selbst ein Abschnürren von einem Drittel der ganzen Zelle wahrgenommen, aber die meisten dieser Trennungen waren nur scheinbar, indem die ausserordentliche Contractilität der Pigmentzellen hier eine Täuschung verursachte. Die in Fig. 9 abgebildete Zelle stammt aus der Schwimmhaut des Hinterfusses einer Froschlarve. Während ich längere Zeit ihre abenteuerliche Gestalt betrachtete, bemerkte ich, dass in der Mitte des Astes, welcher den Theil c mit dem Körper der Zelle verband, eine hellere Stelle auftrat, während gleichzeitig die Seitencontouren zusammenrückten. Diese Einschnürung nahm so zu, dass man nur noch einen dünnen schwarzen Strang als Verbindungsglied zwischen c und der Zelle bemerkte. Die Zelle selbst sowie der Theil c contrahirten sich dabei auffallend, die meisten Fortsätze, welche vorher schwarze solide Stränge gewesen waren, wurden so weit eingezogen, dass man nur noch Andeutungen von ihrem frühern Dasein in zarten Linien fand, die von der Zelle ausgingen (Fig. 10). Während diese Schrumpfung immer mehr zunahm, verschwand unter meinen Augen der Verbindungsstrang zwischen c und der Zelle (Fig. 11); er war zarter und zarter geworden, bis es nicht mehr möglich war ihn zu erkennen, und ich den Theil c für vollständig von der Zelle getrennt glaubte. Die Fig. 12 gibt endlich eine Ansicht der-
sellen Zelle, nachdem sich das Pigment noch mehr zusammengeballt hat und die Zelle wie c nur noch einen starren Pigmentklumpen ohne einen jener zierlichen Ausläufer zeigt.

Nachdem der Blutlauf einige Zeit hindurch ungestört stattgefunden hatte, fing auch die Zelle wieder an Veränderungen zu zeigen. Das auf einen kleinen Raum zusammengeballte Pigment erstreckte sich weiter in peripherischer Richtung, zarte schwarze Ausläufer, die allmäßt an Stärke zunahmen, gingen von den stumpfen kolbigen Enden aus, einen eben solchen schickte c, und der Punkt der Zelle, von welcher früher der Verbindungsast ausgegangen war: beide wuchsen sich entgegen, bis sie sich berührten. Der so wiederhergestellte Communicationsweg des Pigments von c und der Zelle wurde breiter und stärker, bis er seine alte Ausdehnung erreicht hatte. So machte also die Zelle in umgekehrtem Sinne den Weg von Fig. 12 zu Fig. 9 in allen Stadien wieder durch, die ich sie vorher von Fig. 9 zu Fig. 12 hatte durchlaufen sehen. Je nachdem sie ihre alte Gestalt von Fig. 9 wieder erreicht hatte, wuchs sie in der nächsten Stunde
in der Abtheilung c weiter, indem die Sprossen derselben stärker wurden und selbst kleine secundäre Fortsätze erhielten (Fig. 13. c).

Mehrere andere Versuche, in denen ich absichtlich den beobachteten Theil durch langen Druck des Deckplättchens reizte, hatten dasselbe Resultat; wenn auch nicht immer eine scheinbare Loslösung erfolgte, so schrumpften die Pigmentzellen doch wenigstens immer zusammen, und dehnten sich nachher wieder zu ihrer alten Form aus. Ich lernte hierdurch, dass alle Formveränderungen an diesen Gebilden mit grosser Vorsicht zu betrachten seien, indem durch ihre enorme Contractionskraft Formen entstehen konnten, die mit der ursprünglichen wenig Ähnlichkeit hatten. So war ich genöthigt eine Anzahl von Beobachtungen zu cassiren, in denen Zellen scheinbar sich eingeschmärt und Stücke ihrer Substanz losgetrennt hatten, während in Wirklichkeit nur eine Trennung in der Verbindung der Pigmentmasse, nicht aber in den
Wandungen der Zelle stattgefunden hatte. Ich erfuhr selbst, dass da, wo das losgetrennte Stück nachträglich Formveränderungen eingegangen hatte, doch noch der Zusammenhang mit dem Mutterboden wieder nachgewiesen werden konnte. Der lange gestielte Fortsatz a in Fig. 14, welche den obersten Theil einer Pigmentzelle aus dem Schwanze einer Froschmodchlarve darstellt, schnürte sich, nachdem der Stiel eine andere Krümmung angenommen hatte (Fig. 15), an der Verbindungsstelle mit der Zelle ab (Fig. 16). Ungefähr eine halbe Stunde, nachdem die scheinbare Trennung vor sich gegangen war, hatte sich die Gestalt des losgelösten Stückes dahin verändert, dass das frühere kugelförmige Ende Zackig geworden war, während die Spitze des abgeschnürten Stiels eine rundliche Aufreibung erhalten hatte. Schon glaubte ich eine weitere Entwicklung eines getrennten Zellenteils vor mir zu haben, als ich bemerkte, dass einige Zeit später die scheinbar unterbrochene Communication mit der Zelle sich wiederherstellte und der Fortsatz wieder seine alte kugelförmige Gestalt annahm. Jenes Zackigwerden beruhte daher nur auf einer andern Anordnung der Pigmentmasse, die vielleicht ebenfalls durch Contraction der umschliessenden Membran bewirkt wurde.

Es fragte sich nun, ob jene erste Beobachtung, die an einer losgelösten Membran gemacht wurde, nicht ebenfalls eine Täuschung sei und die Abschnürungen der Kugeln nur scheinbar gewesen wären. Der Vorgang des Losschnürens sprach nicht hierfür; denn während die Zelle fortwährend unter denselben Einflüssen sich befand, d. h. umspült von Wasser und kaum comprimirt durch ein dünnnes Plättchen, contrahirte sich der Stiel, welcher die Kugeln losgelöst hatte, und buchtete sich ebenfalls wieder von Neuem aus. Dazu ist zu bemerken, dass während dieses Prozesses die übrigen Fortsätze der Zelle sich durchaus nicht veränderten; also nicht die ganze Zelle sich abwechselnd in Expansion und Contraction befand. Ausserdem machte ich jene andere oben mitgetheilte Beobachtung vom Tritonenschwanz, in welchem eine Zelle zweimal hellere Theile losschnürte, zu einer Zeit,
wo die Contractionsphänomene der Pigmentzellen mir schon bekannt waren; ich gab daher genau Acht, ob jene losgeschnürten Kugeln nicht wieder in Verbindung mit der Zelle treten würden, konnte aber nie eine Communication wahrnehmen. Die abgetrennten Theile blieben auch dann noch isolirt, als die von Anfang mehr rundliche Pigmentzelle nach anderen Richtungen bin Fortsätze zu entwickeln anfing. Ich bin daher geneigt zu glauben, dass in jenen beiden Fällen wirkliche Theile von Zellen losgetrennt wurden; was aus diesen Körpern weiter wird, ob sie sich fortentwickeln, darüber müssen spätere Beobachtungen uns belehren.

die Wandungen dieser Zellen auf elektrischen Reiz sich nicht zusammenzuziehen scheinen.

Erklärung der Figuren.

Fig. 1. Pigmentzelle aus der abgelösten Haut einer Froschlarve. Der Ausläufer a trägt auf einem Stiele eine pigmenthaltige Kugel.

Fig. 2. Die Kugel hat sich gelöst, der Stiel zieht sich nach a zurück.

Fig. 3. Der Stiel hat von Neuem eine Pigmentkugel erzeugt.

Fig. 4. Auch diese Kugel b ist vollständig abgeschnürt, der Stiel nach a ganz zurückgezogen.

Fig. 5. Ein neuer zweizackiger Ausläufer wird vorgeschoben.

Fig. 6. Derselbe hat sich gestielt und auf seinem Ende eine Kugel entwickelt.

Fig. 7. Pigmentzelle aus dem Schwänze eines jungen Tritonen, an der Seite wird ein pigmentierter Fortsatz getrieben, der zuerst bis b, dann bis c reicht.

Fig. 8. Der Fortsatz hat sich abgeschnürt und ein neuer kugelförmiger tritt aus der Seite der Zelle.

Fig. 9. Pigmentzelle aus dem Hinterfuss einer Froschlarve, c eine Sprosse derselben.

Fig. 10. Die Zelle contrahirt, so dass zwischen ihrem Körper und c nur ein dünner Verbindungsstrang sich befindet.

Fig. 11. Weitere Contractionen der Zelle, c scheinbar getrennt.

Fig. 12. Dieselbe Zelle noch stärker contrahirt.

Fig. 13. Der Fortsatz c nach wiederhergestellter Communication mit dem Körper der Zelle.

Fig. 14. Oberster Theil einer Pigmentzelle aus dem Schwänze einer Froschlarve; a Fortsatz derselben.

Fig. 15. Der Stiel des Fortsates hat eine andere Krümmung angenommen.

Fig. 16. Der Stiel hat sich scheinbar abgeschnürt.

Fig. 17. Fortsatz und Stiel haben ihre Gestalt verändert.
Ueber die Anheftung der Muskelfasern an die Sehnen.

Von

Dr. ADOLF FICK, Prosector in Zürich.

(Hierzu Taf. XVII. B.)

sind. Reichert hat beim Flusskrebs einen direkten Übergang der strukturlosen Sehnenmasse in das Sarkolemma gesehen. Im direkten Gegensatz hierzu lässt Bowman das Sarkolemma mit der Muskelfaser zugleich endigen und an beide Sehnenfasern angesetzt sein.

weil in der Regel der seitliche Zusammenhang desselben mit seinen parallelen Nachbarn stärker ist als seine eigene, dem Zerreissen entgegenwirkende absolute Festigkeit.

Ich habe nun vorzugsweise vom m. gastrocnemius meine Präparate genommen, weil gerade von diesem Muskel behauptet wird, dass er wegen des auffallend schrägen Ansatzes der Muskelfasern an die Sehne die seitliche Anklebung derselben am deutlichsten zeige. Fig. 1–3 sind Fasern aus dem gastrocnemius des Frosches in der oben beschriebenen Weise präparirt, d. h. es wurde eine möglichst kleine Anzahl von Muskelfasern mit der Pinzette gefasst und mittelst derselben das daran hängende Sehnentheilchen herausgerissen, hernach mit Nadeln die einzelnen Fasern noch möglichst isolirt. Fig. 1, vom frischen Muskel genommen, zeigt wohl schon hinsichtlich, dass jedem Muskelelemente bestimmte Sehnenfäden zugeordnet sind (an diesem Objecte war die Querstreifung verwischt). Fig. 2 (genommen von einem Muskel, der 24 Stunden in Alkohol gelegen hatte) zeigt weiter zweierlei, dass einmal das einer Muskelfaser zugeordnete Sehnenbündel in ihr Sarkolemma schlauchartig übergeht, dass aber innerhalb dieses Schlauches noch Sehnenfäden mit den Fibrillen des Muskels im Zusammenhang stehen. Dass diese letzteren Sehnenfäden sich zwischen die Fibrillen fortsetzen, mag höchst wahrscheinlich sein, ich sehe aber nicht die Möglichkeit, dafür mit dem Mikroskope einen Beweis zu führen. Bei Fig. 2, a war das Mikroskop auf die Mitte der Faser eingestellt, es traten alsdann die mehr gelockten inneren Fasern hervor. Fig. 2, b ist die-
Ueber die Anheftung der Muskelfasern an die Sehnen. 429

selbe Faser, gesehen bei Einstellung auf die obere Fläche, und man sieht nunmehr eine Längsstreifung des Muskels, die offenbar im Sarkolemma ihren Sitz hat und deren Linien ganz deutlich in die Zeichnungen des Sehnenschlauches zu verfolgen sind. Die Querstreifung ist bei dieser Einstellung des Mikroskopes meist mehr verwischt. – Ein äußerst instruktives Bild spielte mir ein glücklicher Zufall in die Hände. Es ist in Fig. 3 dargestellt und scheint mir keinen Zweifel mehr über die hier vorgetragene Ansicht zu lassen. Die Muskelfaser (vom gastrocnemius eines eben getödeten Frosches genommen) füllte, als ich anfang zu beobachten, ihren Sarkolemmaschlauch vollständig aus und bot ein ganz ähnliches Bild wie Fig. 2 dar. Während der Beobachtung zog sie sich plötzlich zurück und liess den sackartigen Raum a leer, dessen Wand man nun deutlich in das der Faser zugehörige Sehnenbündel übergehen sieht. Man sieht aber in diesem Bilde zu gleicher Zeit die innerhalb des Schlauches verlaufenden Sehnenfäden, welche sich mit der eigentlichen Muskelsubstanz verbinden. An anderen Muskeln des Frosches (z. B. am geraden Bauchmuskel), wo der Ansatz der Sehne weit weniger scharf ist, fanden sich alle Verhältnisse genau ebenso, es ist daher wohl nicht nöthig, Zeichnungen von solchen beizufügen.

Ich gehe über zu den Säugerthieren. Ein sehr empfehlenswerthes Object zur Untersuchung der in Rede stehenden Verhältnisse liefert der gastrocnemius der Maus. Ihm sind die Fig. 4 und 5 entnommen durch Präparation an dem eben getödeten Thiere. Man sieht, dass das Prinzip der Anheftung genau dasselbe ist wie beim Frosche. Der Contour der Muskelfaser geht auch hier ganz stetig in den Rand des zugehörigen Sehnenbündels über. Das Sarkolemma stellt also – soweit sich hier mit Gewissheit etwas entscheiden lässt – die Fortsetzung des Sehnengewebes dar. An die Primitivfibrillen setzen sich aber ebenfalls wieder innere Sehnenfäden fest. Die Fig. 4 habe ich besonders deshalb aus vielen mir vorliegenden Bildern ausgewählt, weil es eine offenbare Analogie zu Fig. 65 in Köllikers Gewebelchre (Bd. 1. pg. 224) darstellt. Man sieht sich fast zu der Behauptung aufgefordert, dass sich der
Uebergang der Sehnensubstanz in das Sarkolemma hier an den einzelnen Elementen der Muskelfaser (den Fibrillen) wiederholt, dass kleinere Sehnenbündel sich schlachauchtig gegen den Muskel hin öffnen, um die Fibrillen aufzunehmen. — Fig. 5 stellt ein weniger ins Einzelne zert Balls Praparat dar. Es ist besonders darum von Interesse, weil man sieht, wie sich die Sehne von b nach a hin allmälig verjüngt, indem sie an die in dieser Richtung abgehenden Muskelfasern immer mehr Elemente verliert, was nicht der Fall sein würde, wenn an dasselbe Sehnelement hinter einander mehrere Muskelfasern angeklebt wären. Zugleich ergibt sich aus der ganzen Zeichnung, wie der Anschein einer solchen seitlichen Anklingung entsteht. Die Vergleichung dieser Bilder mit denen vom Frosche stellt als Unterschied heraus, dass beim letzteren die einzelnen Fibrillen mehr regelmässig in einer Ebene oder wenigstens einer krummen Fläche endigen, um in die Sehne überzugehen, während bei der Maus die einzelnen Fibrillen oft spitz gegen die Sehne vorspringen und in sehr verschiedener Höhe endigen. Doch ist dies Verhalten keineswegs ganz constant. Ich habe einzelne Bilder von der Maus gesehen, wo ebenfalls die Muskelfaser wie abgeschnitten erschien und wo eine ebene Fläche den Sehnenfäden zum Ansatz diente. Umgekehrt nähert sich der Anblick, den der Froschmuskel gewährt, wenn er in Alkohol gelegen hat, dem des Säugethiernuskels. Es kommt mir sogar denkbar vor, dass das unregelmässige Vortreten einzelner Primitivfibrillen gegen den Sehnaansatz mehr oder weniger Artefact ist, was bei den Säugethiernuskeln wegen der schwierigen Präparation öfter zum Vorschein kommen muss. Vom gastrocnemius des Kaninchens, den ich ebenfalls mehrmals untersuchte, gebe ich keine Bilder, um nicht deren Zahl zu sehr zu vervielfachen. Im Ganzen sind die Verhältnisse den bei der Maus gefundenen vollkommen analog, noch ähnlicher aber die gleich zu erwähnenden des Menschen. Um endlich noch die vollkommene Gleichartigkeit des Sehnenüberganges in den Muskel beim Menschen ausser Zweifel zu setzen, gebe ich noch in Fig. 6 eine Faser des menschlichen gastrocnemius. Bekanntlich gilt dieser Muskel als Paradigma
der einen Art des Uebergangs – der seitlichen Anklebung. – Man sieht, dass dieses Bild auffallende Äehulichkeit mit der von Kölliker als Beispiel der andern Art des Uebergangs abgebildeten Faser des intercostalis internus hat; in der That könnte Fig. 7 auch gerade so gut für eine Abbildung von einer Faser dieses letzterwähnten Muskels gelten, wie sie mir mehrfach vorliegen. Wollte ich eine solche noch beifügen, so würde es eine blosse Wiederholung sein. Ich habe zwischen beiden in keinem Falle einen wesentlichen Unterschied finden können. Das Verhalten des Muskelendes beim Menschen schliesst sich offenbar dem bei der Maus gefundenen aufs Genaneste an. Was noch insbesondere den gastrocnemius des Menschen be- sichen betrifft, so kann man schon mit blosem Auge sehen, wenn man seine Bündel bis zum Ansatz an die Achillessehne präparirt, dass jedes Bündel in ein seine Längsrichtung fort- setzendes kleines Sehnenbündel übergeht, welches sich dann freilich ohne langen isolirten Verlauf alsbald in der ganzen Sehnemasse verliert.

Ich glaube – um das Resultat noch einmal präcis hinzustellen – durch die mitgetheilte Untersuchung die folgenden Sätze begründet zu haben;

1) Die Art und Weise des Muskelansatzes an die Sehne ist für alle Muskeln desselben Thieres sowie auch im Allgemeinen für verschiedene Thiere ein und dieselbe.

2) Jeder Muskelfaser entspricht ein bestimmtes Sehnen- faserbündel.

3) Das Sehnenfaserbündel ist regelmässig von weit gerin- gerem Querschnitt als die zu ihm gehörige Muskelfaser, daher erklärt sich, dass der Querschnitt des Muskels den der Sehne übertrifft, sowie der schräge Ansatz.

4) Das schlauchartig fortgesetzte Sehnenbündel nimmt als Sarkolemma seine Muskelfaser auf.

5) Ausser dem Sarkolemmaeschlauch sind noch innere Fä- den des Sehnenbündels mit der zugehörigen Muskelfaser ver- knüpft, die sich wahrscheinlich zum Theil zwischen die Fi- brillen der Muskelfaser hineinerstrecken.
Nachdem der vorstehende Aufsatz bereits geschrieben war, wurde ich auf eine Stelle in der Abhandlung Leydigs über den feinern Bau der Arthropoden¹) aufmerksam, wo ebenfalls von dem Uebergang der Sehne in den Muskel die Rede ist. Er beschreibt ebenfalls den Uebergang der Sehne in den Sarkolemmaschlauch als eine bei den Arthropoden mit voller Bestimmtheit gesehene Tatsache. Seine Tafel XV. Fig. 14 gegebene Darstellung dieses Verhältnisses stimmt so auffallend mit mehreren meiner vom Froschmuskel (gastrocnemius) gezeichneten Bildern, dass ich mich aufgefordert sehe, noch eines derselben nachträglich (unter Fig. 7) zur Vergleichung hinzuzufügen. Es wäre damit die Gleichheit des Muskelüberganges in die Sehne mit grosser Wahrscheinlichkeit sogar über die Wirbeltiergruppe hinaus ausgedehnt. Vielleicht zeichnet sich diese blos durch die innerhalb des schlauchartig erweiterten Sehnenbündels gelegenen Fäden aus. Leydig that wenigstens derseben keine Erwähnung.

¹) Archiv 1855. pg. 396.
Kritische und experimentelle Beiträge zur Hämodynamik.

Von

F. C. Donders.

Die deutsche Uebersetzung der durch mich und Dr. Bauduin verfassten Physiologie, welche Prof. Theile, meinem Wunsche zuwider und ohne die Beendigung des Werkes abzuwarten, besorgte, machte trotz der kurzen Zeit, die seit dem Erscheinen der holländischen Ausgabe verlaufen war, eine Umarbeitung der meisten Capitel nothwendig. Dabei ward das Gebiet der Hämodynamik alsbald wiederum von mir betreten und die Gelegenheit benutzt, einige Ungenauigkeiten, die theilweise aus Volkmanns Werk in das meinige übergegangen waren, zu verbessern.

Wenn ich in dieser Arbeit Männer bestreiten werde, die auch auf diesem Gebiete über mein Lob erhoben sind, — wenn ich sogar einige fundamentale Irrthümer zu beleuchten haben werde, so geschieht dies, ohne dass die hohe Achtung vor ihren grossen und vielseitigen Verdiensten dadurch ge-smälert wird, und mit dem offenen Geständnisse, dass ich damit angefangen habe, sehr viel aus Volkmanns Hämodynamik zu lernen und überzunehmen, um seine Arbeit erst später mit einem mehr kritischen Auge zu betrachten.

1. Der Druck des Blutes in verschiedenen Arterien bei demselben Thiere.

Die Frage über den Unterschied im Blutdrucke der Stämme und der mehr entfernten Aeste bei demselben Thiere ist in

1) Journal de physiologie experimentale par F. Magné die. 1828, T. VIII. pg. 272.
2) Müllers Archiv 1844 pg. 55.
Die Versuche Spenglers 1) wurden unter der Leitung von Ludwig ausgeführt, dessen Talent als Experimentator hierbei schon deutlich hervortrat. Volkmann 2) findet sie viel gefährlicher für seine Theorie, dass der Blutdruck nach der Peripherie allmählich abnähme, als die Versuche von Poiseuille. Mir aber kommt es vor, dass diese Versuche nicht sehr gefährlich sind. Spengler hat nur das Maximum und Minimum des Druckes, so genau als dies ohne Kymographium möglich war, bestimmt. Volkmann 3) bemerkt ganz richtig, dass man sich hüten müsse, die halbe Summe dieser beiden für den gemittelten Druck zu halten, — etwas, was Spengler auch sorgfältig vermieden hat. Spengler lässt die Frage nach dem gemittelten Drucke in den verschiedenen Gefässen unentschieden und beschränkt sich auf den Schluss: „Die Stromkraft in den Arterien von stärkerem Caliber ist während der Exspiration eine bedeutendere als in kleineren, und umgekehrt in den Arterienstämmen ist während der Inspiration die Stromkraft eine schwächere als in den Zweigen. Ich habe dazu nur eine Bemerkung zu machen, dass nämlich nicht die Stromkraft, sondern der Blutdruck durch Spengler bestimmt wurde, so dass man statt Stromkraft Blutdruck lesen muss, was nicht ganz gleichgültig ist, wie ich unten näher zeigen werde.

Wir finden aber bei Spengler zwei Versuche an Pferden, die für die Frage Bedeutung haben würden, wenn es möglich gewesen wäre, ganz genau abzulesen. Die Versuche wurden indessen zu einem ganz andern Zwecke angestellt. Um nämlich zu untersuchen, ob das strömende Blut an einem bestimmten Punkte nach allen Richtungen denselben Druck ausübt, und mithin auf die Wand mit gleicher Kraft als auf den Blut-}

1) Müller's Archiv 1844 pg. 49.
2) Hämodynamik pg. 165.
3) Ebenda. pg. 70.

28°
strom wirkt, wurden beide art. carotides mit einem Manometer in Verbindung gebracht; auf der einen Seite aber erlaubte das Ansatzstück von Ludwig ungehinderte Strömung, auf der andern Seite wurde nach Poiseuille der Strom abgeschnitten.

Es fragt sich nun, was durch die beiden Manometer bestimmt wurde. Es ist klar, dass bei der seitlichen Verbindung nach Ludwigs Methode der Seitendruck an der Stelle selbst gemessen wurde, wo das Ansatzstück angebracht war; da nun der Druck in jeder Richtung wohl gleich gross sein wird, als in der seitlichen, so ward einfach der Blutdruck in der art. carotis gemessen. Was man misst, wenn das Rohr durch den eingeführten Manometer verstopft wird, hat Volkmann 1) ausführlich untersucht. Er gelangt zu dem Resultate, dass nicht allein die Summe von Druckhöhe D und Geschwindigkeitshöhe F, die die treibende Kraft T vorstellt, $D + F = T$, sondern dass sogar ein noch höherer Werth gefunden wird, der wohl um 14 Millimeter Quecksilber mehr betragen könnte. Dem kann ich nicht beistimmen. Denn es wird keine Geschwindigkeitshöhe gemessen, selbst wenn eine einzelne Arterie verstopft wird, und überdies ist mir die Erhöhung über $D + F$ etwas Räthselhaftes. Richtiger scheint Volkmann die Frage in §. 74. aufgefasst zu haben, wo er angibt, dass ein in die art. renalis eingebrachter Manometer den Druck in der Aorta misst. Dasselbe findet seine Anwendung auf alle Arterien. Die Arterie, worin der Blutstrom gehemmt wird, verhält sich als elastische Röhre von dem Manometer selbst, und man wird also immer, wenn man das Manometer geradezu in die Arterie bringt, den Druck an der Stelle, wo die Arterie vom Hauptstamm abgeht, bestimmen. Das Einzige, was man hierbei nicht ausser Acht lassen muss, ist, dass der Blutdruck im Allgemeinen wegen Verengerung der Blutbahn eine geringe Modifikation erlitten haben kann. Man sieht hieraus, dass das Problem viel weniger complicirt ist, als Volkmann es dargestellt hat.

1) Hämodynamik pg. 133 u. f.
Wenden wir das Erwähnte auf die Versuche von Spengler an, so sehen wir, dass er gleichzeitig den Druck in der art. aorta oder innominata und in der art. carotis bei denselben Thiere gemessen hat. Mit welchem Resultate? Zufällig genug erhielt er in beiden Versuchen dieselben Zahlen für die Maxima und Minima, und schliesst daraus, dass der Druck, den der Blutstrom an irgend einer Stelle ausübt, in jeder Richtung gleich stark wirkt. Wir glauben überdies noch daraus deduciren zu mögen, dass der Blutdruck, der in der art. aorta und carotis durchaus gleich gefunden ward, in diesen Arterien so geringe Unterschiede darbietet, dass sie der gewöhnlichen Wahrnehmungsmethode nicht zugänglich sind.

Ein schlagender Beweis gegen die theoretische Vorstellung von Volkmann findet sich nicht in den Versuchen von Spengler.

Was Volkmanns eigene Versuche zu diesem Behufe betrifft, so erwähnen wir zuerst eine Anzahl, in welcher das Mittel auf eine Weise berechnet wurde, die von Spengler und Volkmann selbst mit Recht, für verwerflich gehalten wird. Das hierbei erhaltene Resultat ist aber in der Regel dem durch Spengler erhaltenen entgegengesetzt, und wir dürfen sie daher mit gleichem Rechte vernachlässigen, als wir die Versuche von Spengler hier nicht näher berücksichtigt haben.

In einer andern Reihe von Versuchen hat Volkmann das Mittel nach einer bessern Methode bestimmt. Er nahm einen feinen Papierbogen von gleicher Dicke, worauf durch das Kynographion die Abscisse ab (Fig. 1) als Nullpunkt des Druckes und die gebogene Linie k. k. k., die anfolgenden Druckverhältnisse angebend, geschrieben wurden. Er zieht darauf eine zweite, der Abscisse ab parallele Linie und schneidet das Rechteck ab cd aus. Dieses wiegt er und zerschneidet es dann genau der krummen Linie entlang in zwei Stücke, die er wiederum wiegt. Nun verhält sich, wie man leicht einsieht, das Gewicht des ganzen Stückes zu dem Gewichte des zwi-
sehen der Abscisse und der krummen Linie gelegenen Stückes, wie die Linie a c zum mittleren Drucke.

Diese Methode, die den Meteorologen schon früher bekannt war, lehrt uns wirklich den mittleren Druck kennen, den das Kymographion aufzeichnet, wenn gleiche Stücke Papier gleichen Gewicht haben. In wiefern das Kymographion den wirklichen Druck aufschreibt, hängt von zu vielen Umständen ab, um es hier zu erörtern. Wir wollen voraussetzen, dass der Druck genau genug aufgeschrieben wird, um die Resultate für brauchbar halten zu können.

erst die beiden Manometer in die beiden Enden der durchgeschnittenen car. zu bringen.

Diese Versuche von Volkmann scheinen hinreichend zu beweisen, dass der Blutdruck in dem circ. Will. kleiner ist, als in der art. aorta.

Weiter finden wir einen nach dieser Methode ausgeführten Versuch aufgezeichnet, wobei der Druck in der carot. centr. 19,5 Mm. grösser gefunden ward, als in der art. metatarsi; aber umgekehrt gehen die meisten Versuche, wie Volkmann selbst erwähnt, für das Blut in der art. eruralis einen höheren Druck als für das in der art. carotis. Er findet es selbst nicht annehmbar, dass dabei Zufälligkeiten im Spiele gewesen seien.

Wir Fangen damit an, zu erinnern, dass Volkmann selbst für die art. erural. durchgehends einen höheren Druck fand, als für die art. carotis. Er versucht dafür eine Erklärung zu finden, während er sich auf das beruft, was er positive und negative Stauung genannt hat. „In dem Abschnitte⁴⁴, sagt er, „über die Bewegung der Flüssigkeiten durch verzweigte Röhrensysteme ist bereits nachgewiesen worden, dass die Abnahme des Seitendruckes von der Einflussmündung gegen die Ausflussmündung durch die Verhältnisse der Stauung Modifikationen erleidet. Es gibt eine positive und eine negative Stauung, von denen erstere den Seitendruck über das normale Maass erhebt, letztere unter das normale Maass herabdrückt. In einem Röhrensysteme, welches sowohl positive als negative Stauung zulässt, muss also der Fall vorkommen können, dass ein Punkt, welcher der Einflussmündung näher liegt, einen ziemlich bedeutend geringern Druck aufweist, als ein weiter
Punkt, welcher mehr abwärts, d. h. der Ausflussmündung näher gelegen ist. Wie weit derartige Abnormitäten im Gange der Druckcurve gehen können, ist vor der Hand nicht ausgemittelt, aber jedenfalls muss die stetige Abnahme des Blutdrucks im ganzen Verlaufe der Arterien, Haargefässen und Venen als Regel gelten1).

Wir müssen nun zuerst untersuchen, ob der durch das Hämodynamometer fundene Druck den noch zu überwindenden Widerstand repräsentirt.

Volkmann 3) hat an einer andern Stelle die Behauptung

1) Hämodynamik pg. 175.
2) Ebend. pg. 150.
aufgestellt: dass Bewegung Druck erzeugt. Dies ist nicht nur kein Gesetz, sondern auch wirklich unrichtig. Druck kann Bewegung veranlassen, und Bewegung Widerstand entstehen lassen. Darum sind Druck, Bewegung, Widerstand gleichzeitig vorhanden; es ist aber die Sache umkehren, wenn man sagt, dass Bewegung Druck verursache.

In einer Röhre, die überall gleiche Weite hat, worin die Stromgeschwindigkeit also überall dieselbe ist, ist der Druck an einer gewissen Stelle, z. B. bei d (Fig. 2) in dem Druckmesser wahrgenommen, wirklich gleich dem Widerstande, den die Flüssigkeit bei ihrer Bewegung von d bis n überwindet; aber dennoch ist es nicht ganz richtig, wenn man den Druck von der Bewegung herleitet, oder wenn man sagt, dass der Druck die Folge des Widerstandes ist. Denn sowohl der Druck als die Bewegung hängen von der Höhe des Wassers H in dem Druckgefäss ab, und die Bewegung ruft den Widerstand hervor.

standsmesser betrachtet, und zu beweisen strebt, dass es bei dem Kreislauf nicht in Betracht gezogen werden darf, so halte ich es für nuthwendig, um etwaige Verwirrung zu vermeiden, hier zu erklären, dass ich dies ganz und gar nicht vertheidigen, sondern auf eine ganz andere Ursache für diesen Unterschied, die Volkmann entgangen ist, aufmerksam machen will.
Sobald die Höhe ungleiche Weite hat und die Stromgeschwindigkeit nicht überall dieselbe ist, ist auch der Druck nicht mehr gleich dem zu überwindenden Widerstande; und man sieht schon klar ein, dass dies bei dem Kreislaufe stattfindet. —

Wir wollen dies einigermaassen näher erklären. Wenn Flüssigkeit durch eine Röhre AB strömt und die Röhre dabei ganz und gar füllt, dann haben wir die Geschwindigkeit, womit, v, und den Druck, worunter, D, der Strom geschieht, zu unterscheiden. Die Stromgeschwindigkeit wird bestimmt durch das Lumen l der Röhre und das in einer bestimmten Zeit durchfließende Flüssigkeitsquantum Q; nämlich v = Q : l. Der Druck wird angewiesen durch die Höhe, welche die Flüssigkeit erreicht, welche als Druckmesser vertical auf der Röhre angebracht ist, wodurch die Flüssigkeit strömt. Man kann aus der Stromgeschwindigkeit v die Geschwindigkeitshöhe F berechnen, das ist, von welcher Höhe ein Körper im luftleeren Raum fallen muss, um die gegebene Geschwindigkeit zu erhalten. Dies geschieht nach der Formel $F = \frac{v^2}{4g}$, wobei g den Fallraum eines Körpers in einer Secunde bedeutet. An jeder Stelle der Röhre nun ist die Triebkraft T, welche die Flüssigkeit da fortbewegt, der Summe der

Fig. 3.
Kritische und experimentelle Beiträge zur Hämodynamik. 443

gefundene Druckhöhe und Geschwindigkeitshöhe gleich, T = D + F. Diese Triebkraft wird bei hydraulischen Versuchen am leichtesten durch ein Druckgefäß erhalten, wobei die Höhe der Wassersäule im Druckgefäß die Druckhöhe bestimmt. Die Kraft ist die vom Wasser, welches von der Höhe II fällt (Fig. 3). Bei dem Einströmen aus dem Druckgefäß in die Röhre bei m und bei der Bewegung der Flüssigkeit durch die Röhre AB vermindert sich die anfängliche Kraft H fortwährend in Folge des Widerstandes, der durch die zu überwindende Cohäsion der mit verschiedener Geschwindigkeit bewegten concentrischen Schichten der Flüssigkeitssäule entsteht. Diese Abnahme fällt sogleich auf, wenn man untersucht, wie hoch das bei n ausströmende Wasser steigen kann. Es stellt sich dann heraus, dass die Höhe, von der das Wasser gefallen ist, H, viel grösser ist als die Höhe, welche das Wasser jetzt noch erreichen kann, wenn man es aufspringen lässt, F. Dies F ist die Geschwindigkeitshöhe und alle Kraft, die als Bewegkraft von H noch übrig geblieben ist. H - F ist als Widerstand W verbraucht, daher H - F = W, das ist = der Summe aller Widerstände oder H = W + F.

Wenn Flüssigkeit durch eine Röhre strömt, die überall gleiche Weite hat, dann ist der Widerstand in der Röhre selbst in geradem Verhältnisse zur Länge der Röhre. Dies geht hervor aus dem Stande der Flüssigkeit in den 3 Druckmessern D, D/2, D3, welche durch eine gerade Linie vereinigt werden können, die auch das Ende der Röhre, wo D = 0 ist, schneidet.

In einer Röhre von gleichem Lumen ist weiterhin v, mit hin auch F überall gleich. Wir müssen also überall F zu der gefundenen Druckhöhe fügen, um die Triebkraft in jedem Theile der Röhre zu finden. Die Ordinaten auf der Linie FF' zeigen also die Triebkraft auf jedem Punkte der Röhre AB an. Da wo die Röhre nun am Druckgefäß anfängt, ist die Triebkraft A F' = T kleiner als H. Dies wird bedingt durch das Einströmen bei m, wodurch schon Arbeitskraft verloren gegangen ist.
F. C. Donders:

Nun ist es klar, dass in allen Druckmessern der gleich weiten Röhre der Druck gleich ist dem Widerstande, der bis zur Ausflussöffnung n zu überwinden übrig blieb. Denn am Ende der Röhre ist die Stromgeschwindigkeit unverändert geblieben, und der Druck besteht nicht mehr, ist gleich Null geworden. Wo ist diese Kraft geblieben? Sie kann nur durch die Widerstände verbraucht sein, und der Widerstand, der übrig blieb, ist vollkommen gleich mit dem Drucke.

Wir wollen jetzt den Fall untersuchen, dass die Röhre, wodurch die Flüssigkeit strömt, ungleiche Weite hat. Es ist dann zuerst die Stromgeschwindigkeit in umgekehrtem Verhältnisse zum Durchschnitte und mithin in cylindrischen Röhren in umgekehrten Verhältnisse zum Durchmesser.

Es sei ABCDE (Fig. 4) eine Röhre, die in B das zwei Fig. 4.

fache, in D das halbe Lumen hat von A, C und E, dann wird die Stromgeschwindigkeit v in B zweimal kleiner, in D zweimal grösser sein als in den übrigen Abtheilungen der Röhre. Es sei die Stromgeschwindigkeit an der Ausflussöffnung n gleich wie in AC und E = v, dann wird sie in B = \(\frac{1}{2}v \), in D = 2v sein.

Die Triebkraft T kann in dergleichen Röhren nicht gleichmässig abnehmen. Diese ist nämlich = \(H - w \), wobei w den
bereits überwundenen Widerstand bedeutet. Nun ist der Widerstand in engeren Röhren grösser, T wird also in B am langsamsten, in D am schnellsten abnehmen. Aber überdies kommt bei jeder plötzlichen Veränderung im Lumen der Röhre ein Widerstand vor, der grösser zu sein scheint da, wo die Röhre sich erweitert (oo), als da, wo sie sich verengert (pp). Durch jeden dieser Widerstände geht Triebkraft verloren. Die Linie abcde stellt mithin die Triebkraft in der Röhre vor, wobei wir bemerken, dass die Linie bei jeder Formveränderung der Röhre fast plötzlich einen niedrigeren Stand annimmt, dass ace parallel sind, b eine geringere, d eine stärkere Neige abwärts zeigt.

Wenn wir auf dieser Linie abcde überall die Geschwindigkeitshöhen von der Triebkraft abziehen, dann erhalten wir den Druck an jeder Stelle \(T = F = D \). Nun ist in ACE, nach dem, was oben erörtert ist, \(F = \frac{v^2}{4g} \), in B dagegen \(F = \frac{(\frac{1}{2}v)^2}{4g} \), in D endlich \(F = \frac{(2v)^2}{4g} \), so dass in B viermal weni- ger, in F viermal mehr von der Triebkraft abgezogen werden muss, um den Druck zu finden. Die punktierten Theile der Linien, die von abcde ausgehen, geben an, um wieviel der Druck an jeder Stelle geringer als die Triebkraft ist, so dass der übrige Theil der Linien geradezu die Druckhöhen in der Röhre angiebt.

Volkmann\(^1\)) hat noch ein Experiment ausgeführt, um zu beweisen, dass der Blutdruck in den Arterien nach der Peripherie hin abnimmt. Wir müssen diesen Versuch an dieser Stelle folgen lassen und wählen dann seine eigenen Worte:

1) Hämodynamik pg. 172.
Eine gebogene, 3 Millimeter weite Glasröhre von beistehender Form (Fig. 5) wird mit ihren beiden Enden a und d in die durchschnittenen Enden eines Blutgefässes angebracht und eingebunden. An zwei Punkten dieser Röhre, bei b und c, sind Druckmesser angebracht, entweder einfache Glasröhren von vertikal er Stellung, wenn man an Venen operirt, oder Wellenzeichner nach der von Ludwig angegebenen Construction, wenn man Versuche mit Arterien macht. Gesetzt nun das Blut fließt in der Richtung von a, b, c, d durch die Röhre, so ist der Druck in b, d, h, in einem dem Herzen näher gelegenen Punkte, grösser als in c. Ist die Distanz der Druckmesser eine beträchtliche, z.B. 900 Mm., wie in meinem Instrumente, so ist die Seitendruckdifferenz nicht selten sehr ansehnlich.

Dieselbe betrug:

<table>
<thead>
<tr>
<th></th>
<th>Quecksilberdruck</th>
<th>Blutdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>bei einem Kalbe</td>
<td>16,3 Mm.</td>
<td>220 Mm.</td>
</tr>
<tr>
<td>" Hunde</td>
<td>10,5 Mm.</td>
<td>140,7 Mm.</td>
</tr>
<tr>
<td>" "</td>
<td>9,6 Mm.</td>
<td>129,6 Mm.</td>
</tr>
</tbody>
</table>

Gleichartige Versuche für die vena jugularis gaben eine geringere Druckdifferenz in den beiden Manometern.

Dies Resultat konnte man voraussagen, aber es beweist nicht, was Volkman daraus ableitet. Denn diese Röhre ist überall von gleicher Weite; die Stromgeschwindigkeit bleibt also in der ganzen Röhre dieselbe, daher muss durch den Widerstand in der Röhre, welcher natürlich die Triebkraft vermindert, der Druck abnehmen.

Es ist aber die Frage, ob dies geschieht, wenn, wie dies im Arteriensysteme der Fall ist, zu gleicher Zeit das Strom-
gebiet sich erweitert und dadurch die Stromgeschwindigkeit abnimmt. Inzwischen ist dieser Versuch nicht nur sehr sinnreich, sondern auch höchst merkwürdig, weil er uns zeigt, dass die Triebkraft des Blutes in Gefässen von 3 Millimeter Durchmesser sehr langsam abnimmt, so dass der Widerstand zum grössten Theile in den kleinsten Gefässen anzutreffen ist 1).

Wir sind jetzt zu dem folgenden Schlusse angelangt. Die Triebkraft, welche das Blut fortbewegt, \(T = D + F \), nimmt von dem Herzen an fortwährend ab durch den Widerstand, und ist mithin in den Aesten geringer als in den Stämmen, wovon diese abgehen. Da aber die Summe der lumina der Aeste grösser ist als das Lumen des Stammes, so nimmt auch die Stromgeschwindigkeit und damit die Geschwindigkeitshöhe \(F \) ab. Nun ist es aber klar, dass wenn \(F \) um ebenso viel abnimmt als \(T \), \(D \) unverändert bleibt, dass \(D \) sogar kleiner wird, wenn \(T \) mehr abnimmt als \(F \), und dass \(D \) grösser werden muss, wenn \(F \) mehr abnimmt als \(T \).

Ich muss jedoch gestehen, dass dieser letzte Fall nicht leicht vorkommen wird. \(F \) ist nämlich ausserordentlich klein in Beziehung zu \(T \). Wenn wir die Stromgeschwindigkeit in der Aorta = 400 Mm. in der Secunde annehmen, dann erhalten wir nach der Formel \(F = \frac{y^2}{4g} \cdot \frac{400^2}{4900 \times 4} = \frac{160000}{19600} = 8,2 \) Mm. Blut, so dass die Geschwindigkeitshöhe nicht einmal 1 Mm. Quecksilber beträgt. Wenn \(F \) auf die Hälfte reduziert wird dadurch, dass die Blutbahn verdoppelt wird, dann wird noch kein \(\frac{1}{2} \) Mm. Quecksilber gewonnen, was nicht leicht geschehen wird, ohne dass durch den Widerstand, der zwischen überwunden werden musste, mehr als \(\frac{1}{2} \) Mm. Quecksilberdruck von der Triebkraft verloren gegangen ist. Übern-

1) Ob das Blut durch gläserne Röhrchen oder durch Arterien fließt — der Widerstand ist derselbe. Nur die Specificität und Temperatur der Flüssigkeit kommen hierbei in Betracht, da die unmittelbar an die Wand grenzende Schicht in Ruhe ist und der Widerstand nur durch die Cohäsion der mit verschiedener Schnelligkeit bewegten concentrischen Schichten bedingt wird.
dies erweitert sich die Blutbahn nicht bedeutend ohne Verästelung, wobei nicht allein ein eigener Widerstand zu erwarten ist, sondern auch die Geschwindigkeitshöhe geht noch unvermindert in den Ast über, denn je kleiner der Cosinus des Winkels, unter dem der Ast vom Stamm abgeht, um so mehr nimmt die Geschwindigkeitshöhe ab. Entspringt der Ast unter einem grössern Winkel als 90°, dann wird die Geschwindigkeitshöhe im Stamme negativ für den Ast.

Es ist höchst wahrscheinlich die Abnahme der Triebkraft nach der Peripherie hin immer grösser, als die Abnahme der Geschwindigkeitshöhe, und mithin auch der Blutdruck in den Arterien nach der Peripherie immer im Abnehmen begriffen. In jedem Falle kann der meistens in der art. crur. gefunden höhere Druck nicht aus einer Abnahme der Geschwindigkeitshöhe erklärt werden, um so mehr, da, wenigstens nach Messungen am Cadaver, die Blutbahn bei der Theilung der aorta eher enger als weiter wird.

Es wird daher die Frage rege, ob bei den betreffenden Versuchen genug darauf geachtet wurde, dass a. aorta und crur. in derselben horizontalen Ebene lagen. Es bedarf wohl keines ausführlichen Beweises, dass der Druck des Blutes in niedriger gelegenen Arterien mit der Höhe der Blutsäule zunehmen muss, und dass dem zufolge beim Menschen im aufgerichteten Stande der Druck in den Arterien der unteren Extremitäten leicht grösser sein kann, als der in der aorta. Man hat aber hierauf für die Arterien so selten aufmerksam gemacht, dass ich mir die Frage wohl erlauben dürfte, ob man die nöthige Lage der zu vergleichenden Arterien wohl in Acht genommen hatte.

Abgesehen von diesem Drucke der höher gelegenen Blutsäule sind wir zu dem Resultate gekommen, dass Volkmann, wohl ist es wahr, einen Factor vernachlässigt hat, dass aber dennoch die Abnahme des Blutdruckes nach der Peripherie hin, wie er sie annahm, stattfinden muss.

Und dennoch habe ich es für wichtig genug gehalten, den Einfluss der Geschwindigkeitshöhe auseinanderzusetzen. Durch Vernachlässigung oder unrichtige Schätzung dieses
Factors verwickelt sich Volkman nicht allein in seiner Hämodynamik, sondern auch in seiner Polemik mit E. H. Weber fortwährend in Schwierigkeiten, die den Leser verwirrt machen und unangenehm berühren, und die ihn zu der sonderbaren Vorstellung einer negativen Stauung verleitet haben, welcher er auch, wie wir oben gesehen, für den Kreislauf Geltung verschaffen will.

Die negative Stauung, welche da vorkommen sollte, wo eine Röhre weiter wird, setzt nichts weniger als eine Zunahme von Kraft voraus. Dies kommt uns aber absurd vor und verdient eine Widerlegung, da so etwas keine weitere Verbreitung finden darf, wozu Volkmanns Autorität wohl Vorschub leisten könnte.

Um die Sache deutlich vorzustellen, sehe ich mich genöthigt, Volkmanns eigene Entwicklung der Sache hier aufzunehmen.

„Die horizontale Röhre“, sagt er pg. 46, „durch welche das Wasser eines stets voll erhaltenen Behälters, II, abfloss (Fig. 6), bestand aus drei Abschnitten RR' R'', von gleicher Länge, 0,5 Meter, aber ungleicher Weite. Es betragen nämlich die Durchmesser in R 7,03, in R' 9,78, in R'' 6,93 Millimeter. Auf jedem Abschnitte waren zwei Druckmesser in der Weise angebracht, dass die Distanz derselben in allen
Abschnitten denselben Werth von 300 Millimeter hatte. Nun steht das Wasser in jedem ersten Druckmesser eines Röhrenabschnittes höher als in dessen zweitem; z. B. in A um a'a' höher als in B; in C um c c' höher als in D, und diese Seitendrucksdifferenzen entsprechen dem Widerstande, welcher in dem betreffenden Röhrenabschnitt auf einem Längenraum von 300 Mm. (gleich der Distanz der beiden Druckmesser unter einander) stattfindet.

Ein Experiment gab folgende Resultate:

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>R</th>
<th>R'</th>
<th>R''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>621</td>
<td>457</td>
<td>445</td>
<td>410</td>
<td>239</td>
<td>64</td>
<td>1540</td>
<td>793</td>
<td>1589</td>
</tr>
<tr>
<td>2.</td>
<td>468</td>
<td>345</td>
<td>333</td>
<td>307</td>
<td>177</td>
<td>49</td>
<td>1318</td>
<td>679</td>
<td>1360</td>
</tr>
<tr>
<td>3.</td>
<td>348</td>
<td>256</td>
<td>246</td>
<td>227</td>
<td>131</td>
<td>37</td>
<td>1115</td>
<td>574</td>
<td>1150</td>
</tr>
<tr>
<td>4.</td>
<td>240</td>
<td>178</td>
<td>170</td>
<td>157</td>
<td>91</td>
<td>?</td>
<td>914</td>
<td>471</td>
<td>949</td>
</tr>
</tbody>
</table>

Berechnet man aus den oben angegebenen Druckhöhen die Seitendrucksdifferenzen a a', c c', e e', als Werthe des Widerstandes in den drei Röhrenabschnitten R R' R'', so ergibt sich in dem Abschnitte:

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>R</th>
<th>R'</th>
<th>R''</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w</td>
<td>v</td>
<td>w</td>
</tr>
<tr>
<td>1.</td>
<td>164</td>
<td>1540</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>123</td>
<td>1318</td>
<td>26</td>
</tr>
<tr>
<td>3.</td>
<td>92</td>
<td>1115</td>
<td>19</td>
</tr>
<tr>
<td>4.</td>
<td>62</td>
<td>914</td>
<td>13</td>
</tr>
</tbody>
</table>

Der Druckmesser B des ersten Röhrenabschnittes steht 100 Mm. vor dem Anfange des zweiten Röhrenabschnittes; zwischen A und B beträgt die Seitendruckdifferenz für eine Röhrenstrecke von 300 Mm. Länge in der ersten Beobachtung 164 Mm., folglich sollte die Seitendruckdifferenz für eine Strecke von 100 Mm. 54,3 Mm. betragen (vergl. § 6). Nun
war der Seitendruck in B = 457 Mm., er sollte demnach am Ende des ersten Röhrenabschnittes = 457 – 54,3 = 402,7 Mm. sein. Eben so gross muss natürlich der Druck im Anfange des zweiten Röhrenabschnittes erwartet werden.

Im zweiten Abschnitte R' war die Seitendruckdifferenz auf eine Strecke von 300 Mm. = 55,4, folglich muss sie für eine Strecke von 100 Mm. betragen: 11,66 Mm. Der Druckmesser von C steht aber 100 Mm. unter dem Anfangspunkte von R', folglich verlangt die Theorie für den Anfangspunkt von R' einen Seitendruck von 445 + 11,66 = 456,66 Mm. Es werden also für denselben Punkt, nämlich Endpunkt der ersten und Anfangspunkt der zweiten Röhre, einmal 402,7 und dann wieder 456,66 Mm. Druck verlangt.

Dieser Widerspruch im Resultate der Rechnung beweist nichts, als dass in Röhren von ungleichem Kaliber, nahe an der Stelle, wo der Durchmesser sich ändert, die Abnahme des Seitendruckes nicht der Länge des Röhrenabschnittes proportional ist.

„Im vorliegenden Falle,“ so sagt Volkmann weiter, „kann dieses Ergebniss befremdlich erscheinen, da zwischen den Durchmessern B und C eine Stauung nicht stattfindet, welche Veränderungen der normalen Druckverhältnisse bedingen könnte. Indess dürfte das, was hier vorgiebt, der reine Gegensatz der Stauung sein, und eben deshalb auch den entgegensetzten Effect haben müssen. Das Wasser fliesst aus einer engen Röhre in eine weite, erfährt also in Bezug aufs Fliesens nicht eine Hemmung, sondern eine Förderung, und wenn die Hemmung des Stroms eine locale Steigerung des Drucks veranlasst, so ist von der Förderung des Fliesens eine locale Verminderung des Druck zu erwarten. Dem Versuche nach ist nun wirklich der Druck am Ende der ersten Röhre geringer, als am Anfange der zweiten, ein Verhältniss, auf welches wir öfters unter gleichen Bedingungen stossen werden, und welches mit dem Namen negative Stauung bezeichnet werden mag.“
Es geht hieraus hervor, dass Volkmann die Differenz der Stromgeschwindigkeit in den drei Abtheilungen R, R' und R'' der Röhre in die Berechnung nicht mit aufgenommen hat. Wir wollen nun diesen Factor mit aufnehmen und zusehen, welches Resultat wir dann erhalten.

Wenn H die ganze Druckhöhe im Druckgefässe,
 w den Widerstand bis zur Stelle der Röhre, die man be-
 obachtet,
 v die Geschwindigkeit der Flüssigkeit an der Stelle,
 D den Druck allda durch den Druckmesser bestimmt
vorstellt, dann erhält man nach der auseinandergesetzten
Theorie

\[H - w = \frac{v^2}{4g} + D \text{ oder } = F + D. \]

Die beiden letzten Glieder der Gleichung geben die Trieb-
kraft T an, welche noch an der Stelle in der Röhre vor-
handen ist.

Aus den Werthen von v, in den beiden oben mitgetheil-
ten Tabellen von Volkmann, wird zuerst \(\frac{v^2}{4g} = F \) berech-
net für die Stellen, wo die Druckmesser A, B u. s. w. ange-
bracht sind. Wir erhalten dann

\[\text{Werthe von } \frac{v^2}{4g} = F \]

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>in R</th>
<th>in R'</th>
<th>in R''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>121</td>
<td>32</td>
<td>129</td>
</tr>
<tr>
<td>2.</td>
<td>89</td>
<td>24</td>
<td>94</td>
</tr>
<tr>
<td>3.</td>
<td>63</td>
<td>17</td>
<td>67</td>
</tr>
<tr>
<td>4.</td>
<td>43</td>
<td>11</td>
<td>46</td>
</tr>
</tbody>
</table>

Wenn man diese zu den in der ersten Tabelle von Volk-
mann angegebenen Werthen von D fügt, so erhält man
\[\frac{v^2}{4g} + D \text{ oder } H - w. \]
Werthe von H—w.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>742</td>
<td>578</td>
<td>477</td>
<td>442</td>
<td>368</td>
<td>193</td>
</tr>
<tr>
<td>2.</td>
<td>557</td>
<td>434</td>
<td>357</td>
<td>331</td>
<td>271</td>
<td>143</td>
</tr>
<tr>
<td>3.</td>
<td>411</td>
<td>319</td>
<td>263</td>
<td>244</td>
<td>198</td>
<td>104</td>
</tr>
<tr>
<td>4.</td>
<td>283</td>
<td>221</td>
<td>181</td>
<td>168</td>
<td>137</td>
<td>?</td>
</tr>
</tbody>
</table>

Wenn man die in derselben horizontalen Reihe nebeneinander stehenden Werthe von einander abzieht, so findet man den Widerstand zwischen A und B, B und C u. s. w.

Widerstand an den zwischen den Druckmessern gelegenen Stellen.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>A—B</th>
<th>B—C</th>
<th>C—D</th>
<th>D—E</th>
<th>E—F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>164</td>
<td>101</td>
<td>35</td>
<td>74</td>
<td>175</td>
</tr>
<tr>
<td>2.</td>
<td>123</td>
<td>77</td>
<td>26</td>
<td>60</td>
<td>128</td>
</tr>
<tr>
<td>3.</td>
<td>92</td>
<td>56</td>
<td>19</td>
<td>46</td>
<td>94</td>
</tr>
<tr>
<td>4.</td>
<td>62</td>
<td>40</td>
<td>13</td>
<td>31</td>
<td>?</td>
</tr>
</tbody>
</table>

Widerstand zwischen B und C, D und E berechnet.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>B – C</th>
<th>D – E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>?</td>
</tr>
</tbody>
</table>

Diese berechneten Differenzen sind kleiner als die, welche durch Beobachtung erhalten wurden (siehe die vorhergehende Tabelle). Der Widerstand ist also sowohl durch die Erweiterung als durch die Verengung vergrössert. Zieht man nun diesen berechneten Widerstand von dem durch die Beobachtung erhaltenen ab, so bekommt man den Widerstand der Erweiterung und Verengung.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>Widerstand der Erweiterung zwischen B und C</th>
<th>Widerstand der Verengung zwischen D und E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>?</td>
</tr>
</tbody>
</table>

Diese Unterschiede kommen auf Rechnung des besonderen Widerstandes, der an jeder plötzlich verengerten oder erweiterten Stelle vorhanden sein muss 1). Wir haben ihn in Fig. 4 durch ein fast plötzliches Sinken der Triebkraft graphisch angegeben und da schon erwähnt, was hier wiederum bestätigt wird, dass er grösser an der erweiterten als an der verengten Stelle ist. Dies kann nicht auffallen, wenn man bedenkt, dass an der erweiterten Stelle Wirbel entstehen, die Kraftverlust bedingen.

Wenn wir nun mit Volkmann den Einfluss der Geschwindigkeit in dem ungleich weiten Röhren ausser Rechnung las-

1) Vgl. Weisbach: Die experimentelle Hydraulik, Freiberg. 1855. 9tes Cap. pg. 131 u. f.
sen und den Unterschied des beobachteten Höhenstandes in den Druckmessern geradezu für den Widerstand in der Röhre zwischen den Druckmessern halten, so bekommen wir nach seiner ersten Tabelle:

Widerstand.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>B - C</th>
<th>D - E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12</td>
<td>171</td>
</tr>
<tr>
<td>2.</td>
<td>12</td>
<td>130</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>96</td>
</tr>
<tr>
<td>4.</td>
<td>8</td>
<td>66</td>
</tr>
</tbody>
</table>

Die Differenz dieser Zahlen mit dem oben erwähnten berechneten Widerstande würde den Einfluss durch Verengung und Erweiterung ausgeübt wiedergeben müssen.

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>Widerstand der Erweiterung zwischen B und C.</th>
<th>Widerstand der Verengung zwischen D und E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>54</td>
<td>101</td>
</tr>
<tr>
<td>2.</td>
<td>38</td>
<td>79</td>
</tr>
<tr>
<td>3.</td>
<td>27</td>
<td>58</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>?</td>
</tr>
</tbody>
</table>

Man ersieht hieraus sogleich, dass der Einfluss der Verengung viel zu hoch ausfällt, und dass dagegen für die Erweiterung ein bedeutender negativer Einfluss gefunden wird. Dies bedeutet nichts Anderes, als dass die Triebkraft erhöht worden wäre, während ein bedeutender Widerstand vorhanden ist, wie aus den Wirbeln hervorgeht. Diese negative Stauung ist mithin absurd, und Volkmann ist allein dadurch zu dieser Annahme verleitet worden, dass er den Unterschied in der Geschwindigkeit des Stromes in den verschiedenen Theilen der Röhre ausser Acht gelassen hat.

Die Resultate einer Anzahl von Versuchen, die Volkmann ausgeführt hat, finden nach denselben Principes leicht ihre Erklärung. Mehr bestimmt findet dies seine Anwendung auf die meisten im III. Capitel „von der Bewegung der
Flüssigkeit durch ein System verzweigter Röhren mitgetheilten Versuche, wobei der beobachtete Druck für Volkmann räthselhaft blieb, weil er nicht daran dachte, dass da, wo wegen Erweiterung des Systems die Stromgeschwindigkeit abnahm, die Triebkraft sich mehr als an anderen Stellen als Druck zu erkennen gab. Ich würde zu viel vom Leser verlangen, wenn ich alle diese Versuche analysieren und näher beleuchten würde. Es scheint mir auch überdies unnötig. Denn es wird in Beziehung auf diese Versuche wohl schon vollkommen klar geworden sein, warum der Druck in einem symmetrischen Systeme von verästelten Röhren, das in der Mitte die weiteste Bahn für die Flüssigkeit hat (siehe Taf. IX. bei Volkmann), in der Mitte mehr als die Hälfte des anfänglichen Druckes beträgt, wiewohl da noch gerade soviel Widerstand übrig blieb, als bereits überwunden war 1); — warum der Druck bei Vertheilung einer Röhre in eine engere und weitere, die sich nachher wieder vereinigen, in der engern Röhre, wo die Stromgeschwindigkeit geringer ist, höher ist als in der weiteren; — warum der Druck in einer von neun Röhren, in welche eine Röhre sich auflöst und deren Gesamminhalt viel grösser ist als der ursprünglichen Röhre, und die sich wieder zu einer Röhre vereinigen, — warum, sage ich, der Druck in einer dieser neun Röhren, worin die Stromgeschwindigkeit natürlich viel vermindert war, sogar höher als in der primitiven Röhre steigen kann u. s. w. u. s. w. — Kurz, man braucht nur überall, wo Volkmann von negativer Stauung spricht, die Stromgeschwindigkeit mit in Rechnung zu bringen, um die Stauung verschwinden zu lassen.

II. Der Einfluss der Herzwirkung auf den Blutdruck.

Der hochgeschätzte E. H. Weber 2) beschreibt eine höchst

1) Es ist sogar schon mehr Widerstand überwunden als noch übrig bleibt. Die Differenz ist in dem besonderen Widerstande bei dem Einströmen der Flüssigkeit aus dem Druckgefässe in die Röhre gelegen.
2) Müllers Archiv 1851. pg. 524.
Kritische und experimentelle Beiträge zur Hämodynamik.

vernünftige Weise, um den Kreislauf vereinfacht vorzustellen, nämlich mit einer in sich selbst zurückkehrenden elastischen Röhre oder Darm, der mit artifiziellen Klappen versehen ist. Die eine Hälfte stellt das arterielle System vor, und zwischen beiden liegt ein Stückchen Schwamm, wodurch mehr Widerstand geboten und der Einfluss des Haargefässsystems nachgeahmt wird.

Er schliesst seine Beschreibung mit den nachfolgenden Worten: „Man sieht an dem vereinfachten Modelle des Kreislaufs, dass das Pumpwerk (das Herz) den mittlern Druck, den die in dem Röhrencirkel laufende Flüssigkeit auf die Röhrenwände ausübt, nicht vermehren, sondern dass es derselben nur ungleich machen könne, indem es durch sein Pumpen den Druck in den Venen, aus welchen es Flüssigkeit hinwegnimmt, vermindert, in den Arterien aber, in welche es dieselbe Flüssigkeit hineindrängt, vermehrt. Diesen so kurz und klar ausgedrückten Gedanken, fügt er in einer Note hinzu, „hat mein Bruder Eduard schon vor vielen Jahren gegen mich ausgesprochen.“

Weber entwickelt nun weiter, wie, nach dieser Theorie, der mittlere Druck durch die Beziehung zwischen Absorption und Excretion bestimmt wird, und hebt hervor, wie sehr es uns in Erstaunen setzen muss, dass der Druck des Blutes eine so bedeutende Höhe erreicht, weswegen er auch den Einfluss von uns noch unbekannten Kräften vermutet. An Beispielen von solch' bedeutendem Drucke fehlt es nicht im Thier- und Pflanzenreich (wir erinnern hier nur an den Weinstock und an Ludwigs Versuche über die Speichelsecretion); aber der hohe Blutdruck wird gewiss weniger befremdend gefunden werden, wenn er von der Wirkung des Herzens abgeleitet werden kann und muss, und mithin eine rein mechanische Erklärung ist.

Volkmann hat Weber’s Vorstellung schon für irrhümlich erklärt. Er behauptet, dass ausser dem vom Blutvolumen abhängigen Drucke, noch ein zweiter in Betracht

1) Müllers Archiv 1852. pg. 299.

We ber ging bei seiner Theorie, wie wir gesehen haben, von einem vereinfachten Modelle für den Kreislauf aus, das aus einer elastischen Röhre oder einem Darme verfertigt war. Die ganze Bahn besteht dann aus einem Rohre von gleicher

1) Müllers Archiv 1853. pg. 160.
2) Ebend. 1854. pg. 131.
Weite, dessen Wände einen gleichen Elastizitätscoefficienten haben. Seine Theorie findet nun für einen solchen Fall wirklich ihre Anwendung, vorausgesetzt, dass die Zu- und Abnahme des Lumens in dem Rohre, innerhalb der Grenze, worin sie zu Stande kommen, geradezu dem erhöhten Drucke proportionirt ist. Einige Versuche, die ich später ausführlich mittheilen werde, über die Quantität Flüssigkeit, die aus einer und derselben bei verschiedener Spannung gefüllten Röhre austritt, haben mich gelehrt, dass diese Bedingung wirklich nicht besteht. Denken wir uns also die Flüssigkeit in demselben Rohre ungleichmässig verteilte und den Druck in den verschiedenen Theilen desselben ungleich, dann wird der Druck nicht in gleichem Maasse zugenommen haben an der stärker ausgedehnten Stelle, als er an der weniger ausgedehnten abgenommen hat. Der mittlere Druck wird mit- hin nicht derselbe geblieben sein.

Überdies sind zwei wichtige Momente zu erwähnen, die der Anwendung von Webers Theorie auf den Kreislauf im Wege stehen. Es ist nämlich das venöse System viel weiter als das arterielle, und der Elastizitätscoefficient der Venen ein ganz anderer als der der Arterien.

Angenommen, der Elastizitätscoefficient wäre derselbe für Venen und Arterien, so würde das grössere Lumen der Venen schon bewirken, dass der Druck in den Arterien mehr zunehmen als in den Venen abnehmen müsse, wenn eine gewisse Masse Blut dem venösen System entnommen und durch das Herz in das arterielle getrieben würde. Schon deswegen wird der mittlere Druck steigen bei Zunahme des Blutvolumens in den Arterien, und es bedarf wohl keiner Erwähnung, dass um so mehr Blut im arteriellen Systeme vorhanden sein muss, je kräftiger das Herz wirkt, während der Rest des Blutes im venösen Systeme sich befindet, das wegen seiner Geräumigkeit und leichten Ausdehnbarkeit als Reservoir für das Blut, das nicht durch das Herz in die Arterien getrieben wird, betrachtet werden kann.

Aber der Unterschied im Elastizitätscoefficienten kommt hierbei ganz besonders in Betracht. Man kann sich leicht
von dem Factum überzeugen, dass die Venen sich bei erhöhtem Drucke in einem ganz andern Verhältnisse ausdehnen, als die Arterien. Der Student Gunning hat hierüber nach meiner Anweisung Versuche angestellt, die nächstens veröffentlicht werden, aus welchen unter Anderem hervorgegangen ist, dass die Venen bei niedrigem Drucke viel stärker durch jede Erhöhung des Druckes ausgedehnt werden, als die Arterien, deren Ausdehnung sogar bei einer Erhöhung von 100–180 Mm. Quecksilber höchst gering ist.

Uebrigens müssen wir erwähnen, dass eine grosse Anzahl Venen beim gewöhnlichen Blutdrucke eine platte anstatt einer cylinderförmigen Gestalt haben. In diesem Falle wirkt nicht einmal ihre Elasticität auf den Blutdruck, sondern blos die Spannung der umliegenden Theile, und die Vene kann noch sehr ausgedehnt werden, ehe ihre eigene Elasticität mit im Spiele ist.

Die starke Ausdehnung, welche die Venen unter gewöhnlichen Umständen schon bei geringer Erhöhung des Druckes erleiden, lehrt uns deutlich genug, besonders wenn man das grosse Lumen des venösen Systemes nicht aus den Augen verliert, dass wenn der Blutdruck für Arterien und Venen gleichmassig vertheilt wäre, wie es bei Abwesenheit aller Herzwirkung stattfinden müsste, der Blutdruck sehr abnehmen würde und weit unter dem mittleren Drucke in Arterien, Haargefässen und Venen stehen müsse.

Weber hat den Einfluss der Wellen auf die Blutbewegung sehr schön aus einander gesetzt. Er lässt zwei Cylinder (Fig. 7 A u. B) durch eine elastische Röhre CDE, die bei D in unzählige feine Röhrchen aufgelöst ist, verbunden sein. Im Zustande der Ruhe steht das Wasser in beiden Cylindern gleich hoch. Nun nimmt er in gewissen Intervallen Wasser aus B und giesst es in A. Beim ursprünglichen Drucke in A kann dies Wasser nicht so schnell durch CDE nach B zurückkehren, als es in A gegossen wird, weswegen

1) Müllers Archiv 1853 pg. 166.
Kritische und experimentelle Beiträge zur Hämodynamik. 461

Fig. 7.

der Staud der Flüssigkeitssäule in A höher sein wird als
in B. Endlich wird der Druck in A so sehr erhöht sein,
dass gerade so viel nach B zurückfliesst, als in A zugegos-
sen wurde. Dies geschieht z. B., wenn bei jedem neuen
Schöpfen in B das Wasser bis zu b' fällt und in A bis zu b
steigt, während es vor dieser Manipulation in B bei a' und
in A bei a stand. Man sieht wohl leicht ein, dass A das
arterielle System und das Uebergiessen die Herzwirkung vor-
stellen müsse. Das Blut, welches während der Diastole im
Herzen vorhanden ist, entspricht dem Drucke zwischen a
und b, der zeitweise während des Uebergiessens fehlt, und
die Wellen hervorbringt, welche neben dem bleibend höhern
Drucke in A die Bewegung des Blutes von A nach B zur
Folge haben.

Dies Schema nun können wir benutzen, um deutlich nach-
zuweisen, dass der mittlere Blutdruck durch die Herzwirk-
zung bedeutend zunimmt. Wäre es möglich, dass arterielles
und venöses System durch zwei Cylinder vorgestellt würden,
die gleiches Lumen hätten und um gleich viel, im Verhältnis
nisse zum Druck, ausgedehnt würden, dann würde der Blut-
F. C. Donders:

druck wirklich nur allein von dem Volumen abhängen und die Herzwirkung keinen Einfluss darauf ausüben. Dies geht aus Fig. 7 hervor, wo die Summe des Druckes in den beiden Cylindern immer dieselbe bleibt, wenn man den Augenblick des Uebergiessens (Diastole des Herzens) ausser Acht lässt. Das Verhältniss von arteriellem Blut zum venösen ist aber ein anderes. Der Cylinder B muss viel weiter vorgestellt werden als der Cylinder A und eine grössere Ausdehnbarkeit besitzen. Im Zustande der Rube, bei gleichem Drucke, können z. B. die zwei Systeme durch die beiden Cylinder in Fig. 8 vorgestellt werden. Beim Uebergiessen von B in A Fig. 8.

(Herzwirkung) wird nun viel mehr in A, viel weniger in B aufgenommen, B mithin verengt und A ausgedehnt, und nun wird Fig. 9 ungefähr die Druckverhältnisse in beiden Systemen vorstellen.

Man sieht, dass das Wasser in A viel mehr gestiegen (bis a), als in B gesunken ist (bis a'), und wiewohl die beiden Cylinder dieselbe Menge Flüssigkeit enthalten, ist der mittlere Druck viel grösser geworden. So nun wird auch der mittlere Druck zunehmen, sobald die Quantität Blut im
Kritische und experimentelle Beiträge zur Hämodynamik. 463

Fig. 9.

arteriellen Systeme vermehrt ist, was gerade durch die Herz-
wirkung geschieht.

Wir haben bis jetzt, um die Sache so einfach wie mög-
lich zu halten, einige Momente, wie den negativen Druck in
den Venen, in der Nähe der Brusthöhle, den Druck im Haar-
gefässsysteme u. s. w., ausser Acht gelassen. Und dies konnte
um so leichter geschehen, weil sie ohne Einfluss auf den
Werth von unserm Beweise sind.

Volkmann hat mit Recht unterschieden zwischen dem
Blutdrucke, der in Folge des Volumens im ganzen Gefäss-
systeme vorhanden wäre, und dem durch das Herz hervor-
gebrachten. Wenn er aber behauptet 1), dass der Einfluss
der Herzwerkung zu dem vom Volumen abhängigen Drucke
gefügt werden, und dass mithin nicht der ganze Druck vom
Herzen hergeleitet werden muss, dann sind wir nicht sei-
ner Meinung.

Das Herz bringt bei jeder Contraction das Blut in der
Herzhöhle unter einen höhern Druck, als das in der art.

1) Müllers Archiv 1852 pg. 299.

Um genau zu sein, müssen wir unterscheiden zwischen der Wirkung der Vorkammern und der Kamern. Wir mögen wohl annehmen, dass das Blut im Allgemeinen, während es sich in die Vorkammern ergiesst, unter keinem merkbaren positiven Drucke steht. Die Audehnung erfolgt durch den negativen Druck auf die Aussenwände der Vorkammer. Bei der nun folgenden Contraction der Vorkammer wird das Blut, das in die Kammer getrieben wird, einen positiven Druck auf die inwendige Fläche der Kammer ausüben. Die Kamern dehnen sich dadurch aus und die Elasticität ihrer Wände wirkt auf den Druck zurück.

Diese elastische Wirkung der Kamern während der Diastole addirt sich zu der nachfolgenden Contraction durch active Muskelwirkung hervorgebracht. Da nun die elastische Wirkung Folge der activen Contraction der Vorkammer ist, so folgt daraus, dass die Vorkammer die Kammer in ihrer Wirkung unterstützt und dass auch ihre Contraction den Blutdruck und die Blutbewegung mittelbar bedingt. Da nun weiter die Vorkammern keine elastische Rückwirkung auf das in sie einströmende Blut (das unter keinem positiven Drucke steht) auszuüben brauchen, so folgt weiter, dass es beim geregelten Kreislauf nur die active Muskelwirkung des Herzens ist, die das Blut unter einen gewissen Druck bringt, und dass der gleichmässige, vom Blutvolumen abhängige Blutdruck, bei mangelnder Herzwirkung, hierauf durchaus keinen irgend wesentlichen Einfluss ausübt.
Unsere Betrachtungsweise lässt sich aber auch noch folgendermaassen erläutern. Jede Bewegung beruht auf Druckunterschied, wie Weber dies sehr klar auscinander gesetzt hat. Dieser Unterschied ist nun allein von der Herzwirkung abhängig. Ist der Druck, unter dem das Blut im Herzen strömt, \(= 0 \), dann ist der ganze Druck in den Arterien als Druckunterschied, das ist als Effect der Herzwirkung aufzufassen. Jeder Druck, unter dem das Blut sonst in's Herz strömen möge, ist nur einfach vom Drucke in den Arterien abzuziehen, um die active Herzwirkung zu finden; in keinem Falle aber kann der mittlere Druck bei gleichmässigem Blutdrucke in Rechnung gebracht werden.

Zum Schlusse sei noch bemerkt, dass keine andere Vorstellung als die unsrige mit dem Prinzip der Kraft erhaltung in Uebereinstimmung zu bringen ist. Der Blutdruck in den Arterien wird verbraucht für Blutbewegung und zur Ueberwindung von Widerstand und gibt sich schliesslich als lebendige Kraft zu erkennen. Wäre er zum Theile von einem constanten, durch das Volumen bedingten Drucke abhängig, er würde sich nicht als lebendige Kraft äussern können. Freilich ist eine gewisse Quantität Blut, die bei dem Gleichgewichtszustande wohl einigen Druck im Gefässysteme verursachen würde, eine nothwendige Bedingung für den Kreislauf; aber als solcher ist er nicht im Stande, lebendige Kraft zu produiren. Eine Vermehrung des Blutvolumens bei unveränderter Herzwirkung kann den mittlern Druck überall erhöhen, aber keinen grössern Widerstand überwinden, und mithin nur insofern vermehrte Bewegung verursachen, als die Gefässe erweitert sind und der Widerstand in weiteren Gefässen bei gleicher Stromgeschwindigkeit geringer ist 1).

Ueber die Enden der Nerven im elektrischen Organ der Zitterrochen.

Von

R. Remak.

Seitdem Savi die Verästelung der Nervenfasern auf den durchsichtigen Blättchen der Säulen des elektrischen Organs der Zitterrochen entdeckt hat, liegt die Hoffnung nahe, die Frage nach der Endigung der Nerven zuerst bei diesem Organ zu lösen. Während eines Aufenthalts in Triest (im September 1853) ergriff ich die Gelegenheit, diesen Gegenstand einer Untersuchung zu unterwerfen; doch finde ich erst jetzt Musse, einige Worte darüber zu veröffentlichen.

ausgekleidet wirda. Es soll überhaupt sehr schwer sein, ein Septum zu isolieren und auszubreiten. Auf derselben Seite heisst es dann: „Begreiflicher Weise besteht jedes Septum ans drei verschmolzenen Platten, nämlich dem Boden eines Kästchens, der Decke des nächst unteren Kästchens und der unteren Schichte, Lamelle, welche als Grundmembran jedes Kästchen äusserlich überzieht und vom Ueberzuge der Prismen stammt.a Wagner widerruft darauf seine frühere, an Savi sich anschliessende Angabe von den netzförmigen Verbindungen der Nervenfasern, beschreibt die dichotomischen, mit Verlust der Markscheide verbundenen Verästelungen derselben und sagt schliesslich (pg. 159), dass eine solche Verästelung sich auf beiden Seiten eines Blättchens findet. „Zuweilen abera, fügt er hinzu, „reisst die Membran so, dass am Rande nur eine einfache Schicht von elektrischem Gewebe zurückbleibt, wo man dann auch nur die einfache Schicht von Nervenverästelung findet.a Die blassen Nervenfasern lässt er übrigens mit abgebrochenen breiten Aesten endigen, und sagt ausdrücklich, „es bleibe immer noch Raum genug frei, wo man bloss das feinkörnige Parenchym ohne Nervenverästelungen wahrnimmt. Wagner glaubt schliesslich (pg. 160), „soweit unsere jetzigen mikroskopischen Hilfsmittel reichen, die Nervenendigungen und die eigentliche Substanz des elektrischen Organs bis an ihre letzte Grenze verfolgt zu habena.

Fast eben so klar, wie im frischen Zustande, lassen sich die Beobachtungen, welche ich gemacht habe, an den elektrischen Organen von \textit{Torpedo marmorata} anstellen, die ich in Triest in Sublimatlösung 0,2\% oder in Chromsäure 0,2\% macerirt hatte und seitdem theils in Alkohol, theils in einer Mischung von doppeltchromsaurem Kali und Sublimat bewahre. Auch besitze ich eingekittete mikroskopische Präparate, an denen man die hier zu beschreibenden Wahrnehmungen wiederholen kann. Man überzeugt sich bald, dass es gar keine Schwierigkeit hat, einzelne Blättchen zu isolieren und mehrere über einander so zu falten und zu lagern, um ihre Zusammensetzung aus Schichten zu prüfen. Von
einer epithelialen Bekleidung ist freilich keine Spur zu sehen. Dieses negative Ergebniss könnte Bedenken erregen, wenn nicht im Uebrigen der merkwürdige Bau dieser Blättchen an meinen Präparaten so deutlich hervorträt. Namentlich sieht man klar, dass an jedem Blättchen, welches kaum \(\frac{1}{500} \) L. in der Dicke messen dürfte, eine glatte und eine rauhe Seite zu unterscheiden ist. Die Blättchen liegen dicht aufeinander, so dass immer die glatte Seite eines Blättchens der rauhen Seite des anderen zugewendet ist. Wenn ich nicht irre, ist die glatte Seite nach oben gewendet. Sie wird durch eine durchsichtige, beinahe glashelle Membran gebildet, welche in grossen regelmässigen Entfernungen runde, kernhaltige Höhlen enthält. Diese Membran ist der festeste Theil des Blättchens: denn sie erhält sich, auch wenn durch schlechte Maceration die Nervenschicht verloren geht, welche die rauhe Seite des Blättchens bildet. Wagners Beschreibung und Abbildung ist richtig, soweit sie die stärkeren Fasern betrifft. Allein die blasen Fasern brechen nicht so plötzlich ab, wie Wagner angiebt, sondern sie verästeln sich weit feiner, wie man an allen meinen Präparaten auf den ersten Blick sieht, und die Aeste werden so fein, dass man wohl versucht wird, zu sagen, dass sie dem Auge sich entziehen, und dass zwischen ihnen doch noch ein, wenn auch kleiner von Nerven freier „körniger“ Raum übrig bleibt. Allein es bedarf nur eines günstigen Lichtes, um an gut ausgespannten Stücke zu erkennen, dass der ganze scheinbar freie Raum von Nervenverästelungen ausfüllt ist. Man sieht nämlich kleine runde oder eckige Figuren von kaum \(\frac{1}{800} \) L. und darunter. Verfolgt man die zarten Konturen dieser Figuren, so sieht man, dass sie Aeste der Nervenfasern sind und dass sie nicht geschlossene Ringe bilden, sondern offene, indem die Fäserchen, deren Durchmesser ich auf weit weni- ger als \(\frac{1}{1200} \) L. schätze, einander ebenso kreuzen, wie es die starken thun, und daher die ähnliche Täuschung hervorbrin- gen, als bildeten sie netzförmige Anastomosen. An den Prä- paraten, welche ich mit doppeltchromsaureni Kali eingekittet
Remak: Ueber die Enden der Nerven

habe, erscheinen die Zwischenräume zwischen den feinsten Fäserchen stellenweise wie helle runde Bläschen.

kalien aufquellende Schicht scheint mir zwar allerdings contractile Eigenschaften zu besitzen. Denn ist das Thier ganz abgestorben, so erscheint sie ganz homogen. Wird sie aber im frischen Zustande mit Alkohol, Sublimat, Chromsäure behandelt, so zeigt sie ein sehr zierliches Bild von wellenförmigen concentrischen Furchen, so dass die Fläche wie mit Chladnischen Klangfiguren bedeckt erscheint. Durch ihre Schärfe erinnern die Furchen wohl auch an die Querstreifen der Muskelfasern. Aber ein allmäßiger Uebergang dieser Substanz in quergestreifte Muskelfasern an der Spitze des Organs, wie Stannius beschreibt, lässt sich nicht nachweisen. Muskeln setzen sich allerdings an die Oberfläche des Organs an, und sobald sie sich verkürzen, werden sich die kolossalen Gefäßbäusche in den Höhlen der Kapseln mit Blut füllen; sobald sie dagegen erschlaffen, kann die contractile Gallertschicht den Rücktritt des Blutes aus den Gefässen (vielleicht zum Rückenmark) befördern. Eine von diesem Gesichtspunkte ausgehende neue Untersuchung des Organs würde ein histologisches und physiologisches Interesse darbieten.

Ueber das vas deferens.

Von

LUDWIG FICK in Marburg.

(Hierzu Taf. XVII. A.)

Der Samen wird aus der Harnröhre stossweise ejaculirt durch die wechselnden Contractionen der Muskelschichten, welche das Lumen der Harnröhre comprimiren. — Die Kraft, durch welche der Samen aus dem vas deferens in die Harnröhre gelangt, besteht jedenfalls wesentlich in der Contraction der Wandung der Samenwege zwischen Hoden und Prostata, wird jedoch unterstützt durch eine Saugwirkung des Erectionsmechanismus der Harnröhre (wie uns Günther gelehrt hat). Dass aber diese Saugwirkung nur die Rolle einer untergeordneten Begünstigung spielt, lehrt die vollständige Samenentleerung auf Wollustreize bei vollkommener Epispadie und Harnblasenspalte. Dass andere Momente (wie z. B. die Bauchpresse, mechanischer Druck der Darmcontenta etc.), die man hin und wieder als mitwirkend bei dem Austrittsmechanismus des Samen aus dem Samenleiter durch die Prostata in die Harnröhre hat ansprechen wollen, im gesunden Organismus nicht in calculus zu stellen sind, bedarf keiner weiteren Begründung.

Es gelangt der Samen in den Nebenhoden und Samenleiter durch das Secretionsmoment des Hoden. Wir können diese drei Abtheilungen des Weges, welchen der Samen von Secretion bis zur Ejaculation zu durchlaufen hat, durch folgendes Schema ausdrücken:
Wenn man den Samenweg zwischen Hoden und Prostata vom Kaninchen, Hunde und Menschen vergleicht, so sind mit Ausnahme des Fehlens der Samenblasen die vasa deferentia bei Menschen und Hunden äußerst ähnlich, bei beiden fast knorpelhart, äußerst dickwandig, mit sehr engem Lumen, dagegen bei dem Kaninchen mit ausserordentlich dünner, weicher Wandung und mit einem Lumen versehen, was einer dreifach grösseren Canüle den Eintritt mit Leichtigkeit gestattet, als das Lumen jener.

Die Studien, welche ich über diesen Samenweg an Hunden (beziehungsweise Menschen) gemacht, will ich in Folgendem vorlegen.

I.

Die Frage, ob die Secretion des Hodens eine continuirliche oder eine unterbrochene, ob sie, wenn auch continuirlich, doch Intensitätsschwankungen unterliegt, ist von grösstem Interesse, aber wie mir scheint nicht auf experimentellem Wege zu beantworten.

Am nächsten liegt es, in den Samengang ein Manometer einzuführen und hiermit das mechanische Secretionsmoment zu prüfen; ich habe mich aber vergeblich bemüht, ein Manometer herzustellen, was geeignet gewesen wäre, bei Hunden die Anwesenheit oder Abwesenheit eines Secretionsdrucks in den Hoden genügend darzustellen. Das Lumen des vas deferens ist so eng, dass das hierdurch bedingte Einsatzzende des Manometer so fein ausgezogen werden musste, dass bei den jedenfalls geringen mechanischen Kräften, die zu bestimmen waren, die Fehlerquelle, welche in der Adhäsion der flüssigen Füllung (ich füllte vom Quecksilberstand bis zum
Einsatzende mit Zuckerwasser) bei einem so kleinen Querschnitt liegt, so gross wurde, dass ich das scheinbare Resultat — ich bekam bei mehrfachen Experimenten keinen Secretionsdruck — wenigstens nicht als ein ernstes Resultat ansehen mag, und deshalb die angestellten Versuche hier nur anführe, um Anderen die Anregung zu geben, wo möglich bessere Prüfungsmittel zu ersinnen. Ebenso ist es mir misslungen, eine Samenfistel anzulegen, um allenfalls während eines vollzogenen Coitus die Samensecretion zu beobachten. 3 Hoden, welche ich an verschiedenen Hunden hierzu geopfert, verschlossen sich im Verlaufe weniger Tage an der Stelle, wo ich den Samenleiter durchschnitten resp. ein Stück ausgeschnitten hatte.

Besser gelang es die contractiven Kräfte zu prüfen, welche in der Wandung des Samenweges vom Hoden bis zur Prostata liegen und von mehreren Schriftstellern als übereinstimmend mit jenen geschildert werden, die sich beim Kaninchen ganz deutlich als peristaltische Bewegung zeigen.

wenn sie im Hoden continuirlich fortdauert, nicht hinreichend ist, um die Contractionskräfte der Wandung des Samenganges genügend anschaulich zu machen; es gelingt dies aber vollkommen, wenn man dicht am Bauchringe das vas defere durchschneidet, eine Cantile einführt und dasselbe nach dem Hoden hin unter dem Drucke einer Quecksilbersäule (ich füllte mit einer solchen von 14 P. Zoll Höhe und 9 1/2 P. Liniendurchmesser) mit Quecksilber anfüllt. — Das Quecksilber geht ziemlich leicht bis in den Schwanz des Nebenhoden. — Wenn nun das mit Quecksilber gefüllte vas defere eine Strecke weit isolirt und die serosa des Hoden vollständig geöffnet ist, so lässt sich Hode, Nebenhode und eine bedeutende Strecke vas defere sehr gut übersehen, das letztere leicht mit einer feinen Nadel an einer mit Scala versehenen Glastafel in jeder beliebigen Stellung fixiren und der Quecksilberstand vortrefflich beobachten. — Bei einem Quecksilberstand bis zur Oeffnung bewirkt nun die galvanische Reizung des vas defere, sofort ein rasches Austreten zahlreicher kleiner Quecksilbertropfen (Ueberfliessen), wobei jedoch der Quecksilberfaden bis in den Nebenhoden hinab noch immer continuirlich bleibt und selten unter die Oeffnung herabsinkt. — Durch Reizung des Nebenhoden und des gewundenen Anfangs des vas def. entsteht ein viel stärkerer Austritt weit grösserer Tropfen, worauf der Quecksilberfaden oft bis 1 1/2 bis 2 Zoll unter die Mündung herabsinkt. Durch neue Reizung wird der Quecksilberfaden wieder bis zur Mündung in die Höhe getrieben, zuweilen sogar abermals zum Ueberfliessen gebracht. — Versuche durch Reizungen von der Oeffnung her, den Quecksilberfaden rückwärts gegen den Hoden zu treiben, sind ohne Erfolg, so lange der Quecksilberfaden continuirlich von der Nähe der Oeffnung bis in den Nebenhoden herabreicht. Dagegen lässt sich ein kurzes Quecksilberfäden von 1 1/2 Zoll durch abwechselnde Reizung vor oder hinter ihm mit Bestimmtheit vorwärts und rückwärts bewegen. Wird die Füllung des Samenwegs durch Beihilfe eines Fingerdrucks, mit welchem man das einfliessende Quecksilberfäden gewaltsam gegen den Hoden drückt, forciert, so
entfernt sich bei vorsichtiger Entfernung der Canüle eine Zeitlang Quecksilber von selbst ohne alle Reizung aus der Öffnung. — Die Frage, inwiefern Temperaturreize Contraction erregen oder modifizieren, wurde durch Anwendung von Wasser von 55° R. und Berührung mit Eisstücken zu beantworten gesucht. Es ergab sich hierbei, dass der Stand des Quecksilberfadens weder durch Erhöhung noch durch Verminderung der Temperatur des Hoden oder Samenwegs direct verändert wird, dagegen erlischt durch längere Berührung des Nebenhoden oder Samengangs mit Eis die Reaktionsfähigkeit dieser Organe auf die galvanische Reizung, es stellt sich die Reaktionsfähigkeit derselben jedoch wieder her, wenn die normale Temperatur derselben wieder restaurirt ist. — Um zu prüfen, ob durch Reizung der Samenwege auf der einen Seite, etwa reflektorische Erscheinungen in der entgegengesetzten Körperseite hervorgebracht werden, wurden rechter und linker Hoden zugleich blossgelegt, beiderseits die Samenwege mit Quecksilber gefüllt und bei einseitiger Reizung beobachtet. Es ergab sich nicht die leiseste Spur einer Reflexion von der einen auf die andere Seite, obgleich hierbei ausser dem Querschnitt durch die vasa deferentia alle übrigen Gebilde, namentlich das Mesenterium des vas defer. sorgfältig unverletzt erhalten wurden. — Um zu prüfen, ob möglicherweise die Contraction der Cremasteren eine directe Einwirkung auf die Bewegung des Inhalts der Samenwege ausübe, wurden ohne Eröffnung der serosa, die bis auf den möglichst kleinen Längenschnitt, welcher ganz dicht am Bauchring zur Blosslegung und Füllung des vas def. vorgenommen war, unverletzten Cremasterhüllen gereizt, jedoch kein Quecksilberaustritt selbst bei der kräftigsten Cremaster-contraction beobachtet. Es wurden bei allen nach den Versuchen getödeteten Hunden sofort nach Eröffnung der Bauchhöhle die prostatischen Enden des Samenwegs ebenfalls untersucht, und es zeigt sich in den gewundenen prostatischen Enden bei Reizung ohne Quecksilberfüllung eine eigenthümliche, einer Erschütterung, jedoch nicht einer peristaltischen Bewegung vergleichbare Contractionsbewegung. — Bei der
Quecksilberfüllung ergab sich bei Anfüllung unter einem schwachen Quecksilberdrucke (bei 2 Zoll Quecksilberhöhe im Füllungsrohr) noch kein Quecksilberaustritt in Prostata und Harnröhre, welcher jedoch immer erfolgte, sobald der Quecksilberdruck bei der Füllung bis über 2 Zoll gesteigert wurde. In allen Fällen blieb jedoch der Samenweg nach Wegnahme der Canüle noch vollkommen gefüllt, mochte die Füllung unter hohem oder niederm Druck geschehen sein. Die Reizung des mit Quecksilber gefüllten Samenwegs, zeigte genau dieselben Erscheinungen wie am entgegengesetzten Hodenende, nämlich bestimmte Fortbewegung des Inhalts nach der Prostata hin, ohne locale Contraction oder der Darmbewegung ähnliche Bewegungen. — Aus dem Vorstehenden ergibt sich, dass der in Ermangelung eines Klappenapparats durch die Contraction des in der Prostata mündenden Endstückes des Samenwegs bewirkte Samenverschluss zwar ein vollständiger ist, aber mit Leichtigkeit durch die a tergo wirkenden Contractionskräfte des vas deferens überwunden wird.

Zu bemerken habe ich noch, dass bei allen Hunden bei Durchschneidung des Samengangs sich die Schleimhaut etwas über die elastische Haut vordrängte, oder wie man wohl besser sagen wird, die elastische Haut zog sich etwas der Länge des Lumen nach zusammen.

Die Reizung des vas deferens erschien immer, wenn es auch noch im Zusammenhang mit seinem Mesenterium und unverletzt war, etwas weniger schmerzhaft, als die des Nebenhoden. — Wenn das vas defer. von seinem Mesenterium und der art. deferent., welche an ihm nur locker angewebt
im Mesenterinum verläuft, isolirt wurde, so wurde die Reizung desselben gar nicht mehr empfunden, während die Reizung des prostatischen sowie des Hodenendes schmerzhaft blieb. Die art. deferent. blutete mehrmals so heftig, dass sie unterbunden wurde.

Endlich muss ich noch bemerken, dass bei allen Versuchen die beiden Electroden entweder auf einer und derselben Seite des Samenweges, oder wenn beiderseitig, so weit von einander entfernt angesetzt wurden, dass auch nicht die entfernteste Möglichkeit übrig war, dass durch die beiden Drathenden ein mechanischer Druck auf den Samenweg und resp. Quecksilberfaden zufällig hätte ausgeübt werden können.

Bei allen Versuchen konnte bei der allergrössten Aufmerksamkeit (ich habe sehr häufig die Reizstellen unter der Loupe betrachtet) niemals eine locale Einschnürung beobachtet werden. — Auch bei den Versuchen, wo durch einen lokal Reiz eine Unterbrechung des dünnen Quecksilberfadens zu Stande kam, war ebenso wenig als da, wo dies nicht stattfand, in der Wandung des vas deferens die geringste locale Einschnürung bemerkbar. — (Es erklärt sich übrigens aus der bedeutenden Cohärenz des Quecksilbers und dem Mangel der Adhäsion desselben an die Wandung des Samengangs diese auf den ersten Blick frappante Thatssache sehr leicht.) — Ich muss wiederholt auf das Bestimmteste versichern, dass an dem gestreckten Theile des vas deferens auch bei dem kräftigsten Quecksilberausstritt die Contraction der Wandung überhaupt mit dem Auge nicht direct wahrgenommen werden konnte. Anders verhielt sich die Sache bei dem gewundenen Theil des vas defer. und der caud. epidid. Bekanntlich sind dieselbe Theile in eine tunica albuginea aus fibrösem Gewebe dergestalt eingewebt, dass diese Fibrosa wie eine Tangente über die Höhenpunkte der einzelnen Windungen wegläuft und die Zwischenräume überbrückt. — Bekanntlich sind aber die Windungen dieser Theile in ein von dieser Fibrosa ausgehendes, fibrös fadiges Balkengerüst dergestalt fest eingewebt, dass eine Verschiebung der einzelnen Windungen innerhalb der Fibrosa nicht möglich ist. — Den-
noch sieht man, wenn diese gewundenen Theile in kräftige Contractionen versetzt werden, so lange sie nicht mit Quecksilber erfüllt sind, eine plötzliche Bewegung, die auf den ersten Blick mit einer peristaltischen Bewegung des Darms eine entfernte Ähnlichkeit hat und neben der thatsächlichen peristaltischen Bewegung, die man am vas defer. des Kaninchens so leicht beobachten kann, auch wohl leicht zu der irren Annahme führen kann, es habe auch das vas defer. des Hundes einen echten motus peristalticus. Bei genauer Beobachtung unterscheidet sich aber diese Bewegung sehr wesentlich von der beim Kaninchen. Es verändert sich nämlich nicht im mindesten die Lage der einen Windung zu der der andern Windung und ist auch hier nicht die leiseste Spur einer localen (fortschreitenden) Einschnürung wahrzunehmen, wohl aber spannt sich das ganze System der Windungen innerhalb ihrer Fibrosa plötzlich stärker als vorher, indem das Samengefäß enger und härter und länger wird, und zwar ganz positiv länger wird, wie ich durch ganz kleine (linienlange) Haarabschnitten, die ich auf diese gewundenen Stellen gleichsam als Maassstäbchen streute, ganz leicht dartheben konnte. In der That gleicht diese Erscheinung eher einer plötzlichen Erection, als einer peristaltischen Bewegung. Ist dagegen die Füllung mit Quecksilber geschehen, so fallen von nun an auch die Contractionsbewegungen nicht mehr direkt ins Auge, weil sie um so viel langsamer vor sich gehen, sind aber an der Verdünnung und geänderten Spannung des Inhalts auch noch indirect wahrnehmbar.

Ueberblickt man die angegebenen Thatsachen, so geht aus ihnen hervor, dass die Contraction des Samenganges zwischen Hoden und Prostata in ihrem Mechanismus bei den Hunden (also auch wahrscheinlich bei den Menschen) nicht mit dem Mechanismus der quergestreiften Muskeln, auch nicht mit dem Mechanismus der glatten Darmmuskeln zu vergleichen ist, dass er dagegen vollkommen analog dem Mechanismus der Arteriencontraction sich darstellt. Aber auch von dieser unterscheidet sich wieder die Reizbar-
keit dieses Apparats. Die Reizbarkeit des Samengangs reagiert nicht auf Temperaturreize, dagegen bis zur Erschöpfung auf galvanische Reize; sie wird vermindert durch Kälte und einigermaassen hergestellt resp. gesteigert durch Erwärmung, dagegen sie nach Erschöpfung ihrer Wirkung deutlich und leicht durch mechanische Ausdehnung des Querschnittes mittelst einer beliebigen vis mechanica hergestellt wird.

Es kann durch diese Contraction, welche auf Reizung erfolgt, ein Transport des Inhaltes und zwar um so kräftiger, je grösser das Lumen des Querschnittes, oder was identisch, je grösser die Menge des Inhalts ist, nach dem locus minoris resistentiae, mit einer mechanischen Kraft, die verhältnismässig sehr gross ist, bewirkt werden.

Es wird also an den Orten des geringern Widerstandes sich zunächst eine relative Häufung des Inhaltes in den gewundenen dünnwandigeren Anfangs- und Endtheilen (resp. in Nebenhoden und Samenblase) und eine relative Leere des mittleren, engeren und dickwandigeren Theils ergeben.

Es leitet sich aus diesem Verhältniss im Zusammenhang mit der Schwierigkeit des Rücktritts des Inhaltes in den Hoden, und des Hodens als Ausgangspunkt der Reizung und Contraction, die Nöthigung ab, dass im Leben eine Strömungsrichtung nach der Prostata vorhanden sein muss, und niemals eine umgekehrte stattfinden kann.

Es erklärt sich, dass wenn der ganze Apparat gefüllt ist, auf Reizung erfolgende Contraction eine Entleerung desselben nach der Prostataseite hin zu Stande bringen muss, welche jedoch nicht stossweise in durch Ruheintervalle getrennten Kraft-(Zeit-)Momenten auftreten, sondern immer continuirlich sein und langsam in der Herstellung des Gleichgewichts sich auflösen wird. Es ist nach allem Vorstehenden also sicher, dass die Ejaculation aus dem normalen Penis unmöglich direct durch die mechanischen Kräfte der zwischen Hoden und Prostata liegenden Samenwege effeckt wird; es ist aber sicher, dass diese Samenwege durch ihre Samenentleerung während des Begattungsreizes die dem Müller's Archiv. 1856. 31
direkten Muskeldrucke exponirten Theile der Harnröhre nach und nach füllen und hier ihren Inhalt dem stossweise erfolgenden Ejaculationsacte überantworten. —

Bemerken will ich noch, dass die mir gemachten Angaben jener unglücklichen Subjecte mit umgestülpter Harnblase, welche jährlich die Universitäten besuchen, über ihre Samen ent leerung bei Wallustreiz, mit Bestimmtheit auf ein Her vorquellen und nicht auf ein Ausspritzen des Samens ge lautet haben.
II.

Den Samenleitern ähnlich gebildet erscheinen auch die Ductus ejacul., und die Samenbläschen, von denen die letzteren bekanntlich nichts als blinde mit warzigen, schlauchförmigen oder verästelten Ausläufern verscheme Anhänge der Ductus deferentes sind. Erstere zeigen in dem oberen Theile denselben muskulösen Bau wie der Samengang, nur dass ihre Wände zarter sind. — Nach der Prostata zu verdünnen sich ihre Häute noch mehr, zeigen jedoch auch am letzten Ende noch Muskelfasern mit ziemlich viel Bindegewebe und elastischen Fäserchen gemischt. Die Wände der Samen-
 blasen sind bedeutend dünner als die der Samenleiter,

sitzen jedoch denselben Bau wie diese, nur dass die deut-

lich gefässbaltige Schleimhaut u. s. w."

Man sieht, dass der Gegensatz zwischen Arnold und

Kölliker auf die verschiedene Deutung eines und dessel-

ben, bei Kölliker nur specieller ausgeführten Sachverhalts

hinausläuft, insofern Arnold die von Kölliker als Zelle

aufgefasste Elementarform weder affirmiert noch negirt. Beide

nehmen drei Schichten (eine kreisförmige stärkere zwischen

drei dünneren Längsfaserschichten gelagerte) in der je-

denfalls contractilen Wandung an. Kölliker deutet in sei-

ner Weise diese Wandung (von der Schleimhaut und der

die Gefässe und Nervennetze enthaltenden tunica adventitia

fibrosa soll hier überhaupt nicht geredet werden) als Mus-

kelwand, während Arnold sie als nicht muskulös will an-

gesehen wissen; Beider Angaben gelten für den Menschen.

— In Beziehung auf diese drei Schichten finde ich die vor-

stehenden Angaben, welche der Hauptsache nach allgemein

angenommen werden, für den Hund und auch theilweise

für den Menschen nicht genau. Bei Hunden und ebenso bei

Menschen besteht in dem Theile des vas def, welcher die

dickste Wandung und das kleinste Lumen besitzt, die con-

tractile Wandung nicht aus drei isolirten Faserschichten, viel-

mehr aus einer, in concentrische, kreisförmig laufende Lapp-

en und Fetzen zerreissbaren faserigen Grundlage, in welche

ein Netzwerk oder Balkengeflücht mit langgestreckten Maschen-

räumen von derselben Substanz eingewebt ist, welches sich

überwiegend auf der äusseren und inneren Seite entwickelt,

während sich die concentrisch spaltende Faserlage in der

Mitte, den bei weitem grössten Theil der ganzen Masse bildet.

Auch kann ich mich nicht überreden, dass das Material die-

ser in einander geschobenen Fasergeflüchte aus präformirten

isolirten Faserzellen bestände, vielmehr finde ich, dass es

überhaupt keine präformirten morphologischen Einheiten be-

sitzt, sondern, analog dem elastischen Gewebe und dem Ge-

webe der gefensterten Arterienhaut, aus einem continuirli-
Ueber das vas deferens.

487

chein Geflecht, bald sich spaltender, bald wieder vereinigender Gewebsbalkchen besteht, welches Flechtwerk zwar künstlich und gewaltsam in scheinbare Einheiten von dem verschiedensten Kaliber zerrissen und zerfetzt werden kann, aber nicht aus kalibrirten präformirten Einheiten wie die gestreifte oder glatte Muskelfaser zusammengesetzt ist.

Es zerfällt bei dem Hunde die ganze Wandung zunächst in zwei (jedoch continuirliche) Schichten, indem die dickere äussere Partie eine grobe Darstellung der so eben angegebenen in einander geschobenen gerade und quer laufenden Geflechte darstellt, während zunächst der Schleimhaut sich dasselbe mit feinen gefaserten Elementen wiederholt.

Je mehr man sich beim Menschen und beim Hunde der Prostata nähert, desto mehr häuft sich die längs dem Lumen laufende Längsfaserschicht aussen und innen, die kreisförmig laufende in der Mitte, ohne jedoch den Charakter der gegenseitigen Durchsetzung ganz aufzugeben. Das Gewebe habe ich mit Kali, Essigsäure, und Salpetersäure untersucht und an frischen sowie an getrockneten und aufgeweichten, sowie auch an gekochten Quer- und Längsschnitten studirt. Es ist also zunächst festzuhalten, dass Construction und Mechanismus des vas def. keineswegs bei allen Säugethiiren sich identisch verhalten.

Da aber die contractile Wandung des zwischen Hoden und Prostata liegenden Samenwegs beim Hunde (beziehungsweise Menschen) in ihrer Mechanik sowohl als in ihrer Construction von dem glatten wie von dem quergestreiften Muskelelement sich wesentlich unterscheidet, so finde ich keinen hinreichenden Grund, dieselbe hier muskulös zu nennen und damit die scharfe Charakteristik der glatten und quergestreiften Muskelfaser aufzugeben, vielmehr scheint mir die ältere Anschauung, nach welcher elastisches Fasergewebe (durch Mangel an präformirten Functionseinheiten morphologisch cha-
rakterisirt) unter gewissen Verhältnissen Irritabilitätsphänomene zeigen kann, hier gerade darum als die vorzüglichere, weil sie neben Anerkennung der übrigen Unterschiede den analogen Vorgang in verschiedenen Substanzen nur funktionswählend zu bestimmen sich bescheidet. — Will man dagegen mit den neueren Mikroskopikern jeden Theil des Organismus, in welchem sich Irritabilitätsphänomene nachweisen lassen, Muskel nennen, so hört das Wort Muskel auf ein histologischer Begriff zu sein, und man hat den Uebelstand, dass eine einzelne Eigenschaft des Muskels (allerdings seine wichtigste Function) für eine Reihe von verschiedenen Geweben, welche sowohl unter sich als von dem wirklichen Muskel sehr verschiedene Eigenschaften haben, als Begriffsbestimmung benutzt wird.

Es würde die Vertauschung der Bezeichnung irritabel oder contractil (die Fähigkeit, auf Reize in Molekularbewegungen zu gerathen) mit der Bezeichnung muskulös etwas für sich haben, wenn das eifrige Streben der Mikroskopiker, aus mikroskopischen Bildern Anschauungen über die molekulare Mechanik der organischen Gewebe zu gewinnen, irgend eine Realität hätte. — Leider wird aber dies ein desiderium plium bleiben. Auch fernerhin wird wohl in dieser Beziehung sich nichts machen lassen, als dass die Einen mit Hrn. Bowman Muskelscheiben, die Andern mit Hrn. Barry gedrillte Fibrillen u. s. w., als unmittelbar in der molekularen Muskelmechanik arbeitende Elemente, in die leider nicht bis in die molekulare Mechanik hinabreichenden mikroskopischen Bilder hineinphantasiren. Es ist unangenehm, dass man mit dem Mikroskop der Mechanik des organischen Moleküls nicht bekommen kann, allein es ist nun einmal so. — Durch die classischen Untersuchungen von Dubois-Reymond steht fest, dass in allen irritablen Substanzen gewisse regelmässige elektrische Strömungserscheinungen stattfinden. Es ist fast gewiss, dass diese Erscheinungen der Ausdruck der Wirksamkeit regelmässig angeordneter elektromotorisch wirksamer Moleküle sind. Nichts ist daher wahrscheinlicher,
als dass die Contraction irritabler Gewebe in einer elektrodynamisch bewirkten veränderten Anordnung jener Moleküle besteht; sei es, dass sie in einer bestimmten Richtung näher an einander rücken, sei es, dass vorher hinter einander gelegene seitlich neben einander treten. Das Mikroskop aber macht diese Vorgänge weder in der einen noch in der anderen Gewebsform auch nur annähernd anschaulich.

Erklärung der Abbildung.

Die Figur zeigt im Querschnitt:
 a. die (außer dem Focus liegende) längsgefalzte Schleimhaut.
 b. die kreisförmig laufenden Schichten.
 c. die längslaufenden Schichten.
Encore un mot sur la formation des perles.

Par

le Dr. Ph. DE FILIPPI,

Prof. à Turin.

Je suis bien sensible à l'bonneur que Mr. le docteur Küchenmeister a voulu me faire par la traduction de mon petit mémoire sur la formation des perles (Arch. de Müller, 1856, pg. 251 sqq.); mais je ne saurais reconnaître comme bonnes et valables les notes critiques qu'il y a ajouté. Comme la plus part se reduisent à une simple chicane de mots, je viendrai au substantiel, et pour couper court, je mettrai sous les yeux de l'helméthologiste éclairé de Zittau les passages suivants d'un autre travail que j'ai publié deux années plus tard (1854) dans les Mémoires de l'Académie des Sciences de Turin, et qui ayant paru aussi la même année dans les Annales des Sciences naturelles, sera peut-être déjà connu de Mr. Küchenmeister 1).

„Dans un petit mémoire sur les perles j'ai déjà cherché à montrer que leur formation n'est pas due à une particularité de certaines espèces de conchifères: qu'il y a toujours dans les perles un noyau formé par un entozoaire; et que la fréquence des perles est vraisemblablement en raison directe de la fréquence des parasites dans le manteau des mollusques margaritifères."

Et j'ajoutais en note:

„Des recherches postérieures n'ont fait que confirmer ces faits; seulement je dois maintenant généraliser un peu plus,

1) Mémoire pour servir à l'histoire génétique des Trématodes.
et dire que le noyau des perles est toujours formé par un animal, qui est ordinairement un entozoaire de l'ordre des Trématodes, mais qui peut être aussi un parasite d'une autre classe. Je viens de trouver des perles de l'Anodonta cygnea qui renfermaient comme noyau un jeune individu de Limnochares Anodontae encore parfaitement reconnaissable.

J'ai ajouté dans mon mémoire qu'il serait peut être intéressant d'étudier les parasites des mollusques margaritifères, même dans un but industriel, car on pourrait trouver le moyen d'augmenter la diffusion de ces parasites, ou de les transporter d'un endroit à l'autre. On pourrait faire très facilement des recherches de ce genre en Saxe, ou la récolte des perles est toujours de quelque importance, et constitue un droit du gouvernement.

Il résulte de ces passages que j'ai trouvé bien avant Mr. Küchenmeister le Limnochares Anodontae comme noyau des perles. Cette trouvaille n'a pas été faite accidentellement, mais d'après un projet conçu. Si je n'ai pas cru alors de publier un mémoire à ce sujet, c'est que, selon moi, cela ne valait pas la peine. Je n'ai rencontré que très rarement ce singulier Acarien dans l'intérieur des perles, bien qu'il soit excessivement commun dans les Moules et les Anodontes du Piemont, et qu'on le trouve partout, même dans les localités où les perles sont excessivement rares. Ceci suffirait déjà pour faire penser que le Limnochares n'est pas la cause la plus ordinaire de ces productions. Lorsqu'il en forme le noyau, il est toujours très facile de le reconnaître au moins par quelques résidus de ses extrémités, dont l'enveloppe chitinique résiste longtemps à la décomposition.

Si c'est le Distoma duplicatum qui m'a conduit à établir ma thèse générale sur la formation des perles, la cause en est que cette espèce présente une condition toute particulière dans les lignes saillantes à zig-zag de la queue, qui sont encore reconnaissables, lorsque le corps du ver est déformé par l'altération qu'il subit promptement. Plus tard il m'a été possible une fois de bien reconnaître dans une toute petite perle, tirée du manteau d'un Anodonte, les épines buccales d'un Echino-
Ph. De Filippi:

492

stomum. Du reste on conçoit la raison par laquelle presque généralement dans le noyau des perles toute trace d'organisation a disparu, de manière qu'on ne peut en déterminer la nature que par des preuves indirectes, et par induction d'autres faits clairement reconnus.

Certes il y a aussi des excroissances de l'intérieur de la coquille qui ne méritent pas le nom de perles. Je viens d'en trouver qui contenaient une grande cavité pleine d'une masse pulpeuse verdâtre, qui examinée au microscope m'a présenté dans la substance amorphe une quantité de cellules particulières groupées à deux à trois, et des cristaux aiguilliformes très transparents, avec un clivage dans le sens de la longueur.

Il y aurait à discuter sur les moyens que Mr. Küchenmeister a imaginé pour augmenter artificiellement la production des perles. La méthode à suivre pour cet effet, est nettement tracée par la nature. Cela étant il ne faut pas penser ni aux jeunes Mermis ni aux embryons des Cestodes, dont la présence dans le corps de moules n'a jamais été constatée jusqu'à présent. Tous les moyens propres à faciliter l'invasion de ces mollusques par leur parasites habituels, pourront amener à quelque résultat. Or parmi ces parasites nul doute qu'il faut compter en première ligne les larves des Trématodes. Le Limnochares se rencontre, à la vérité, plus souvent, mais cet acarien n'est, en dernière analyse, qu'un parasite externe. Il ne fait que déposer les œufs dans la membrane du manteau, et les jeunes qui en sortent vont se promener de suite sur les différentes parties du corps du mollusque. Quelques rares individus s'égarent accidentellement entre la surface externe du manteau et la lame interne de la coquille, et dans ce cas seulement ils sont en position d'être incrustés par la sécrétion du manteau, et servir de noyau à une perle. Les larves des Trématodes, par contre, comme véritables parasites internes se frayent une route dans tous les organes du mollusque, et quelques espèces se développent déjà dans la membrane même du manteau; elles sont toujours en plus grand nombre que le Limnochares; elles s'enkystent, ce que cet acarien ne fait pas; elles se trouvent enfin dans
des conditions bien plus favorables pour former des noyaux de perle.

Je ne dirai rien sur l'idée de Mr. Küchenmeister d'injecter par l'ouverture respiratoire des moules des oeufs ou des embryons de parasites, ou même des grains de sable, pour en faire autant de noyaux de perle. J'attendrais le résultat de ces expériences, d'autant plus que ne connaissant pas encore le travail de Mr. Rengarten sur l'Anatomie des Anodontes, je ne saurais me décider à voir dans l'organe de Bojanus l'organe sécréteur de la substance calcaire de la coquille, et je persiste avec tous les Anatomistes, Mr. Siebold en tête, à considérer cet organe comme l'équivalent du rein.
parasitische Schlüche auf einigen Insectenlarven.

Von

N. Lieberkühn.

(Aus dem Monatsbericht der Königl. Akademie der Wissenschaften zu Berlin. 1856. April.)

(Hierzu Taf. XVIII. Fig. 1–7.)

Auf den Kiemenfäden mancher Phryganealarven und auf den dort vorkommenden Epistylisstöcken finden sich cylindrische, an den Enden häufig etwas zugespitzte, bewegungslose Schlüche, von denen die grössten etwa \(\frac{1}{5} \) lang und \(\frac{1}{100} \) dick sind, während die kleinsten \(\frac{1}{50} \) in der Länge und \(\frac{1}{200} \) in der Dicke erreichen. Einige dieser Schlüche enthalten eine farblose durchsichtige Substanz in ihrem Innern, in der viele feine das Licht stark brechende Körnchen eingestreut sind; reisst ein solcher Schlauch auf, so tritt der Inhalt meist in Form von grösseren und kleineren Kugeln heraus, welche sich allmälig an der aufgerissenen Stelle abschnüren und von der übrigen Masse loslösen. Die Membran der Schlüche ist ohne nachweisbare Structur.

Andere dieser Schlüche sind vollständig ausgefüllt von spindelförmigen Körperchen, die eine grosse Ähnlichkeit mit den Psorospermien haben, welche sich in der Harnblase des Hechts finden. Die Länge der Spindeln beträgt ungefähr \(\frac{1}{50} \), ihre grösste Dicke etwa \(\frac{1}{300} \). Sie sind dem Aussehen nach von derselben Masse erfüllt, wie sie eben von den Schlüchen beschrieben wurde; nur bemerkt man an einzelnen Stellen helle runde körnchenfreie Räume. Die Spindeln werden nicht selten mit einer heftigen Bewegung aus den Schlüchen heraus-

Erklärung der Abbildungen.

Fig. 1. Einer der parasitischen Schläuche vor der Entwicklung der Psorospermien.

Fig. 2. 3. Kleinere Schläuche gleicher Art.

Fig. 4. Die psorospermienartigen Körper in dem Schlauche.

Fig. 5. 6. Die hervortretenen Psorospermien.

Fig. 7. Die aus den Psorospermien ausgekrochenen amöbenartigen Thierchen

Anmerkung. Bisweilen kriechen die amöbenartigen Thierchen sämtlich oder theilweise schon innerhalb der Schläuche aus den Psorospermien aus und bewegen sich bis zum Zerplatzen der Schläuche lebhaft auf und nieder. Von der äusserst dünnen Haut der einzelnen Psorospermien sah ich in solchen Schläuchen keine Spur; bei den freien Psorospermien bemerkte ich sie in der Regel auch nur, während die Thierchen sich von einander trennten und auskrochen.
Zusätze
zur Entwickelungsgeschichte der Spongillen.

Von
N. LIEBERKÜHN.

(Vorgetragen in der Gesellschaft naturforschender Freunde zu Berlin in der Sitzung vom 20. Mai 1856.)

(Hierzu Taf. XVIII. Fig. 8, 9.)

Grant berichtet über Wasserströmungen bei den Spongien, welche durch die Poren eindringen und aus den inneren Canälen durch grosse Öffnungen wieder austreten; Laurent beschreibt eine ähnliche Erscheinung bei den Spongillen, wo er aus röhrenförmigen Fortsätzen Substanzen austreten sah. Mit Wimpern versehene mikroskopische Spongillenstücke, welche Dujardin sah, hat später auch Bowerbank gefunden, und zwar bei Spongillen sowohl, als bei Spongien; Bowerbank fand ferner Zellen, deren jede ein Wimperhaar trug.

An den von mir schon früher erwähnten kegelförmigen Fortsätzen junger Spongillen habe ich neuerdings eine kreisrunde Öffnung wahrgenommen; die Spongillen, welche dies bis jetzt zeigten, waren sechs Wochen zuvor aus Gemmulis ausgekrochen, oder es waren abgerissene Stücke einer grünen überwinternten grünen Spongille, welche in algenhaltigem Wasser sich weiter entwickelt hatten, ohne sich festzusetzen. Die röhrenförmigen Fortsätze waren schon mit der Brückeschen Loupe vollständig zu erkennen; sie bilden die Fortsetzung einer auch bei den grünen Spongillen fast farbloosen gallertigen Hüllenschicht, welche die übrige Zellenmasse nebst den Spiculis umschliesst; hin und wieder ragen einzelne Spicula über sie hinaus und erstrecken sich auch bis in die röh-
renförmigen Fortsätze hinein. Aus der vorher erwähnten kreisförmigen Öffnung der röhrenförmigen Fortsätze strömt nun beständig Wasser heraus und werden fortwährend in kurzen Zwischenräumen kleine Stücke von zerfallenen Substanzen, bisweilen auch Bacillarienschalen oder auch Carminkörnchen, wenn die Spongillen gerade solche zuvor in sich aufgenommen hatten, mit grosser Heftigkeit herausgeworfen, und hat dieser Vorgang das Ansehen, als ob er von Wimpern bedingt würde. Man sieht die herauszuwerfenden Substanzen mitunter schon an dem dem röhrenförmigen Fortsatz entgegengesetzten Ende der Spongille in Bewegung gerathen und nach der Ausflussöffnung hingetrieben werden; bisweilen bleibt auch Etwas noch vor derselben festhangen, wird dann aber doch bald gleichfalls hinausgeschleudert.

Die röhrenförmigen Fortsätze, deren an einer \(\frac{1}{2} \)breiten Spongille zwei beobachtet wurden, werden bisweilen eingezeugen, es geschicht dies äusserst langsam.

Um die Aufnahme von Substanzen durch die Spongillen zu beobachten, wurde der Flüssigkeit, in der sie sich befanden, Carmin zugesetzt; es drangen in mehreren Fällen die rothen Körnchen in eine oder zwei Öffnungen ein, welche in einiger Entfernung von der kegelförmigen Erhebung lagen, und färbten fast die ganze Spongille roth; viele der rothen Körnchen steckten im Innern der Schwammzellen selbst, was sich beim Zerreissen der Spongille unter Anwendung starker Vergrösserungen leicht nachweisen liess. Um das Auswerfen und Eindringen der Substanzen zu beobachten, wurde eine achtzigfache Vergrösserung angewendet, indessen ist eine dreißigfache schon hinreichend.

Wimpern konnte ich an der unversehrten Spongille nicht aufinden; an zerfaserten Spongillenstücken fand ich neuerdings Folgendes vor: 1) einzelne Wimperzellen, jede mit einer langen dünnen Wimper versehen, welche noch eine Zeit lang hin und her schwingt; die Zelle der Wimper ist etwas grösser, als der Kopf der als Spermatozoiden beschriebenen Gebilde, während der Schwanz der letztern dicker und länger ist; in den Wimperzellen unterscheidet man meist einen Kern;
2) die von Dujardin abgebildeten Stücke, welche amoibenartige Bewegungen zeigen und zugleich jene Zellen besitzen; 3) Spongillenstücke, welche von der Grösse einer grossen Schwammzelle sind und in ihrem Innern eine runde Höhlung besitzen, die vollständig mit einer einfachen Lage von Wimperzellen bedeckt ist; die feinen Wimpern dieser Zellen ragen nach dem Mittelpunkt der Höhlung hinein und bewegen sich noch lange Zeit.

An jungen Spongillen, welche mehrere Wochen auf Uhrgläschen festgesessen hatten, wurde folgende Erscheinung wahrgenommen: eine oder ein Conglomerat von mehreren Zellen trennte sich langsam von dem Körper der Spongille ab und zeigte noch nach mehreren Stunden die amoibenartigen Bewegungen.

An grösseren Stücken Schwamm, welche ich in algenhaltigem Wasser aufbewahrte, fand ich neuerdings bisweilen mehrere grosse röhrenförmige Fortsätze; ein etwa einen halben Zoll im Durchmesser messendes kugeliges Stück hatte vier schon mit blosem Auge erkennbare Fortsätze, von denen zwei cylindrisch und zwei kegelförmig waren; sie ragten über zwei Linien weit über die Oberfläche der Spongille hinaus und waren von mehreren Nadeln in ihrer Umhüllung durchsetzt; wenn zufällig Substanzen vor die Ausflussöffnung gelangen, so wurden sie heftig zurückgeschleudert; dies liess sich vollkommen sicher schon mit der Brückeschen Loupe beobachten; während acht Tage sah ich sie fast beständig offen, so oft ich sie untersuchen mochte. Bei starker Vergrösserung erwiesen sich abgerissene Stücke dieser Röhren als eine farblose membranöse Masse, in welcher sich hie und da Zellen mit Nucleus und Nucleolus, aber niemals Wimpern vorfanden; ebenso verhielt sich auch die äussere Schicht der ganzen Spongille, von der die Röhren die Fortsetzung bilden. An noch grösseren Schwammstücken habe ich bis jetzt die röhrenförmigen Fortsätze noch nicht gesehen, so viel ich auch danach gesucht habe.

In der Mitte des Juni dieses Jahres fand ich den röhrenförmigen Fortsatz auch an den aus Schwärmsporen erzogenen Spongillen offen und zwar am fünften Tage nach der Fest-
Die Oeffnung war kreisförmig und befand sich genau an der Spitze des kegelförmigen Fortsatzes; hin und wieder kamen in einer starken Strömung fremde Körperchen heraus, z. B. Arthrodesmus, welche gerade häufig in der umgebenden Flüssigkeit vorhanden waren; man sah solch Körperchen schon im Innern der Spongille in Bewegung gerathen, in den Fortsatz hineingetrieben werden und die Höhling desselben hindurchgleiten. Die Fortsätze können auch hier zurückgezogen und geschlossen werden. Den letztern Vorgang bemerkt man, wenn man das Wasser, in welchem die Spongille sich befindet, mit einem unlöschlichen Farbstoff, z. B. Carmin versetzt; während sonst alle Carminkörnchen, welche gerade vor die Oeffnung kommen, mit Heftigkeit zurückgeworfen werden, hört dies sofort auf, wenn sich die Oeffnung schliesst. Dies kann schon stattfinden, ehe der Fortsatz einge gezogen ist; es verengt sich dann allmählich bloss das Lumen seiner Spitze und verschwindet zuletzt dem Blick vollständig. Beim Zurückziehen des Fortsatzes verliert derselbe seine sonst ziemlich glatte Oberfläche und erscheint zellig. Bisweilen wer den auch hier die Fortsätze durch Nadeln gestützt; beim Zurückziehen weichen alsdann auch die Nadeln in den Körper der Spongille zurück; die kürzeste Zeit der Retraction war eine Minute; sobald sie vollendet ist, erkennt man häufig die Stelle nicht mehr, an welcher der Fortsatz sich befand: so vollständig ist die Einziehung möglich. An manchen jungen Spongillen fand ich den röhrenförmigen Fortsatz nicht vor, sei es, dass er stets eingezogen oder nicht entwickelt war.

Auch die aus Schwärmsporen erzogenen Spongillen sah ich und zwar am fünften Tage nach ihrer Festsetzung Carminkörnchen in ihr Inneres aufnehmen. Die Aufnahme geschah durch eine kleine Öffnung, welche sich in einiger Entfernung von dem röhrenförmigen Fortsatz befand. Die rothen Körnchen drangen mit grosser Geschwindigkeit in die vielen kugeligen Hohlräume ein, welche sich im Inneren des Körpers befinden; aus der Öffnung des röhrenförmigen Fortsatzes ström ten gleichzeitig keine Carminkörnchen heraus, sondern erst nach Verlauf von drei Stunden zeigten sich die ersten bläulich
gefärbten Carminkörnchen in der ausströmenden Flüssigkeit und nach zwölf Stunden war gewöhnlich keine Spur von rother oder blauer Färbung im Innern der Spongille mehr wahrzunehmen.

Die Spongille nimmt nicht immer die Farbstoffe auf; ich habe es häufig vergeblich an demselben Exemplar versucht, welches sie Tags vorher sogleich aufnahm; die runde Öffnung, durch welche die Substanzen aufgenommen wurden, ward nur während dieses Vorganges selbst gesehen.

Es muss dahin gestellt bleiben, ob bei der jungen Spongille die Retraction des röhrenförmigen Fortsatzes durch die Contractilität seiner Zellen oder der Umhüllungshaut oder beider zugleich bedingt wird.

Die Entwicklung der Spermatozoiden.

Neben den im ersten Hefte dieses Jahrganges pg. 17 beschriebenen von Spermatozoiden ganz erfüllten Kapseln kommen zuweilen Kapseln mit derselben Umhüllungsmembran vor, welche in ihrem Innern nur zum Theil sich lebhaft durch einander bewegende Spermatozoiden enthalten, zum andern Theil aber von Gebilden ausgefüllt sind, aus welchen die Spermatozoiden entstehen; diese Gebilde sind kugelig, oder eiförmig, oder doppelbrotförmig mit mehr oder weniger starker Einschnürung und übertreffen die Köpfechen der Spermatozoiden oft um das Zehnfache an Grösse; in ihrem Innern enthalten sie eine farblose durchsichtige Substanz, in der hier und da einzelne das Licht stark brechende äusserst feine Körnchen eingestreut sind, welche namentlich nahe unter der Oberfläche wahrgenommen werden; ein Kern wurde in ihnen nicht gefunden. Man erkennt diese Gebilde schon vollkommen deutlich durch die Schale der Kapsel hindurch. Drückt man sie aus der Kapsel heraus, so beginnen sie alsbald stumpfe Fortsätze ohne Körncheninhalt hervorzuschießen und zerfallen nach einiger Zeit im Wasser; die Kapseln dagegen erhalten sich noch lange. Andere jener Körperchen sind mehrfach eingeschnürt und ist an einzelnen abgeschnürten Stücken bereits der
Zusätze zur Entwickelungsgeschichte der Spongillen.

Faden sichtbar; in wieder anderen weit kleineren besitzt jedes Kügelchen schon den Faden.

Neben diesen Kapseln mit theilweise fertigen Samenfäden finden sich andere, welche die kugeligen Körperchen ausschliesslich enthalten, und wieder andere, welche bloss eine gleichförmige innen feinkörnige Masse einschliessen; die starke Kapsel aber charakterisirt sie schon allein als zu den Spermatozoiden gehörig; Bewegungen zeigt keine dieser Kapseln.

Die Spermatozoidenkapseln in ihren verschiedenen Entwickelungstufen fanden sich in diesem Frühjahr häufig zusammen mit Keimkörnerconglomeraten und entwickelten Schwärmsporen an einem und demselben kleinen Stück Schwamm. Oft liegen zehn oder mehr Kapseln dicht neben einander und sind rings von der zelligen Schwammmasse eingehüllt; in anderen Fällen fanden sie sich zu zweien oder dreien neben einander, bisweilen auch vereinzelt zwischen der Schwammzellenmasse vor.

Die Samenkapseln lassen sich leicht von den mit Wimpern ausgekleideten Spongillenstücken, von denen oben die Rede war, unterscheiden: die weit kleineren Samenkörperchen bewegen sich schnell in dem Behälter umher, während die Wimpern an ein und derselben Stelle fastsitzend hin- und herschwingen; charakteristisch ist ferner auch die starke Umhüllungshaut der Samenkapsel.

Die Entstehung der Schwärmsporen.

Es ist bisher noch Nichts darüber mitgetheilt worden, woher die Keimkörnerconglomerate stammen, aus denen, wie so gleich aus einander gesetzt werden wird, die Schwärmsporen entstehen. Die Keimkörnerconglomerate unterscheiden sich unter einander hauptsächlich durch ihre Grösse. Meistens sind sie so gross, dass man sie schon mit blossem Auge deutlich erkennt; in andern Fällen fand ich aber auch Exemplare, welche weit kleiner waren, indem sie etwa nur den dritten Theil des Durchmessers der grössern hatten; auch diese kleinen waren kugelig und enthielten Keimkörner und viel kleine das
Licht stark brechende Körnchen, welche sich gegen Säuren und Alkalien wie die Keimkörner verhalten. Diese kleinen Keimkörnerconglomerate zeigten nicht selten Bewegungerscheinungen in der Weise, dass ein durchsichtiger Fortsatz aus ihnen hervortrat und wieder verschwand. Ortsbewegungen fanden dabei nicht Statt; auch Stücke grösserer Keimkörnerglomerate zeigten bisweilen solche Bewegungen.

Einige Male kamen kleine Keimkörnerconglomerate vor, welche ausser den feinen Körnchen und den Keimkörnern noch etwas Anderes enthielten, nämlich einen Nucleus mit eingeschlossenem Nucleolus; der Nucleolus war im Verhältniss zum Nucleus weit grösser, als bei den gewöhnlichen Schwammzellen; der Durchmesser des ganzen Körpers beträgt etwa $\frac{1}{16}$ Mm., der des Nucleus $\frac{1}{80}$ Mm., und der des Nucleolus $\frac{1}{110}$ Mm. Diese Grössenverhältnisse kommen bei den übrigen Zellen der Spongillen nicht vor. Man könnte daran denken, dass diese Körperchen Amöben sind, welche parasitisch in der Spongille vorkommen; dagegen spricht aber, dass sie stets nur Körnchen der Spongillen enthielten und niemals einen andern fremden Körper, und dass in keinem der angestellten Versuche die Farbstoffaufnahme gelang; dagegen spricht ferner, dass sie dieselbe leicht zerstörbare Umhüllungshaut besassen, wie die Keimkörnerconglomerate. Dieselben Körperchen, jedoch etwas kleiner, aber immer fast noch ein Mal so gross wie die gewöhnlichen Schwammzellen, fand ich vereinzelt in jedem der drei Winter vor, während deren ich die Spongillen untersucht habe; sie enthielten zu dieser Zeit keine Keimkörner, sondern nur feine stark das Licht brechende Körnchen neben dem charakteristischen Nucleolus und Nucleus. Auch an diesen Körpern bemerkt man nicht selten Bewegungerscheinungen, es bilden sich langsam durchsichtige stumpfe Fortsätze, welche oft wieder zurückgezogen und durch neue ersetzt werden; dies ist jedoch nichts Charakteristisches für dieselben: denn solche Bewegungen sind fast an allen Theilen der Spongillen wahrgenommen; es zeigen sie die gewöhnlichen Schwammzellen, abgerissene Stücke der Corticalseubstanz der Spore, die kugeligen Körperchen, aus denen die Spermato-
Zusätze zur Entwickelungsgeschichte der Spongillen. 503

zoiden entstehen u. s. w. Lebenserscheinungen sind es mit Sicherheit nur bei den contractilen Zellen, so lange die Spongille noch unversehrt ist; zerreissst man die Spongille, so wenden sich die Zellen zwar auch noch, hier können es aber bereits Vorgänge des Zerfalls sein, welche die Bewegungen veranlassen, welche Möglichkeit für alle die andern, eben angeführten Bewegungen vorliegt, so lange ein sicheres Unterscheidungsmerkmal für beide Arten der Bewegungen noch nicht existirt. Es steht nach alle dem bis jetzt Nichts entgegen, jene Körperchen für die Eier der Spongillen zu halten, welche durch die Spermatozoiden befruchtet werden und den Ursprung der Sporen bilden, indem das Keimbläschen verschwindet und die Körnchen zu Keimkörnern werden.

Die Entwicklung der Keimkörnerconglomerate zu Schwärmsporen wurde in der Weise beobachtet, dass ein etwa 1/4 Zoll im Durchmesser messendes kugeliges Stück Schwamm, welches von einem grössern abgerissen war, in ein grosses mit algenhaltigem Wasser gefülltes Gefäss gelegt wurde. Das grosse Stück Schwamm enthielt die Keimkörnerconglomerate in bedeutender Anzahl, aber noch keine Schwärmsporen; es war Ende April, als diese Untersuchung vorgenommen wurde, also eine Zeit, in welcher überhaupt bis jetzt noch keine Schwärmsporen gefunden worden sind. An dem kleinen zur Entwicklung aufbewahrten Spongillenstücke sassen drei Keimkörnerconglomerate unmittelbar an der Oberfläche, und diese waren es, auf welche die Aufmerksamkeit gerichtet wurde. Als ich sie in den letzten Tagen des Mai untersuchte, waren sie auffallend verändert; während sie vordem kugelig erschienen, waren sie jetzt oval geworden und besassen eine helle und eine dunkle Hälfte, genau so, wie dies von den Schwärmsporen beschrieben ist; mit der Brückeschen Loupe liess sich dies vollkommen deutlich wahrnehmen. Als sie nun mit einer Nadel vorsichtig aus der Spongille herauspräparirt wurden, schwammen sie im Wasser umher und erwiesen sich als Schwärmsporen; bei starker Vergrösserung untersucht zeigten sie bereits das Wimperepitelium auf der Oberfläche und Kieselnadeln nebst Zellen im Innern des Körpers. Es ist hiermit
bewiesen, dass die Keimkörnerconglomerate sich zu Schwärmsporen entwickeln, dass es unbewimperte Embryonen sind.

Die unbewimperten Embryonen kommen oft an ein und demselben Spongillenstein an den verschiedensten Theilen desselben, an der Basis, im Innern und nahe an der Oberfläche mit den bewimperten zugleich vor. Bisweilen haben sie schon eine dickere Corticalsubstanz, während die Nadeln und Schwammzellen ihnen noch gänzlich fehlen.

Zur Entwickelungsgeschichte der Schwärmsporen habe ich noch folgende Beobachtungen nachzutragen. Es kommen öfters Schwärmsporen vor, welche schon ganz und gar mit Schwammzellen und Nadeln erfüllt sind und gar keine Keimkörner mehr enthalten. Bisweilen sind sie schon grün, namentlich in dem hintern Theile; die grüne Farbe rührt von den Körnchen der fertigen Schwammzellen her. Der stark Licht brechende Theil grenzt sich oft nur sehr unbestimmt gegen den schwach lichtbrechenden ab, und lässt sich die der Medullarmasse sonst eigenthümliche dünne Schleimschicht an ihm nicht mehr unterscheiden, während die Corticalsubstanz vollkommen deutlich ist.

Ich hatte Gelegenheit zu beobachten, wie sich eine solche Spore auf ein zufällig in der Flüssigkeit vorhandenes Haar festsetzte; die Wimpern waren nicht mehr wahrzunehmen, nur an einer Stelle der Oberfläche sassen noch einige Epitelialzellen ohne Wimperhaar. Es breitete sich zuerst die dickwandige Corticalsubstanz an einer kleinen Stelle auf das Haar aus; dies geschah so, dass zunächst ein Wenig durchsichtiger Substanz von dem äussersten Rande gleichsam abfloss und sich auf das Haar langsam ergoss, dann folgte mehr und mehr nach und bald traten auch einige Körnchen aus dem Innern der Spore in die ausgebreitete bis dahin ganz durchsichtige Substanz hinein; dabei hatte die Dicke der Wandung der Corticalsubstanz mehr und mehr abgenommen, während sie unmittelbar neben dem ausgebreiteten Theil ihre ursprüngliche Dicke beibehalten hatte; allmälig ergoss sich auch die übrige Corticalsubstanz und umschloss das
Haar ganz und gar, so dass es nur noch an seinen beiden Enden frei von Spongillensubstanz blieb.

Cohn hat bereits eine Conjugation bei Actinophrys Sol und Kolliker bei Actinophrys Eichhornii beschrieben; beide Forscher hatten nicht Gelegenheit zu beobachten, was aus den conjugirten Thieren wird; jedoch erwähnt Cohn, dass einmal sich die zusammengeslossenen Thiere nach einiger Zeit wieder getrennt hätten. In Brunnenwasser, in welchem ich Spongillen aufbewahrte, fand sich Actinophrys Sol in grossen Schaaren; diese Thiere hatten die Grösse von Ehrenbergs Actinophrys Sol, besassen eine weit hervortretende contractile Blase und verhielten sich, was die Aufnahme von fremden Substanzen, z.B. Infusorien betrifft, genau so, wie es C la- parède beschrieben hat. Der Vorgang, den man mit dem Namen der Conjugation bezeichnet hat, ging nun wie nachfolgt vor sich: es näherten sich langsam zwei Exemplare einander, die Tentakeln des einen drangen allmälig in das Bereich der Tentakeln des andern, bald berührten sich auch ihre Körper und schliesslich waren letztere so mit einander verschmolzen, dass es schwer, aber doch noch möglich war, eine Grenze zwischen beiden Thieren zu finden; die contractilen Blasen beider con trahirten sich wie sonst. Zu diesem Paar bewegte sich nun nach einer Stunde ein anderes Paar heran. (Die Beobachtung wurde mit Hilfe eines kleinen Glasnapfes angestellt, in welchem sich eine grosse Anzahl von Actinophryen befand und in welchem das Treiben dieser Thiere auch mit stärkeren Vergrösserungen des Mikros kopes beobachtet werden konnte.) Das zweite Paar ver wirrte seine Tentakeln mit denen des ersten Paares und allmälig gingen auch ihre Körper so zusammen, dass die vier Thiere nur ein Thier zu sein schienen; es war jedoch auch jetzt noch möglich, die Grenzen der einzelnen vier Körper zu erkennen. Einige Male sah ich auf diese Weise sechs Thiere in eines zusammenfließen und die sechs nach aussen
stehenden contractilen Blasen derselben sich regelmässig weiter contrahiren. Die weitere Beobachtung der vier conjugirten Thiere zeigte, dass nach etwa drei Stunden, während welcher Zeit sie still an einer Stelle gelegen hatten, sich äusserst langsam ein Exemplar von den drei übrigen trennte; zuerst wurde die Grenze zwischen ihm und den anderen immer deutlicher, dann hing es noch durch eine breite Brücke von Substanz mit ihnen zusammen, diese wurde immer schmäler und schmäler, und als das Thier etwa um den doppelten Durchmesser seines eigenen Körpers von den übrigen entfernt war, riss diese Verbindung durch; in der Verbindungsbrücke selbst war es zu keiner Zeit möglich zu erkennen, was von ihr dem einen und was dem andern Individuum angehören mochte. Bald trennte sich ein zweites Exemplar ganz in derselben Weise von den übrigen los, und nach Verlauf von etwa sechs Stunden gingen auch die letzten zwei aus einander und blieben in einiger Entfernung von einander liegen. Einige Male beobachtete ich auch folgende eigenthümliche Erscheinung bei der Nahrungsaufnahme zweier conjugirter Thiere: ein Glaucoma scintillans gerieth in das Bereich ihrer Tentakeln; kaum war dies geschehen, so streckte jedes der beiden Thiere, deren Körpergrenzen noch erkannt werden konnten, einen kurzen Fortsatz aus, beide Fortsätze umflossen das Glaukom und zwar so, dass es aussah, als gehörten sie einem einzigen Thiere an; bald lag das Glaukom in dem Körper der Actinophryen und steckte schliesslich in dem Theile, wo sich die conjugirten Thiere begrenzten; hier wurde es nach drei Stunden zu einer ganz unkenntlichen Masse verwandelt.

von zwölf Stunden war jedes Exemplar von einer dicken Cyste eingeschlossen, welche auf ihrer Oberfläche unregelmässig gestreift war, eine Erscheinung, die jedenfalls von Faltungen der Cystenmembran herrührt. Ich zerdrückte nun vorsichtig eine solche Cyste und es trat die Actinophrys unversehrt hervor; sie sah aus wie eine Zelle mit einer dicken Membran, von der ein gleichmässig feinkörniger Inhalt eingeschlossen war; Bewegungen der contractilen Blase bemerkte ich an solchen Individuen bisher nicht. Die Actinophrys war in diesem Zustande als solche nicht mehr zu erkennen; als ich sie stark mit dem Deckglase drückte, trat der ganze körnige Inhalt hervor und die Corticals substanz blieb in Form einer festen Membran zurück. Letztere sah ich nicht im Wasser zerfließen; einen Kern konnte ich in dem ausge- drückten Inhalt nicht entdecken.

Aus anderen Actinophryencysten kam die Actinophrys ohne Anwendung von Druck heraus; es platzte nämlich die Cyste an einer Stelle auf und äusserst langsam trat unter geringen Körpercontractionen die Actinophrys hervor; sie hatte noch ganz das Ansehn einer Zelle mit einer dicken Membran, nur an einer Stelle war eine geringe Auftreibung, die rhythmisch verschwand. An einer andern Stelle floss langsam von der äussersten Begrenzung der Corticals substanz des Thieres ein feiner Streifen von Substanz ab, der ganz durchsichtig und frei von allen Körnchen war; unmittelbar daneben floss bald ein zweiter Faden hervor; dabei bemerkte man schon, dass die Hülle des Thieres an dieser Stelle dünner wurde und die doppelten Contouren hier verschwanden, während dieselben an den übrigen Theilen des Körpers noch vorhanden waren. Bald traten auch an anderen Stellen noch Tentakeln hervor und endlich traten auch Körnchen aus dem Innern des Thieres in die Tentakeln hinein und die Actinophrys gewann ihr gewöhnliches Ansehn.

Nicht immer setzen sich die Schwärmsporen zur Entwicklung fest. Es kam mehrere Male vor, dass sie nach dem Verschwinden der Wimpern sich auf der Oberfläche des Wassers ausbreiteten, so dass sie scheinensförmig wurden und sich
weiter entwickelten; der Rand des Körpers war durchsichtig
und die Nadeln lagen fast sämtlich unmittelbar unter der
Oberfläche desselben.

Aus Schwärmsporen entwickelte junge Spongillen finden
sich häufig auf alten Nadelgerüsten und den verschiedenartigsten Gegenständen im Wasser vor, z. B. auf Schnecken-
gehäusen, auf den Hülsen von Phryganealarven, auf Steinen u. s. w. Zur Unterscheidung einer aus einer Schwärmspore entwickelten und einer aus einer Gemmula ausgekrochenen
Spongille mag hier Folgendes bemerkt werden. So lange die
Meyenschen Ballen sich noch nicht geteilt haben oder so
lange sie noch doppelte Kerne besitzen, ist der Unterschied
leicht festzustellen, weil diese Ballen weit grösser sind, als
die jungen Zellen der Schwärmspore; wenn hingegen die Zellentheilung schon vor sich gegangen ist, so lassen sich nach
den bisherigen Beobachtungen nur dann beide noch unterscheiden, wenn die der Spore eigenthümlichen Keimkörner
noch nicht sämtlich zerfallen sind: in den Meyenschen Ballen findet man zwar auch grössere kugelige Stücke von
stark lichtbrechender Substanz, diese bestehen aber aus dicht
an einander gelagerten Körnchen, welche man durch Druck
den Deckglas von einander trennen kann. Die aus den
Gemmulis stammenden Spongillen sind auch mit einer der
zerflossenen Corticalsubstanz der Spore möglicher Weise
entsprechenden Umhüllungsschicht umgeben, welche sich in
die röhrenförmigen Fortsätze verlängert, und zwischen wel-
cher und der inneren Zellenmasse man oft die auszuwerfen-
den Körnchen nach den Fortsätzen hingleiten sieht. Die
Nadelbildung zeigt ebenfalls nichts Spezifisches; in den aus
Gemmulis hervorgegangenen Exemplaren findet man die-
selben Neubildungen wie in den Schwärmsporen, nämlich
äusserst kleine Kieselkugeln, feine Nadeln mit einer oder
mehreren kugeligen Anschwellungen, sehr kleine glatte und
höckerige Nadeln ohne kugelige Anschwellung. Bei denjeni-
gen Species, welche durchweg höckerige Nadeln besitzen,
finden sich höckerige Nadeln auch bereits fast ausschliesslich
in den Schwärmsporen vor. An älteren Spongillen entdeckte
ich diese Art der Neubildungen bisher nicht; an solchen fand ich Folgendes, was möglicher Weise hierher gehört: es steckte zwischen dem Nucleus und der Membran nahezu aller Zellen einer grossen Masse von Spongillen ein stäbchenförmiges Körperchen, welches meist seiner ganzen Länge nach gleich dick und an seinen Enden niemals zugespitzt war; seine Länge war etwa gleich dem Durchmesser des Nucleus oder betrug etwas mehr. Bei den amöbenartigen Bewegungen der Zellen wurden die Stäbchen hin und her geschoben. Wenn man die Zellenmasse zerquetschte, so erhielt man die Stäbchen frei und unversehrt; bisweilen hing etwas sarcoide Substanz an ihnen; Charaktere eines Krystalles zeigten sie nicht. Sie lösten sich weder in kalter concentrirter Kalilauge, noch in concentrirter Schwefelsäure und waren feuerbeständig; einige Exemplare waren darunter, welche darauf hindeuten, dass es sich hier vielleicht um die Bildung neuer Spicula handelt; sie hatten nämlich in der Mitte eine kugelige Anschwellung, welche gleichfalls durch die genannten Reagentien nicht zerstörbar war, während zufällige Anhängsel von Zellenmasse durch dieselben aufgelöst wurden.

Über die Arten der Spongillen.

Es finden sich in den neueren Werken zwei Arten von Spongillen aufgeführt (A History of British Sponges and Lithophytes by George Johnston pg. 159): Spongilla fluviatilis und Spongilla lacustris, denen Ehrenberg noch eine dritte Art, Spongilla erinaceus, hinzugefügt hat. Spongilla fluviatilis wird folgendermassen beschrieben: „soft, brittle, and slenderly fibrous, when dry; spicula slightly curved, linear and sharp pointed at both ends.“ Spongilla lacustris: „hard, brittle, and coarsely fibrous; spicula linear and doubly pointed.“

Spongilla erinaceus zeichnet sich durch Nadeln aus, welche auf ihrer Oberfläche mit kleinen Stacheln versehen sind. Spongilla fluviatilis und lacustris unterscheiden sich nach dem Obigen hauptsächlich nur dadurch, dass jene weich, diese hart ist, dass erstere etwas gekrümmte Nadeln hat, was bei letzterer nicht angegeben wird. Etwas gekrümmte

Es giebt aber in der Spree bei Berlin zwei Formen von lebenden Spongillen mit höckerigen Nadeln: die eine hat grössere Höcker oder Stacheln und die Spongille ist schwieriger zerreissbar; die andere Nadelform hat kleinere Höcker und die Spongille setzt beim Zerreissen einen weit geringern Widerstand entgegen. Was diese beiden Spongillen auf das Bestimmteste von einander unterscheidet, ist die Beschaffenheit ihrer Gemmulae: die der ersteren Art sind nämlich auf ihrer Oberfläche von Amphidisken besetzt, deren Ränder nicht gezackt sind (cf. Tab. XV. Fig. 31); die Amphidisken der zweiten Art sind hingegen die bekannten mit gezackten Rändern (cf. Tab. XV. Fig. 30). Die erstere Art ist Spongilla erinacea; die zweite Form, welche in der Spree bei Berlin weit häufiger vorkommt, lässt sich zu einer neuen Art erheben; ich würde für diese den Namen Spongilla Mülleri vorschlagen.

Eine dritte Art wäre die, welche die gewöhnlichen glatten, an beiden Enden zugespitzten Nadeln und Gemmulae mit den gewöhnlichen gezackten Amphidisken besitzt. Sie ist sehr gemein und mag Spongilla fluvialilis heissen.

Eine vierte Art, welche meist sehr hart ist, wäre die, welche glatte Nadeln und Gemmulae mit Schalen ohne alle Amphidisken besitzt; einzelne Schalen sind hier und da mit weniger rauhen etwas gekrümmten Nadeln belegt. Die grössere Härte dieses häufig verästelten Schwammes rührt namentlich davon her, dass das structurlose Gewebe, in welches die Nadeln eingefügt sind und welches bei dem Badeschwamm, Spongia officinalis, ausschliesslich ohne alle Nadeln
Zusätze zur Entwickelungsgeschichte der Spongillen.

das Gerüst bildet, dass dieses Gewebe ungewöhnlich stark entwickelt ist. Dies Art mag Spongilla lacustris heissen.

Eine fünfte Art könnten diejenigen Spongillen bilden, deren Gerüste glatte Nadeln haben und deren Gemmulae auf ihrer Oberfläche mit höckerigen Nadeln besetzt sind. Um diese fünfte Art mit Sicherheit festzustellen, wäre jedoch noch notwendig, nachzuweisen, dass die höckerigen eigenthümlich geformten Nadeln oder Belagsnadeln wirklich auf der Schale der Gemmula, wie die Amphidisken, entstanden sind.

Schliesslich führe ich hier noch einige der Ansichten an, welche über die Natur der Schwämme aufgestellt worden sind, und zwar die von Pertv und Dujardin. Perty (Zur Kenntniss kleinster Lebensformen in der Schweiz, pg. 185) nimmt an, dass die Spongillen Haufen von Rhizopoden sind, welche sich die Nadelgerüste selbst erzeugen, und zwar ist jede einzelne Schwammzelle ein Rhizopode. Die bewimperten Körperchen, welche in den Schwämmen vorkommen, hält Perty nicht für Theile der Spongillen, sondern für etwas nicht hierher Gehördes, zufällig Ansitzendes. Aber wenn auch die Wimperapparate hierher gehören, so lässt sich doch die Ansicht Perty's wohl noch aufrecht erhalten: man könnte dieselben dann als Vorrichtungen ansehen, welche den Rhizopoden Nahrungsstoffe usw. zuführen und das Ausgeschiedene wieder entfernen. Die Entwickelungsgeschichte würde für diese Anschauungsweise so darzustellen sein: einzelne der Rhizopoden verwandeln sich in Samenkapseln, in denen die Spermatozoiden entstehen; aus anderen werden durch Wachsthum und Verwandlung die Schwärmensporen, in denen wieder neue Rhizopoden entstehen; die grosse Mehrzahl der Rhizopoden hat an der Fortpflanzung keinen Antheil.

Was bis jetzt von der Entwicklungsgeschichte entschiedener Rhizopoden mitgetheilt ist, spricht nicht für diese Auffassung; ich erinnere an die Mittheilungen von Max Schultze über die Polythalamien (Müllers Archiv, Jahrgang 1856 pg. 165), und an die meinigen (Monatsberichte der Akademie der Wissenschaften zu Berlin, Aprilheft 1856) über die Entste-
hung der Thierchen, welche sich wie Amöben verhalten, indem sie lichte Fortsätze bilden, in die wie in einen Bruchsack die Leibesmasse des Thieres mit ihren Körnchen hineingedrängt wird.

Dujardin sagt (Histoire naturelle des Zoophytes pg. 306): „On ne peut sans doute penser que les éponges soient des amas d’Infusoirs intermédiaires entre les Amibes et les Monades; tout, au contraire, tend à prouver qu’il y a dans ces êtres une vie commune.“ Nach dieser Auffassung würden die vorhandenen Thatsachen in folgender Weise zu ordnen sein: die Schwärmspore und ebenso die daraus hervorgehende Spongille ist keine Colonie, sondern ein Individuum, und zwar ein Thier, welches sich äusserst träge mittels einer Art von Pseudopodien bewegt; die contractilen Zellen vertreten vornehmlich die Muskeln und verhalten sich gegen mechanische, chemische und elektrische Reize anders, wie die Muskeln anderer Thiere. Eine entwickelte Spongille hat mindestens eine Öffnung, in die feste und flüssige Substanz eingeführt, und einen röhrenförmigen Fortsatz, aus welchem Substanzen ausgeworfen werden können. Im Innern des Körpers befinden sich Wimpern, welche Höhlungen auskleiden, die möglicher Weise Abteilungen eines ununterbrochenen darmähnlichen Rohrs sind. Die Fortpflanzung geschieht durch Spermatozoiden und Eier.

Hiernach können die Spongillen nicht mit den Amöben, Arcellen u. s. w. in eine Gruppe gestellt werden.

Die zuletzt dargestellte Ansicht über die Natur der Spongillen steht jedenfalls ungleich mehr im Einklang mit den sonst bekannten Thatsachen der Entwicklungsgeschichte.

wenn die bewimperten Embryonen sich festsetzen, nehmen sie die Gestalt der ausgebildeten Spongille an;

die contractilen Zellen der letzteren bilden sich nach dem Zerfall der Keimkörner theils schon in dem bewimperten Embryo, theils erst nach dem Verschwinden der Wimpern; es ist dies eine sogenannte Generatio aequivoca der Zellen oder eine extracellulare Zellenbildung;

die Kieselnadeln entstehen innerhalb der Zellen; das hornartige Gewebe der Gerüste und der Gemmulaschalen ist ein Ausscheidungsproduct der Zellen;

die junge Spongille erhält bald nach der Festsetzung des Embryo einen röhrenförmigen Fortsatz mit einer verschliessbaren Öffnung, aus welcher in einem Flüssigkeitsstrome feste Substanzen ausgeworfen werden; ausserdem findet sich mindestens eine Stelle, durch welche fremde Substanzen zeitweise aufgenommen werden; im Uebrigen ist der Körper der jungen Spongille überall geschlossen;

in den ausgebildeten Spongillen kommen Wimperzellen vor; die Nadelgerüste sind kein inneres Skelet der Spongille, sondern ein Gerüst, welches sie unter Umständen verlassen kann; letzteres findet häufig statt, bevor die Spongille abstirbt, ferner bei der Bildung der Gemmulae;

die Gemmulae sind keine Eier, sondern eine Art von Cysten oder Gehäusen, aus denen dieselben Wesen durch den Porus wieder auskriechen, welche sie gebildet haben. Sogleich nach dem Auskriechen und auch schon unmittelbar vor demselben findet Zellentheilung und Bildung neuer Nadeln statt. Die ausgekrochenen Spongillen bekommen später röhrenförmige Fortsätze. Entweder setzen sie sich nach dem Auskriechen auf dem Gerüst fest, in welchem die sie einschliessenden Gemmulae steckten, und leben alsdann in Colonien auf demselben, oder es baut sich ein jedes Exemplar auf demselben ein neues Gerüst, wenn die Gemmula beim Auskriechen ihres Bewohners sich nicht mehr auf einem Gerüst befand;
die als Eier betrachteten Körperchen der Spongillen haben neben Keimkörnern eine Keimblase und einen Keimfleck, welche sich in den gewöhnlichen Keimkörnerconglomeraten nicht finden;
die als Spermatozoiden angesehenen Gebilde entwickeln sich in unbeweglichen Kapseln und weichen in ihren Haupteigenschaften nicht von den Spermatozoiden vieler Thiere ab.

Erklärung der Figuren.

Fig. 8. Spongille mit einem röhrenförmigen Fortsatz. 30 Mal vergrößert.
Fig. 9. Wimperzelle. 550 Mal vergr.
Fig. 10. Samenkapsel.
Fig. 11—17. Entwickelungsstufen der Spermatozoiden.
Fig. 18. Das Ei mit Keimkörnern und einem Keimbläschen.
Beobachtungen aus der Entwickelungsgeschichte der Pteropoden, Heteropoden und Echinodermen.

Von

Dr. A. Krohn.

(Briefliche Mittheilung an den Herausgeber.)

Funchal, den 1. Juni 1856.

Nach meinen bisherigen, freilich nur auf eine beschränkte Lokalität sich beziehenden Erfahrungen, ist das Meer um Madeira nicht reich an niederer Seetiere. Es hängt dies mit der Conformation des Littorals zusammen, das meistens schroff und steil sich ins Meer hinabsenkt, und bei den oft heftigen Brandungen weder den Seepflanzen noch den in ihrer Lebensweise auf die Küsten angewiesenen Thieren einen sichern Stand- oder Wohnort gewährt. Daher die Armuth und zum Theil der fast gänzliche Mangel an Ammenstöcken von Medusen, an Polypen, Echinodermen, Bryozoöen, Anneliden, Ascidien, Gastropoden. Aber auch die pelagischen Thierarten scheinen die unmittelbare Nähe der Insel zu fliehen; wenigstens sind mir auf meinen Excursionen nur äusserst selten ausgewachsene Individuen dieser Arten begegnet.
Dagegen ist die Ausbeute an jungen in der Entwicklung begriffenen Thieren um so ergiebiger. Das Studium derselben hat mich denn fast ausschliesslich beschäftigt, und theile ich Ihnen nun zunächst die Resultate meiner Untersuchungen über die Entwicklung der Pteropoden und Heteropoden mit.

In Betreff der Clioideen muss ich zunächst hervorheben, dass die scharfsinnige Vermuthung von Gegenbaur, nach welcher den Repräsentanten dieser Familie, in der frühesten Entwicklungszzeit, ein Wimpersegel und eine Schale zukommen dürften, sich vollkommen bestätigt hat. Dies interessante Factum wurde an zwei Arten von Pneumodermon, so wie auch an der von Ihnen bei Messina in einem vorgerückteren Larvenstadium angetroffenen Clio erzeltelt. Das Ve-
lam der beiden Pneumodermonlarven ist von sehr aushichlichem Umfang und besteht aus zwei einfachen, schiebenför-
migen Lappen. Die Schale kommt gar sehr mit der der Cre-
seislarven überein, ist bei der einen Species lang und quergingelt, bei der andern größer und fein quergestreift. Das Endstück beider Schalen (das ursprüngliche um den Embryo abgelagerte Schalenrudiment) ist durch kuppelförmige Run-
dung scharf gegen den übrigen Theil abgesetzt. Die beiden Velumlappen der Cliolarve sind verhältnissmässig kleiner, die nach einem ähnlichen Muster wie bei Pneumodermon geformte Schale von sehr untersetzter Statur. An sämtlichen drei Larven bilden sich die Wimperkränze noch vor Ablauf der ersten Entwickelungsperiode, d.h vor dem Ablösen der Schale und dem Eingehen des Wimpersegels, aus; wenigstens kann ich das Gesagte für den hintern und mittleren Wimperkranz verbürgen, während der vordere in Wahrheit erst unmittelbar nachher deutlich ausgewirkt erscheint. Indess muss ich so-
gleich bemerken, dass das Kopfsegel beim Übergange in die zweite Entwickelungsperiode sehr rasch schwindet, ohne sich in irgend einer Weise an der Bildung jenes Kranzes zu beteiligen. In der ersten Periode entsteht auch der soge-
nannte Fuss mit seinem zungenförmigen Anhange, so wie auch gegen das Ende derselben die Zungenarmatur und die Häkchen der beiden Nebensäcke schon ziemlich ausgebildet erscheinen. Dagegen sind die Saugnäpfe zu dieser Zeit noch nicht angelegt, wie denn auch der Cliolarve die vier mit Papillen besetzten Arme noch ganz abgehen. Von Clío muss ich noch besonders anführen, dass die beiden Hörblasen an-
fangs von gleicher Grösse sind und nur einen einzigen Otolithen enthalten, dass aber die linke bald, und zwar noch während der ersten Periode, ein übermässiges Uebergewicht über die rechte erlangt und mit zahlreichern Otolithen sich füllt. Die erste Anlage der Flossen habe ich nur bei der Pneumodermonlarve, welche die geringelte Schale besitzt, unterscheiden können. Es war etwa am Anfang des zwei-
ten Tages nach dem Abwerfen der Schale. Die Flossen ent-
stehen als durchaus selbstständige Gebilde, zu den Seiten
Beobachtungen aus d. Entwicklungsgeschichte d. Pteropoden etc.

Die beiden von Gegenbaur beschriebenen Pneumodermonlarven (Tab. V. Fig. 16 u. 17), in welchen dieser Forscher schon ganz richtig zwei verschiedene Entwicklungsstufen einer und derselben Art vermutet, habe ich ebenfalls zu beobachten Gelegenheit gehabt. Auch diese Art besitzt in der frühesten Entwicklungszzeit eine deutliche Schale, die aber sehr frühzeitig, und wie es scheint noch vor dem Er scheinen der Wimperkränze abgeworfen wird. Diese Species zeichnet sich also ganz besonders durch die längere Persistenz des nicht minder mächtig wie bei den anderen Arten entwickelten Velums aus. Die creseisähnliche Schale ist quer gestreift und gegen die Mündung hin, wie etwa die Krempe an einem Hute, nach aussen umgebogen. Ob sich kurz vor oder nach dem Schwinden des Velums noch ein dritter Wimperreifen zu den bereits vorhandenen hinzugesellt, muss ich unentschieden lassen.

Was die Firoliden anlangt, so ist es mir geglückt, die Entwicklung und Ausbildung zweier Arten, von welchen die eine der Gattung Firoloides angehört, die andere höchst wahrscheinlich eine Pterotrachea ist, zu verfolgen. Die Firoloidesart zeichnet sich besonders dadurch aus, dass den Weibchen ausser dem Saugnapfe auch die Fühler fehlen. Die ausgebildete Larve besitzt eine gewundene Schale mit etwa zwei Touren, und ein mächtiges Wimpersiegel, dessen beide Hälften aus zwei sehr langen, schmalen Wimpeln bestehen, welche dem ganzen Organe im ausgespannten Zustande die Form eines Andreaskreuzes verleihen. Die erste Anlage der Flosse erscheint schon sehr früh, zu einer Zeit, wo die Velumhälften noch klein und noch ganz scheibensförmig sind. Sie hat die Gestalt eines sehr kurzen cylindrischen Fortsatzes mit abgerundetem flimmernden Ende, der auf der Bauchseite der Larve, dicht vor dem sogenannten mit dem Deckel versehenen Fusse wahrzunehmen ist. Dieser Fortsatz wächst nun, mit Beibehaltung seiner ursprünglichen Gestalt, zu einer bedeutenden Länge heran und zeichnet sich schon früh durch

Die reifen Larven der muthmasslich zu Pterotrachea gehörenden Art weichen im Wesentlichen nur durch die Schale von denen der Firoloides ab. Die Schale unterscheidet sich vorzüglich dadurch, dass die letzte Windung statt bis zur Mündung hin der ersten Windung dicht anzuliegen, grossentheils frei von der letzterm absteht. Die Umwandlung der ursprünglich cylindrischen Flossenanlage in die bleibende
Form geht ganz auf die oben erwähnte Weise vor sich, und zeigt sich die Übereinstimmung auch darin, dass es bei dieser Art während der Entwicklungsperiode ebenso wenig zur Bildung des Saugnapfes kommt. So wandelt sich auch der Fuss in den Schwanz um; aber merkwürdigerweise ist an diesem Leibesteile, welcher nicht nur länger als bei den jungen Firoloides erscheint, sondern auch allmähig verjüngt in einer abgerundeten Spitze endigt, keine Spur von dem contractilen Anhange zu entdecken. Die grössere Länge des Schwanzes und seine abweichende Form sind nun die Hauptgründe, die mich bestimmen, die Art von einer Pterotrachea herzuleiten.

Schliesslich erwähne ich noch einer, obwohl nicht häufig eingefangenen Heteropodenlarve, die in Bezug auf das Segel, die Flossenanlage und den Fuss mit den beiden eben erwähnten Arten sehr übereinstimmt, und nur durch die zierlich quer gerippte, äusserst zarte und zerbrechliche Schale sich unterscheidet. Ich möchte nach dieser Beschaffenheit der Schale Vermuthen, dass die Larve von Carinaria abstammt.

Was die Echinodermen betrifft, so hoffe ich Ihnen recht bald das Nähere über zwei neue Echinidenlarven, so wie über die eigenthümliche Entwicklung zweier Ophiuren mitzuteilen. Bei den Echinidenlarven kommt es nicht zur Entwicklung der dorsalen Seitenfortsätze und eben so wenig zur völligen Ausbildung der Nebenfortsätze des Mundgestelles, wogegen die mit Gitterstäben versehenen Markisenarme eine enorme Länge (jeder etwa 5\textquoteleft;\textquoteleft; erreichen und sich schon früh ganz wagerecht stellen. Die Entwicklung der beiden Ophiuren scheint zunächst mit der des Sterns, der aus der wurmförmigen Asterienlarve hervorgeht, ver wandt. Die auf einer embryonalen Stufe verbleibenden Lar ven zeigen aber zu keiner Zeit jene auffallende Gliederung, die der letztern eigen, während die Sterne aller drei Arten mit einander sehr übereinstimmen. Auch scheinen Sie in Ihrer Schrift über den Bau der Echinodermen schon selbst anzudeuten, dass der Stern der wurmförmigen Asterienlarve leicht eine Ophiure sein könnte.
Erörterungen zur Hämodynamik

mit Beziehung

auf die neuesten Untersuchungen von Donders.

Von

A. W. Volkmann.

Donders rügt, dass ich den Druck, welchen durch Röhren strömende Flüssigkeiten ausüben, allgemein gleich dem Widerstande setze, welchen dieselben von dem Punkte aus, wo der Druck gemessen wurde, noch vor sich und demnach
A. W. Volkmann:
zu überwinden haben. Er bemerkt, dass in Röhren von un-
gleichmässiger Weite, zu denen die Blutgefässse gehören, eine
solche Gleichsetzung nicht zulässig sei.

Schon diese Darstellung meines Irrthums ist nicht ganz
treffend. Ich selbst hatte mit Röhren von ungleicher Weite
vielfältig experimentirt und hatte ausdrücklich darauf auf-
merksam gemacht, dass in solchen der Druck sich nicht
nach Proportion der Widerstände ändere (Hämodynamik pg.
49). Hierbei bin ich nicht stehen geblieben. Vielmehr erkannte
ich bereits nach welcher Richtung bin der beobachtete Druck
und der aus den Widerständen berechnete von einander ab-
weichen, und zeigte, dass vor jeder Verengerung der Strom-
bahn ein höherer, vor jeder Erweiterung derselben ein ge-
ringerer Druck stattfinde, als stattfinden dürfte, wenn Druck
und Widerstand in gleicher Progression abnähmen.

Ich habe die erste der erwähnten Abweichungen mit dem
Namen positive Stauung, die letztere, ihrer entgegengesetz-
ten Bedingungen wegen, mit dem Namen negative Stauung
bezeichnet, und es trifft mich daher nicht sowohl der Vor-
wurf, dass ich Druck und Widerstand im Allgemeinen für
gleich erachtet, als vielmehr der, dass ich im Unklaren dar-
über war, warum in so vielen Fällen die Gleichheit zwischen
den beiden bestand, während sie in anderen Fällen fehlte.

Im Allgemeinen will ich auf diese Unterscheidung kein
grosses Gewicht legen, denn freilich liegen Unklarheit und
Irrthum sehr nahe beisammen. Zugeben muss ich, dass mir
die Wechselbeziehung zwischen Druck und lebendiger Kraft,
oner, wie Donders sich ausdrückt, zwischen Druck und
Geschwindigkeitshöhe, unbekannt war, gleichwohl bleibt frag-
lich, ob die Darstellung der Blutbewegung und ihrer Ge-
setze, die ich gegeben habe, in Folge dieses Umstandes auf
Irrwege gerathen sei. Donders glaubt in dem Abschnitte
meiner Hämodynamik, welcher von den Druckdifferenzen im
Gefässysteme handelt, Verirrungen der Art nachweisen zu
können.

Ich habe behauptet, dass der Blutdruck im ganzen Ver-
laufe der Arterien, Capillargefässse und Venen stetig abnehme

Hiergegen habe ich zweierlei zu erinnern. Zunächst beruhen meine Behauptungen nicht auf meinen Vorstellungen, die ich vom Hämodynamometer als einem Widerstandsmeesser hege, sondern auf Beobachtungen, die ich mit demselben als einem Druckmesser angestellt habe; zweitens aber misst der Hämodynamometer keineswegs nur den Druck, wie im Vorstehenden behauptet wurde, sondern mit Bezug auf die eigenthümlichen Verhältnisse im Gefäßsysteme allerdings auch den Widerstand. Um dies zu beweisen, werde ich mich an die von Donders angestellten Betrachtungen möglichst anschliessen.

Wenn ein Fluidum durch eine Röhre strömt, so ist in jedem Elemente desselben eine Summe von Kräften wirksam, welche Triebkraft heissen und mit T bezeichnet werden möge. Theorie und Erfahrung vereinigen sich zu beweisen, dass die Triebkraft im Verlaufe der Röhre allmälig abnimmt. Es verschwindet also Kraft in der Richtung des Stroms, und die Ursache dieses Verschwindens sind die Widerstände, welche Kraft verzehren. Man braucht nur zu wissen, wie viel Kraft verschwunden, um zu wissen, wie viel Widerstände gewirkt haben. Bezeichnen wir mit T die Triebkraft am Anfange und mit T' die Triebkraft am Ende der Röhre, so ist T - T' = w, wenn w die Widerstände bedeutet, welche den Kraftverlust verursachten.

Jene Summe von Kräften, die wir mit T bezeichneten, wirkt aber einerseits durch Druck, D, welcher mit Hülfe des Manometers messbar ist, andererseits als lebendige d. h. Bewegung vermittelnde Kraft F, welche vom Manometer nicht gemessen wird. Es ist also T = D + F. Um für diesen allgemeinen Ausdruck Maasszahlen zu gewinnen, stellt man sich
vor, diese bezüglichen Kräfte werden durch einen Wasserdruck von T, D, F Höhe hervorgebracht. Wie dies möglich sei, bedarf für T und D keiner weiteren Erörterung, anlangend F, so ist bekannt, dass jede lebendige Kraft die Annahme zulässt, sie sei durch Gravitation entstanden. Die Geschwindigkeit, die ein Körper besitzt, wenn er lebendige Kraft ausübt, sie kann als die Endgeschwindigkeit betrachtet werden, die er im freien Falle erlangt hat. Nennen wir v diese Endgeschwindigkeit, so ist \(\frac{v^2}{4g} \) die Höhe, durch welche er fallen musste, um sie zu gewinnen. Das F unserer Gleichung entspricht dieser Höhe, welche in der Hydraulik die Geschwindigkeitshöhe genannt wird. Es ist also \(F = \frac{v^2}{4g} \), wenn v die Stromschnelle bedeutet. Diese Erklärung ist aber mit dem Anspruche, dass F eine Druckhöhe sei, nicht im Widerspruche, indem Wasser, welches aus der Öffnung eines Gefäßes unter dem Drucke einer Wassersäule von F Höhe ausfliesst, eine Geschwindigkeit zeigt, welche der Endgeschwindigkeit gleichkommt, die es erlangt haben würde, wenn es durch einen Raum von FHöhe frei herabgefallen wäre.

Nach diesen Vorbemerkungen ist die Bedeutung des Hämodynamometers, als Widerstandsmesser, leicht verständlich zu machen. Im Blutgefäßsysteme ist die Stromschnelle sehr gering und die Geschwindigkeitshöhe noch viel geringer, ja im Vergleich zum Drucke verschwindend klein. Denn selbst die kleinen Fehler, welche sich beim Messen des Druckes nicht vermeiden lassen, sind größer, ihrem Werthe nach, als die Geschwindigkeitshöhe. Wird also nach der Triebkraft \(T = D + F \) gefragt, so kann es zu nichts führen, dem gemessenen Drucke D die Geschwindigkeitshöhe F hinzuzufügen, man wird vielmehr \(T \) ohne weiteres = D setzen dürfen, und wird hiermit der Wahrheit so nahe kommen, als dies nach unseren Beobachtungsmethoden möglich und für die Betrachtungen, die wir jetzt machen wollen, erforderlich ist 1).

1) Um dies an einem Beispiel deutlich zu machen, so ist der Blut-
Was folgt hieraus? Ich zeigte in Übereinstimmung mit Donders, dass der Widerstand zwischen zwei Punkten einer Röhre, durch welche ein Fluidum strömt, \(w = T - T' \) ist, wenn \(T \) die Triebkraft an den bezüglichen Punkten bezeichnet. Nun ist

\[
T = D \quad \text{und} \quad T' = D' \quad \text{folglich auch} \quad D - D' = w.
\]

Wir wollen uns vorstellen, \(D \) bezeichne den Druck an einem beliebigen Punkte des Gefäßsystemes, \(D' \) aber denjenigen an dessen Endpunkte. Dann wird die Erfahrung bedeutungsvoll, dass der Druck am Ausgänge der Venenstämme auf Null herabsinkt. Führen wir diesen Werth in die letzte Gleichung ein, so erhalten wir

\[
D - o = w \quad \text{oder} \quad D = w.
\]

Das heisst: der durch den Hämodynamometer gemessene Druck ist an jedem Punkte des Gefäßsystemes merklich dem Widerstände gleich, welchen das Blut von eben diesem Punkte aus noch zu überwinden hat. - Der berühmte Mathematiker Young hat die von Halles angestellten Druckmessungen zuerst in diesem Sinne gedeutet, und hat seine Betrachtung ausdrücklich durch die Bemerkung gerechtfertigt, dass die Geschwindigkeitshöhe in der Physik des Blutkreislaufs nicht berücksichtigt werden könne.

druck in der Carotis etwa 2500 Mm., die Strom schnelle etwa 300 Mm., also die Geschwindigkeitshöhe 4,59 Mm. oder \(\frac{1}{200} \) des Blutdruckes.

Erörterungen zur Hämodynamik.

529

Mittlere Druckwerthe

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>in der art carotis</th>
<th>in der art. brachialis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163,5 Mm.</td>
<td>163,5 Mm.</td>
</tr>
<tr>
<td>2</td>
<td>163,5 „</td>
<td>163,5 „</td>
</tr>
<tr>
<td>3</td>
<td>182,5 „</td>
<td>182,5 „</td>
</tr>
<tr>
<td>4</td>
<td>196,75 „</td>
<td>196,75 „</td>
</tr>
<tr>
<td>5</td>
<td>192 „</td>
<td>192 „</td>
</tr>
</tbody>
</table>

Müller's Archiv. 1856, 34
A. W. Volkmann:

Mittlere Druckwerte

<table>
<thead>
<tr>
<th>Beobachtung</th>
<th>in der art. carotis.</th>
<th>in der art. brachialis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>196,75 Mm.</td>
<td>196,75 Mm.</td>
</tr>
<tr>
<td>7</td>
<td>187,25</td>
<td>187,25</td>
</tr>
<tr>
<td>8</td>
<td>187,25</td>
<td>187,25</td>
</tr>
<tr>
<td>9</td>
<td>113,5</td>
<td>113,5</td>
</tr>
<tr>
<td>10</td>
<td>168,25</td>
<td>168,25</td>
</tr>
<tr>
<td>11</td>
<td>168,25</td>
<td>168,25</td>
</tr>
</tbody>
</table>

und so weiter! Hat nun vielleicht Donders (was er von mir vermutet) die Arbeit Poisseuilles nicht genau genug gekannt, oder sollte er wirklich behaupten wollen, dass Versuche, die von zwei Beobachtern unter sehr ungünstigen äusseren Umständen angestellt werden, eine absolute Übereinstimmung zeigen können? Mein verehrter Gegner will diese Übereinstimmung dem Zufall beimessen, diese Auffassung ist sehr liebenswürdig, aber doch wohl nicht physikalisch.

Bevor dies geschehen kann, müssen einige Vorbemerkungen zum Verständniss der Druckmessungen gemacht werden, da Donders (pg. 436) auch in dieser Beziehung mir Einwürfe macht.

Man denke sich ein Arterienstamm gebe rechtwinklig einen Ast ab. Die Aufgabe ist, den Druck an diesem Punkte zu untersuchen. Wir schneiden den Ast durch, führen in das Ende, welches mit dem Stamme zusammenhängt, den Manometer ein und erhalten den gesuchten Druck. Dieser einfache Versuch gibt zu einer weiteren Betrachtung Anlass. Erwägt man, dass der Ast, in welchen der Hämodynamometer einge führt wird, nur die Dienste eines Verbindungsstückes zwischen dem Gefässstämme und dem Instrument leistet, so muss ein-
Erörterungen zur Hämodynamik.

Wenn man eine dreischenkliche Ansatzröhre in Anwendung nimmt und das Blutgefäss auf der peripherischen Seite abwechselnd zusammendrückt und wieder öffnet, so findet sich, dass dem entsprechend der Blutdruck steigt und sinkt. Die Deutung dieser Erscheinungen liegt auf der Hand. Der Versuch sagt aus: dass der Druck am Ursprunge des Gefäßes grösser sei, als an dem Punkte, wo es mit dem Manometer in Ver-
A. W. Volkmann:

Ich gestehe nicht einzusehen, was hier Schwierigkeiten machen. Wenn wir die Arterie zusammendrücken, so hört in ihr die Bewegung des Blutes auf, zu deren Herstellung die Geschwindigkeits-höhe F verwendet wurde. Was aber an lebendiger Kraft erspart wird, muss dem Drucke zu Gute kommen. Der Hämodynamometer misst also, wenn die Arterie verstopft wird, allerdings die Geschwindigkeits-höhe, er misst sie nach dem Prinzip der Geschwindigkeitsmesser oder Pitztschen Röhren (vergl. Fick med. Physik pg. 106). Aber weiter ist auch leicht verständlich, dass der Druck, nach Verstopfung der Arterie, nicht bloss den Werth D + F, sondern einen um Etwas grösseren Werth haben könne. Ist nämlich die Arterie verstopft worden, so misst man, wie oben gezeigt wurde, nicht den Druck an dem Punkte, wo das Instrument angebracht ist, sondern an dem Punkte, wo die Arterie ihren Ursprung nimmt. Zwischen beiden Punkten geht Kraft verloren, aber selbstverständlich nur, wenn das Blut strömt, nicht wenn es durch Verstopfung der Arterie seiner Bewegung beraubt ist. Gesetzt dieser Kraftverlust wäre bei strömendem Blute = h gewesen, so würde offenbar durch Verstopfung der Arterie die Kraft h für den Druck wieder gewonnen. – Dies die Auflösung des Räthsels. In meinem Falle war h = 14 Mm. Quecksilber, d. h. der Druck war am Ursprunge der art. ca-
rotis um 14 Mm. grösser, als an einem mehr peripherisch gelegenen Punkte, in der Mitte der Halsgegend.

So viel über die erste Klasse meiner Beobachtungen. Anlangend die zweite, so schnitt ich aus einem Blutgefässe ein Segment aus und substituirte demselben eine sehr lange, 6,97 □Mm. weite, gebogene Glastöhre, durch welche das Blut nun fließen musste. Auf dieser Röhre waren in einer Distanz von 900 Mm. Druckmesser angebracht. Die zwischen diesen bemerklichen Druckdifferenz misst annäherungsweise diejenige, welche in einem Blutgefässe von 6,97 □Mm. Weite auf die Strecke von 900 Mm. entstehen musste. Untersucheu wir, wie gross die vom Versuche ausgehenden Fehler sein mögen.

Die Einführung der Glasröhre behindert die Strömung, folglich muss der Blutdruck im Allgemeinen eine kleine Steigerung erfahren. Ich behaupte eine kleine, weil die Erhöhung, welche der Druck erfährt, auf Kosten der Geschwindigkeitshöhe zu Stande kommt, welche vermindert wird, und weil die Geschwindigkeitshöhe, wie oben bewiesen, ein verschwindend kleiner Werth ist. Zwar wäre denkbar, dass durch Einführung meiner Röhre die ganze Summe der Kräfte, also T = D + F eine Erhöhung erfähre, etwa in der Weise, dass das Herz zur Ueberwindung des ungewohnten Widerstandes eine grössere Kraft entwickelte. Indess ist an einen derartigen Kraftzuwachs unter den angeführten Umständen kaum zu denken, und selbst wenn eine merkbare Steigerung des Druckes im ganzen Systeme eintreten sollte, würde die Druckdifferenz in meinem Apparate doch nur sehr wenig, nämlich nach Verhältniss ihres Werthes zum gesammten Drucke gefälscht sein. Aus Allem ergibt sich, dass die Fehler, welche vom Versuche ausgehen, zu klein sind, um Berücksichtigung zu verdienen.

Die Beobachtung ergab nun Unterschiede von 129,6, 140,7 und 220 Mm. Blutdruck. Zu diesen Beobachtungen bemerkt Donders pg. 446 Folgendes: „Dieses Resultat konnte man voraussagen, aber es beweist nicht, was Volkmann daraus ableitet. Denn diese Röhre ist überall von gleicher Weite; die Stromgeschwindigkeit bleibt also in der ganzen Röhre dieselbe,
daher muss durch den Widerstand in der Röhre, welcher natürlich die Triebkraft vermindert, der Druck abnehmen. —
Es ist aber die Frage, ob dies geschieht, wenn, wie dies im Arteriensystem der Fall ist, zu gleicher Zeit das Stromgebiet sich erweitert und dadurch die Stromgeschwindigkeit abnimmt. Inzwischen ist dieser Versuch nicht nur sehr sinnreich, sondern auch höchst merkwürdig, weil er uns zeigt, dass die Triebkraft des Blutes in Gefässen von 3 Mm. Durchmesser sehr langsam abnimmt, so dass der Widerstand zum grössten Theile in den kleinsten Gefässen anzutreffen ist.

Diese Kritik dürfte in mehr als einer Hinsicht mangelhaft sein. — Erstens ist zwar richtig, dass die carotis auf eine Strecke von 900 Mm. Länge nicht die gleiche Weite behält, aber sie behält dieselbe doch in einer Strecke von irgendwelcher Länge! Mein Versuch bezweckt aber nichts Anderes, als zu zeigen, dass in einem Blutgefäss von 3 Mm. Durchmesser der Druck in sehr merklicher Weise abnehme, und zwar wenn wir die Druckabnahme mit \(d \), die Länge des Gefässsegmentes, in dem sie erfolgt, mit \(\lambda \) bezeichnen, wie

\[
\frac{129,6 + 140,7 + 220}{3} : 900 = 163 : 900 = 1 : 5,52 = 0,18.
\]

Die Druckabnahme betrug im Mittel von 3 Versuchen in einem Gefäss von 3 Mm. Durchmesser, 18 \(\% \) der Gefässlänge. —

Erörterungen zur Hämodynamik.

Young und Poisseuille, meine Vorgänger in diesen Untersuchungen, jede merkbare Verminderung des Blutdruckes in den Arterien geleugnet hatten. Mit Bezug hierauf ist die von mir gefundenen Druckabnahme eine sehr bedeutende.

der Widerstände, die ihn veranlassen, und diese können in der einen Bahn mit den Werthen 1, 2, 3, 4, in der andern umgekehrt mit den Werthen 4, 3, 2, 1 auf einander folgen.

Da nämlich die Geschwindigkeitshöhe im Gefässysteme eine verschwindend kleine Grösse ist, so ist, wenn es sich um Messungen handelt, der Druck D der gesammten Summe der wirkenden Kräfte oder der sogenannten Triebkraft gleich. Dass letztere im Verlaufe der Blutgefäss continuirlich abnehme, ist unzweifelhaft, und folglich ist die continuirliche Abnahme des Druckes ebenfalls gesichert 1).

Fraglich könnte nur sein, ob diese Abnahme eine in den grösseren Gefässen merkliche sei, wie meine Beobachtungen aussagen, indess hat die Theorie kein Recht hierüber zu entscheiden. Ich habe Veranlassung dies näher nachzuweisen.

Erörterungen zur Hämodynamik.

Young, berühmt als Mathematiker und Hydrauliker, hat ausgerechnet, dass der Blutdruck in den Arterien bis in die nächste Nähe der Haargefäße nicht merklich abnehme, nämlich wenig über 3 Mm. Quecksilber. Von mehreren Seiten ist dieser Rechnung mehr Zutrauen geschenkt worden, als meinen Beobachtungen; es ist leicht zu zeigen, dass dies auf Missverständnissen beruhe.

Fick hat in seinem Handbuche (pg. 100) die Formel entwickelt, nach welcher die Abnahme des Blutdruckes im Gefäßsystem berechnet werden müsste. Bezeichnet man die von den Widerständen abhängige Druckabnahme mit w, die Länge des Röhrenelements mit l, dessen Durchmesser mit d, die Stromschnelle mit v, und die unbekannten Coefficienten mit a und b, so erhält man die Formel

\[w = \frac{4l}{d} (av^2 + bv) \]

Für jedes Röhrenelement wären nun nicht nur die Werthe \(l \), \(d \), \(v \) durch genaue Messungen zu bestimmen, sondern auch die unbekannten a und b aus zahlreichen Versuchen bei veränderten Werthen von v abzuleiten! Wollte man nun die Druckabnahme in einer grösseren Gefässstrecke, wie beispielsweise in der ganzen Länge des Arteriensystems bestimmen, so hätte man für jedes Gefässelement von kleineren Länge die Grössen \(l \), \(d \), \(a \), \(b \) von neuem zu bestimmen, hätte aus jedem den Werth w zu berechnen und alle einzelnen Werthe zu summiren. Welches Monstrum von Aufgabe!

Die Behauptung: dass die in der Formel vorkommenden Werthe sich auf empirischen Wege auch nicht einmal annäherungsweise beschaffen lassen, bedarf meines Erachtens keines Beweises 1). Aber wenn man zugeben muss, dass für Youngs Rechnungen die erforderlichen Unterlagen fehlen, so sollte man auch einräumen, dass Youngs Rechnungen zu nichts führen und am allerwenigsten meine

1) Young selbst berichtet, dass er diese Werthe von Keil entlehnt, der sie nicht etwa gemessen, sondern hypothetisch bestimmt hatte, und zwar mit Hilfe jener fabelhaften Hypothesen, welche die Jatromathematik in so gänzlichen Verruf brachten.
Beobachtungen, die nach einer höchst einfachen, bezüglich der Frage, um die es sich handelt, sicher Methode, angestellt sind, verdächtigen können. Ich habe mit Helmholtz, wohl dem competenteren Richter in dieser Angelegenheit, ausführlich gesprochen und zu meiner Befriedigung vernommen, dass auch er Berechnungen, wie die von Young unternommenen, für unausführbar hält, und zwar unausführbar, weil zu demselben die empirischen Grundlagen fehlen; ich füge hinzu: für immer fehlen werden.

Zum Schlusse noch ein Paar allgemeine Bemerkungen. Donders beginnt die Kritik meiner Arbeit mit den Worten, dass er einige fundamentale Irrthümer zu beleuchten haben werde. —

Man untersuche, wie Donders zu diesem tadelgeschwerten Ausdruck gekommen, und man wird finden, dass sein Raisonnement im Wesentlichen Folgendes ist: Nehmen wir mit
Volkmann an, der Druck sei überall dem Widerstande gleich, und prüfen von diesem Standpunkte aus die von ihm selbst gemachten Beobachtungen über die Druckverhältnisse in Röhren von ungleichem Kaliber, so erweisen sehr einfache mathematische Betrachtungen, dass man zu dem absurdren Schlusse kommt, dass gewisse Complicationen von Widerständen (wie seine negative Stauung) die Triebkraft steigern müssten, während sie selbstverständlich dieselbe nur schwächen können.

Concremente aus dem Bojanusschen Organ.

Von

J. SCHLOSSBERGER in Tübingen.

Dieselben waren rundlich, etwa erbsengross, das eine beinahe schwarz, das andere hellbraun; außer dieser Verschiedenheit in der Farbe zeigten beide sowohl mikroskopisch wie chemisch durchaus dieselbe Beschaffenheit. Sie bestanden aus sehr zahlreichen rundlichen Körnern, welche etwa die Grösse des Korns eines Schiesspulvers von mittlerer Feinheit besassen und so unter einander verklebt waren, dass das Concrement selbst eine durchaus hockerige, einem Maulbeerstein ähnliche Oberfläche darbot; nur waren die Körner nirgends scharfkantig, wie gewöhnlich an den klesauren Harnsteinen, sondern durchweg abgerundet. Ihr Zusammenhang mit einander war ziemlich locker, das Steinehen zerbröckelte daher leicht; die einzelnen Körner waren hart und auffallend schwer.

Bei 100maliger Vergrösserung stellten sich die letzteren rundlich, oval, zum Theil auch wie von zwei Seiten gleichmässig eingedrückte Kugeln dar. Die meisten waren so inten-
siv gefärbt, dass sie undurchsichtig, schwarzbraun erschienen; einzelne hellere waren durchscheinend, hellbraun und besassen zuweilen eine häutige Einfassung oder etwas zerfetzte helle häutige Anhängsel. An den blasseren Körnern zeigte sich bereits vor der Behandlung mit chemischen Mitteln eine deutliche concentrische Streifung; besonders deutlich aber wurde dieselbe nach mehrmaligem Auskochen mit Kali, wonach in jedem Korn eine ähnliche Schichtung zu Tage kam, wie sie von durchschnittenen harnsauren Blasensteinen bekannt ist. Auch die Färbung war dann eine ganz ähnliche, die des Milchkaffees, wobei der Kern häufig die dunkelste Nuance zeigte.

Wasser und Weingeist lösten beim Kochen kaum eine Spur auf; das Gelöste war organischer Stoff und färbte jene Lösungsmittel gelb. Aether nahm gar nichts auf. Beim Zufügen von verdünnten Säuren fand einiges Aufbrausen statt. Beim Erhitzen entwickelte sich der Geruch nach verbrennendem Horn, es liess sich aber weder Schmelzung noch Aufblähen wahrnehmen und selbst nach mehrständigem Glühen im offenen Platinziegel war die Form der Körner nahezu unverändert; ihre Farbe war graugelb geworden. 100 Th. der getrockneten Steichen hinterliessen dabei 61,32 Th. mineralischer Substanz.

Wurden die Körner mit concentrirter Salpetersäure auf dem Objektträger in Berührung gebracht, so bildete sich um jedes Korn ein Hof von tief gelber Flüssigkeit, es entwickelten sich Gasblasen und hinterblieb eine bräuliche Masse von der Form des ursprünglichen Korns. Beim Kochen der gepulverten Körner mit derselben Säure färbte sich diese schnell braun, in ihr schwammen graubraune Flocken; das Filtrat gab mit Ammo-

Die kalische Abkochung wurde durch Salzsäure graubraun gefällt, der Farbstoff war aber nicht unlöslich in der Säure, weshalb auch die übersäuerte Flüssigkeit noch gelb aussah. Dagegen war er nahezu unlöslich in Wasser und Weingeist, ganz unlöslich in Aether, langsam löslich in Ammoniak. Von concentrirter Salpetersäure wurde er beim Erhitzen schnell zerstört, von Vitriolöl gelöst.

Die mit Salzsäure aus dem kalischen Auszug gefallten Flocken, welche jedenfalls den überwiegenden Theil des Farbstoffs einschlossen, rochen beim Erhitzen stark nach verbrennendem Horn; doch vermag ich nicht zu bestimmen, ob der Farbstoff selbst stickstoffhaltig ist oder ihm eine stickstoffige Materie, etwa Schleim, beigemengt war.
