PRESSURE VESSEL
FOR CALIBRATING SONAR TRANSUDCERS
Acoustically transparent fiber glass capsule
permits testing at pressures to 800 psig

C. E. Green • Research and Development Report • 26 July 1965
U. S. NAVY ELECTRONICS LABORATORY, SAN DIEGO, CALIFORNIA 92152 • A BUREAU OF SHIPS LABORATORY
QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM DDC.

STOCK AVAILABLE AT:

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION, CFSTI
SILLS BUILDING
5285 PORT ROYAL ROAD
SPRINGFIELD, VIRGINIA 22151
PROBLEM

Design, develop, and construct a pressure vessel that will encapsulate a sonar transducer under test and permit calibration under pressure.

RESULTS

1. A pressure vessel with favorable acoustical properties was built under contract.

2. It was designed to house only the test transducer.

3. Maximum operating pressure is 800 psig for long-term cycling.

4. Maximum operating frequency is 500 kc/s.

5. The mounting mechanism holds the transducer on the regular calibration column either inside or outside the vessel.

RECOMMENDATIONS

1. Consider the use of acoustically transparent pressure vessels for evaluating sonar transducers.

2. Consider a mounting mechanism that holds the vessel on the regular calibration column with the test transducer inside the vessel.

3. Consider the vessel as part of the rotating system to obtain polar patterns of the transducer.
ADMINISTRATIVE INFORMATION

Work was accomplished under SF 101 03 18, Task 8049 (NEL L30151). The report covers work from October 1964 to March 1965 and was approved for publication 26 July 1965.

CONTENTS

INTRODUCTION... page 5
MECHANICAL DESIGN... 5
ACOUSTICAL DESIGN... 8
EVALUATION OF THE VESSEL... 9
 Capsule Walls Uniform... 9
 Directivity Unaffected by Pressure... 9
 Attenuation Uniform to 100 kc/s... 9
 Beam Patterns Unaffected by Vessel... 11
PRESSURE VESSEL SPECIFICATIONS... 13
TESTS OF THE B24FA TRANSDUCER... 14
CONCLUSIONS... 17
ILLUSTRATIONS

Pressure vessel, with fiber glass capsule and steel end cap assembled. Photograph...page 6
End cap, with transducer bolted in place prior to assembly of pressure vessel. Photograph...6
Pressure vessel. Sectional...7
Pneumatic-hydraulic pump on calibration column in shed. Photograph...8
Attenuation as a function of frequency...10
Directivity patterns of transducer inside and outside the capsule, 100 kc/s...11
Directivity patterns of transducer inside and outside the capsule, 750 kc/s...12
Directivity patterns of transducer at 0 and 500 psig, 24 kc/s...14
Directivity patterns of transducer at 0 and 500 psig, 32 kc/s...15
Complex impedance of B24FA transducer at 0 and 500 psig...16
Transmitting response of B24FA transducer at 0 and 500 psig...17
INTRODUCTION

Requests for calibration of sonar transducers at depths beyond normal station capability are becoming more frequent. The NEL solution to the problem is a system for applying pressure to a transducer within an acoustically transparent vessel. The acoustical transparency permits other transducers involved in the tests to be located outside the vessel in their normal environment.

MECHANICAL DESIGN

The pressure vessel is cylindrical with elliptical end sections. Fiber glass-consolidated resin providing both acceptable wall thickness and acoustical transparency is used for the walls of the capsule. A geodesic winding pattern minimizes the amount of fiber glass required. The radial strength of the vessel is increased by a cylindrically-wound additional layer. The wall has a breaking strength of several thousand psig. The consolidated windings were vacuum-cured to reduce air entrapment.
End cap, with transducer bolted in place prior to assembly of pressure vessel. Mounting plate (top of photograph) couples directly to calibration column in Transducer Evaluation Center (Transdec) facility.

Pressure vessel, with fiber glass capsule and steel end cap assembled.
Pressure vessel accommodates transducers up to 22 inches in diameter and 36 inches long. Electrical leads are coupled to watertight connectors and extended to calibration equipment. High-pressure solenoid valve permits filling or draining of vessel as it is lowered or raised. Pressure relief is provided by bolts of high tensile strength and nuts which strip on pressure increase to failure limit (three times operating pressure of 800 psig); when threads strip, cap rises slightly and water escapes past O-ring seal.
ACOUSTICAL DESIGN

Maximum operating pressure was set at 800 psig by the demand for calibration at the depth it represents. Acoustic attenuation is acceptable with the wall thickness required by this pressure.

The steel cap was considered to be located far enough from the transducer under test to be of no acoustical consequence. If it had become a source of significant reflections, it would have been coated with Goodrich absorbent rubber SOAB.
EVALUATION OF THE VESSEL

In the evaluation of the vessel it was necessary to determine acoustically (1) the circular uniformity of the capsule walls, (2) the reflective and absorptive behavior due to pressure alone, (3) the effect of the vessel on frequency response, and (4) the effect of the vessel on directivity patterns.

Capsule Walls Uniform

Uniform wall thickness of the capsule permits transducers to be mounted in random orientation with respect to the walls. Thickness is more important acoustically at high frequency, where the behavior of materials is more critical. Specifically, a high-frequency test checks the uniformity of the consolidation of the fiber windings and the thickness of the epoxy. The high-frequency measurement was performed by comparing cylindrical free-field polar patterns made by a probe mounted on the cap with and without the capsule attached. No measurable difference in patterns was observed. Several checks of this type indicated that the walls are uniform enough for this application.

Directivity Unaffected by Pressure

The vessel was tested for change in acoustical behavior due to pressure alone with a selection of nonpressure-sensitive transducers with directivity indexes varying from very low to very high. Patterns plotted at 0 psig and at increments of 100 psig to 800 psig show no change, and it is presumed that vessel behavior is independent of pressure.

Attenuation Uniform to 100 kc/s

Change in acoustical behavior as a function of frequency was expected, since the frequency spectrum of interest encompasses the range from a fraction of a cycle to several
cycles within the thickness of the plastic. A number of transducers of various sizes were calibrated inside and outside the capsule at 0 psig. Very little capsule effect on signal strength was revealed below 8 kc/s. As shown in the chart, the transmitted signal is reduced smoothly and uniformly up to 100 kc/s, and fluctuates above that frequency. These results seem quite predictable. Results of tests on unknown transducers can be checked against duplicate measurements made without the capsule, if necessary.

Since for frequencies below 8 kc/s the walls of the capsule have little effect on the signal, measurements can be steady state or pulse. At higher frequencies reflections from the walls add to or subtract from the signal, and pulse measurements are required. The vessel is large enough compared to the transducer to provide adequate time delay in the reflected signal for true evaluation of the incident sound only.
Close correspondence of directivity patterns of transducer within and without the capsule indicates that transmission properties of the plastic are linear. Beam patterns are unaffected by the pressure of the vessel.
Lobes do not correspond so closely at higher frequencies. The divergence revealed by tests at 0 psig is useful in interpreting results of tests under pressure.
PRESSURE VESSEL SPECIFICATIONS

(Complete specifications are provided by drawing 153-SSK-1001, Rohr Corporation, Riverside, California.)

OPERATING PRESSURE 800 psig, max
METAL COMPONENTS 4340 steel
FIBER GLASS S99-4, with tensile strength of 600,000 psi
RESIN Union Carbide ERL-2772, cured with 22L-0820 hardener
VESSEL INNER SURFACE Rubber
VESSEL OUTER SURFACE Compliant plastic, Furane Plastics Company, 100 parts Epocast 202 to 150 parts 9615 hardener
DRAIN VALVE Atkomatic Dymo Company, solenoid model EWPCV, with watertight case
ELECTRICAL CONNECTIONS Marsh Marine XSK3PML 3-terminal pressure panel mount
WATER PUMP Sprague air-actuated piston pump model S216C; hydraulic pressure is 10 times air pressure (50-psig air pressure provides 500-psig water pressure)
LIFE SPAN 1000 cycles over 10 years
TESTS OF THE B24FA TRANSDUCER

The B24FA transducer was designed for use on submarines at varying depths. A test transducer was calibrated at shallow depth at Transdec, repeatedly pressurized

24 KC/S

0 PSIG

500 PSIG

Directivity patterns for 0 and 500 psig are very similar at 24 and 32 kc/s.
to prove mechanical soundness, and calibrated again at shallow depth. No deterioration was revealed by this cycling. Transmitting response and impedance at 0 psig were the same before and after pressurization. However, test results demonstrate that transducer performance differs profoundly from surface to deep-sea operation.
Complex impedance is sufficiently changed by presurization to detune the transducer and thereby change driver requirements.
Transmitting response therefore is markedly different at 500 psig.

CONCLUSIONS

The acoustic pressure vessel can be used on the regular calibration column for testing frequency response, directivity, and impedance of transducers. Water pressure can be controlled to any value up to 800 psig. The effect of the presence of the vessel is negligible for frequencies below 8 kc/s and predictable for frequencies up to 1 Mc/s. Calibration can be accomplished by cw or pulse at lower frequencies; however, pulse technique must be used above 8 kc/s for accurate readings.
Abstract

Acoustically transparent vessel houses a single transducer for testing under pressure to 800 psig. Tests of B24FA transducer indicate marked difference in transmitting response at depth.
Key Words

| Transducers - Equipment | Test results |

Instructions

1. **Originating Activity:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **Report Security Classification:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **Group:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **Report Title:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **Descriptive Notes:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **Author(s):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **Report Date:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **Total Number of Pages:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **Number of References:** Enter the total number of references cited in the report.

8a. **Contract or Grant Number:** If appropriate, enter the model number of the contract or grant under which the report was written.

8b, c, & d. **Project Number:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **Originator's Report Number(s):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **Other Report Number(s):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **Availability/Limitation Notices:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **Supplementary Notes:** Use for additional explanatory notes.

12. **Sponsoring Military Activity:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **Abstract:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **Key Words:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.
Acoustically transparent vessel houses a single transducer for testing under pressure to 800 psig. Tests of B24FA transducer indicate marked difference in transmitting response at depth.

SF 101 03 18, Task 8049
(NEL L30151)
This card is UNCLASSIFIED