This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ **Make non-commercial use of the files** We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ **Refrain from automated querying** Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ **Maintain attribution** The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ **Keep it legal** Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/
Soc. 1996 d. 332 71
Per. 3974 d. 1037
PHILOSOPHICAL TRANSACTIONS,
OF THE
ROYAL SOCIETY
OF
LONDON.
VOL. LXXI. For the Year 1781.
PART I.

LONDON,
SOLD BY LOCKYER DAVIS, AND PETER ELMSLY,
PRINTERS TO THE ROYAL SOCIETY.
MDCCCLXXXI.
ADVERTISEMENT.

THE Committee appointed by the Royal Society to direct the publication of the Philosophical Transactions, take this opportunity to acquaint the Public, that it fully appears, as well from the council-books and journals of the Society, as from repeated declarations, which have been made in several former Transactions, that the printing of them was always, from time to time, the single act of the respective Secretaries, till the Forty-seventh Volume: the Society, as a body, never interest themselves any further in their publication, than by occasionally recommending the revival of them to some of their Secretaries, when, from the particular circumstances of their affairs, the Transactions had happened for any length of time to be intermitted. And this seems principally to have been done with a view to satisfy the Public, that their usual meetings were then continued for the improvement of knowledge, and benefit of mankind, the great ends of their first institution by the Royal Charters, and which they have ever since steadily pursued.

But the Society being of late years greatly enlarged, and their communications more numerous, it was thought adviseable, that a Committee of their members should be appointed to reconsider the papers read before them, and select out of them such, as they should judge most proper for publication in the future Transactions; which was accordingly done upon the 26th of March 1752. And the grounds of their choice are, and will continue to be, the importance and singularity of the subjects, or the advantageous manner of treating them; without pretending to answer for the certainty of the facts, or propriety of the reasonings, contained in the several papers so published, which must still rest on the credit or judgment of their respective authors.
It is likewise necessary on this occasion to remark, that it is an established rule of the Society, to which they will always adhere, never to give their opinion, as a body, upon any subject, either of Nature or Art, that comes before them. And therefore the thanks, which are frequently proposed from the chair, to be given to the authors of such papers, as are read at their accustomed meetings, or to the persons through whose hands they receive them, are to be considered in no other light than as a matter of civility, in return for the respect shewn to the Society by those communications. The like also is to be said with regard to the several projects, inventions, and curiosities of various kinds, which are often exhibited to the Society; the authors whereof, or those who exhibit them, frequently take the liberty to report, and even to certify in the public newspapers, that they have met with the highest applause and approbation. And therefore it is hoped, that no regard will hereafter be paid to such reports, and public notices; which in some instances have been too lightly credited, to the dishonour of the Society.
A SPEECH DELIVERED TO THE ROYAL SOCIETY, ON WEDNESDAY NOVEMBER 30, 1780, BEING THEIR ANNIVERSARY. BY JOSEPH BANKS, ESQ. PRESIDENT.

PRINTED BY ORDER OF THE COUNCIL.
THE Emotions of Gratitude inspired by the very Place in which, by the Munificence of our Royal Patron, we are now for the first Time assembled, render it impossible for me to neglect the Opportunity which this Season, when ye have been used to hear yourselves addressed from the Chair, affords me, of offering my small Tribute of Acknowledgement for a Benefit so eminently calculated to promote the Honour and Advancement of this Society.

Established originally by the Munificence of a Royal Founder; fostered and encouraged since that Time by every successive Monarch who has swayed the British Sceptre, ye have ever proved yourselves worthy
worthy the Favor of your Royal Protectors. A Newton, who pruned his infant Wing under your Auspices, when his maturer Flights soared to Worlds unmeasurably distant, still thought a Place among you an honorable Distinction. A Newton's immortal Labors, a Boyle, a Flamstead, a Halley, a Ray, and many others, of whom I trust it is needless to remind you, have made ample Returns for the Patronage of former Monarchs.

But bountiful as the Encouragement ye have received from former Patrons has ever been, the Favors which Science has, through your Intercession, received from his present Majesty (whom God long preserve!) have eminently outdone their most extensive Ideas of Liberality. Ample Funds, by Him provided, have enabled you to reward Men of extensive Knowledge and Ability, for spending whole Years in the Service of Science; observing twice the Transit of the Planet Venus over the Disk of the Sun. At your Request, the Publick defrayed the Expence of conveying
ing them to the most distant Parts of the Globe we inhabit, where the purposes of their Mission, so important to the Science of Astronomy, could best be fulfilled; while ye alone enjoy among your Fellow Academies the Reputation of having both sent and rewarded them.

And more; those very Donations were so liberally planned by that Attention to Science which has ever distinguished His present Majesty's Reign, and will for ever bear Testimony of his enlarged Mind, and Disposition favorable to the Advancement of true Knowledge, that the Surplus alone enabled you, with his Royal Approbation, to institute Experiments on the Attraction of Mountains, amidst the barren and bleak Precipices of the Highlands of Scotland, which then, for the first Time, beheld Instruments of the nicest Construction transported to the Summits of their pathless Crags, and Men, used to other Habitations, voluntarily residing in temporary Huts, eager to express a grateful Sense of their Royal Patron's Libe-

rality.
rality, by thus promoting to the utmost the Cause of Science, in which they were, under his Protection, embarked.

Gifts like these, unsolicited and unconditionally bestowed, might have satisfied the Impulses even of a Princely Munificence; but not so with our Royal Patron. Amply informed in every Branch of real Knowledge, He resolved to bestow a still more distinguished Mark of his Favor on Science which he loved, and in this his last best Gift has fulfilled his Royal Resolution.

Such a Donation, so suited to our present prosperous and flourishing Condition under his Royal Patronage and Protection, is admirably calculated to increase the Respect, great as it is, which ye have ever received from the Learned of all Europe, placing you at once, in every Point of splendid Accommodation, as much above all Foreign Academies, as the Labors of your learned Predecessors had raised you above them in literary Reputation.

Let
Let then Gratitude to a Sovereign, from whom ye have received such conspicuous Encouragement, engage you, by an Application to a Promotion of the Sciences ye severally possess, to deserve a Continuance of his Royal Favor; to measure your future Exertions by the Standard of his princely Liberality; and thus shew the World, that ye still are, as ye always have been, worthy the Patronage of your King!
THE LIST OF THE ROYAL SOCIETY.

MDCCCLXXXI.

His Sacred Majesty King GEORGE III. Patron.
His Sac. Maj. STANISLAUS AUGUSTUS,
King of POLAND.
His Sacred Majesty CHRISTIAN VII.
King of DENMARK.

His Royal Highness WILL. HEN. Duke of GLOUCESTER.
His most Serene Highness CHRIST. FRED. CHARLES ALEX.
Margrave of BRANDENBURG ANSPACH and BAYRFUTH.
His most Serene Highness CHARLES WILLIAM FERDINAND
Duke of BRUNSWICK.
His most Serene Highness CHARLES Margrave of BADEN.
His most Serene Highness PETER Duke of COURLAND.

THE PRESENT COUNCIL.

Sir George Baker, Bart. F.A.S.
Physician to her Majesty.
Sir James Burrow, Knt. V. P.
John Campbell, Esq. Vice Admiral of the White.

The Rev. Anthony Hamilton,
D. D. F. A. S.
The Rev. Samuel Harper, M.A.
Robert Banks Hodgkinson, Esq.
F. A. S.
George Keate, Esq. F.A.S.
Tho. Earl of MACCLESFIELD.
The Rev. Nevil Maskelyne, D.D.
&S. Gott. Soc.

Paul
THE PRESENT COUNCIL.

Paul Henry Maty, A. M. Sec.
Sir William Musgrave, Bt. V. P.
F. A. S. Commissioner of the Customs.
Joseph Planta, Esq. Sec.
(Soc. Antiqu. Caiell. Sod.)
Sir George Shuckburgh, Bart.

George Steevens, Esq. F. A. S.
The Rev. George Stinton, D. D.
F. A. S.
Richard Warren, M. D. F. A. S.
Physician to his Majesty.
Benjamin Way, Esq. F. A. S.
Samuel Wegg, Esq. Trea. V. P.
F. A. S.

HOMEMEMBERS.

Robert Adam, Esq. F. A. S.
John Willett Adye, Esq. F. A. S.
Edw. Earl of Aldborough, F. A. S.
George John Viscount Althorp, M. P.
John Anderson, A. M. Prof. Nat.
Phil. Glasg.
Thomas Anguish, Esq. Master in Chancery.
John Arbuthnot, Esq.
Shuckburgh Ashby, Esq.
Thomas Axtell, Esq. F. A. S.
(Soc. Antiqu. Caiell. Sod.
John Duke of Athol.
George Atwood, M. A.

Alexander Aubert, Esq.
Heneage Earl of Aylesford.

John Bagnall, Esq.
Roger Baldwin, M. A. F. A. S.
Edward Bancroft, M. B.
Sir Robert Barker, Knt.
Hon. Daines Barrington, F. A. S.
Charles Moss, Lord Bishop of Bath and Wells.

Mr. David Bayford.
T. Butterworth Bayley, Esq.
Mr. John Belchier.
Bernardo de Beluga, LL. D.
F. A. S.

The
HOME MEMBERS.

The Rev. John Blair, LL.D.
F. A. S.
Benjamin Booth, Esq.
R. Wilbraham Bootle, Esq.
Thomas Brand Hollis, Esq. F. A. S.
Gustavus Brander, Esq. F. A. S.
Owen Salusbury Brereton, Esq.
 F. A. S.
Edward Bridgen, Esq. Tr. A. S.
Richard Brocklesby, M. D.
Robert Bromfield, M. D.
William Brown, Esq.
Isaac Hawkins Browne, Esq.
William Brownrigg, M. D.
James Bruce, Esq.
Patrick Brydone, Esq.
David Earl of Buchan, F. A. S.
Charles Burney, Mus. D.
Robert Burrow, Esq.
George Buxton, M. D.

Major William Calderwood.
Sir James Caldwall, Bart.
John Call, Esq.
Charles Lord Camden.
Peter Cavanc, M. D.
Francis Marq. of Carmarthen, F. A. S.
John Carnac, Esq. F. A. S.
John Josh. Lord Carysfort.

Mr. Tiberius Cavallo.
Henry Cavendish, Esq. F. A. S.
John Caverhill, M. D.
Wade Toby Caulfield, Esq.
Mr. Charles Cazaud.
Sir William Chambers, K. P. S.
James Earl of Charlemont,
 F. A. S.
Philip Earl of Chesterfield.
John Earl of Clanricarde,
 F. A. S.
Charles Collignon, M. D. Prof.
Mr. Charles Combe, F. A. S.
William Constable, Esq. F. A. S.
The Rev. William Cooper, D. D.
Robert Salusbury Cotton, Esq.
 F. A. S.
Mr. Jo. Lodge Cowley.
George Nassau Clavering
 Earl Cowper, Prince of the Holy Roman Empire.
Patrick George Craufurd, Esq.
The Rev. Thomas Crofts, M. A.
 F. A. S.
The Rev. Sir John Cullum,
 Bart. F. A. S.
A 2
John
HOME MEMBERS.

John Cuthbert, Esq. F. A. S.
William Cullen, M. D. Physician to his Majesty, Prof. Med. Edinb.

Henry Dagge, Esq.
Alexander Dalrymple, Esq. F. A. S.
Mr. James Dargent, F. A. S.
John Darker, Esq. F. A. S.
Erasimus Darwin, M. D.

PAUL Prince Daschkaw of the Russian Empire.

Henry Dawkins, Esq. F. A. S.
Solomon Dayrolle, Esq.

Thomas Dickson, M. D.
Hon. Charles Dillon Lee.
Thomas Dimsdale, Esq. M. P.

Baron of the Russian Empire.

Robert Dingley, Esq.
Abraham Dixon, Esq.
Jeremiah Dixon, Esq.
William Dixon, Esq.
Matthew Dobson, M. D.
Sir Charles Douglas, Bart. Captain in the Royal Navy.

Daniel Dumaresque, D. D.
Thomas Dummer, Esq.
Lieut. Col. Thomas Dundas, M. P.
Francis Duroure, Esq.
The Rev. Philip Duval, D. D.

Will. Benson Earle, Esq. F. A. S.
John Elliott, Esq. Captain in the Royal Navy.

Henry Ellis, Esq.
John Ellis, Esq. F. A. S.
Rt. Hon. Welbore Ellis, M. P.

CHARLES DODGSON, L. Bp. of Elphin.

Thomas Emlyn, Esq.
Sir Hen. C. Englefield, Bt. F. A. S.
BROWNLLOW Earl of EXETER, F. A. S.

JOHN ROSS, L. Bp. of EXETER.

William
HOME MEMBERS.

William Falconer; M. D.
William Farr; M. D.
William Fauquier, Esq.
Samuel Felton, Esq. F. A. S.
Keane Fitzgerald, Esq.
Sir Martin Folkes, Bart.
George Fordyce, M. D.
Mr. George Forster, A. R. Mattr.
John Reinhold Forster, LL. D.
Thomas Forster, M. A.
Anthony Fothergill; M. D.
Thomas Frankland, Esq.
Benjamin Franklin, LL. D. F. A. S.
Naphtali Franks, Esq.
Hon. Archibald Campbell Fraser.
Sir Charles Frederick, K. B. F. A. S.
Surv. Gen. of Ordnance, M. P.
John Frere, Esq. F. A. S.

Alex. Garden, M. D. Soc. R. Ups. Soc.
Maxwell Garthshore, M. D.
Mr. Francis Geach.
Thomas Gibborne, M. D. Physician to his Majesty's Household.

The Rev. Samuel Glasse, D. D.
Lieut. James Glenie.
William Mann Godschlall, Esq.
F. A. S.
The Rev. Isaac Goffet, M. A.
Richard Gough, Esq. Dir. A. S.
The Rev. Richard Gould, D. D.
John Grant, Esq.
Edward Whitaker Grey, M. D.
The Rev. Richard Green, D. D.
John Greg, Esq.
Hon. Charles Greville, F. A. S.
M. P. Lord of the Admiralty.
Mr. Richard Grindall.
Steddy Grinfield, Esq.
Richard Lord Grosvenor.

Hugh Hamersley, Esq. F. A. S.
Hon. Charles Hamilton.
The Rev. Hugh Hamilton, D. D.
Hon. Sir Wm. Hamilton, K. B.
F. A. S. his Majesty's Envoy Extra and Plenipotentiary at the Court of Naples.
Robert Viscount Hampden, F. A. S.
Philip Earl of Hardwicke, F. A. S.
Mr. William Harrison.
Edward Hafted, Esq. F. A. S.
George
HOMEmEMBERS.

George Finch Hatton, Esq.
Alexander Hay, M.D.
Richard Hazard, Esq.
Thomas Healde, M.D. Prof.
Med. Gresh.
The Rev. Benjamin Heath, M.A.
F. A. S.
John Heathcote, Esq.
Sir Thomas Heathcote, Bart.
William Heberden, M.D.F.A.S.
The Rev. Samuel Hemming, M.A.
John Henniker, Esq.M.P.
Mr. Thomas Henry.
The Rev. William Henry, D.D.
Mr. William Hey.
The Rev. Joseph Hoare, D.D.
Sir Henry Hoghton, Bart. M.P.
Peter Holford, Esq. F.A.S. Master in Chancery.
John Zephzian. Hollwell, Esq.
Edward Hooper, Esq. Commissioner of the Customs.
Hon. Charles Hope Wier.
Mr. Daniel Hopkins.
Richard Cope Hopton, Esq.
The Rev. Thomas Hornsby, M. A. F. A. S. Savil. Prof.
Mr. James Horsfall.
The Rev. Samuel Horsley, LL.D.
John Howard, Esq.
Mr. Samuel Howard.
William Augustus Howard, M.D.
Charles Grave Hudson, Esq.
Mr. William Hudson.
Sir Abraham Hume, Bart.
Alexander Hunter, M.D.
John Hunter, Esq. Surgeon extra to his Majesty.
William Hunter, M. D. F. A. S.
Physician extra to her Majesty.
Francis E. of Huntingdon, F. A. S.
Mr. Philip Hurlock.
Charles Hutton, LL.D. Master of Geometry at the Royal Military Academy at Woolwich.
The Rev. Cyril Jackson, D.D.
Humphrey Jackson, Esq.
William James, Esq. F.A.S.
Sir William James, Bart.
John Ibbetson, Esq. F.A.S.
John Jebb, M. D.
HOME MEMBERS.

Sir Richard Jebb, Bart. F. A. S.
Physician extra to his Majesty.

John Jennings, Esq.
Richard Paul Jodrell, Esq.
William Jones, Esq. F.A.S.
The Rev. William Jones, M. A.
Joshua Iremonger, Esq.
Mr. John Obadiah Jastamond.

Daniel Peter Layard, M. D.

Francis Lord Le Despencer, F. A. S.

Arthur Lee, M. D.

Thomas Duke of Leeds, K.G.
Mr. Charles L'Epinasse.

John Letch, M.D. F.A.S.

John Coakley Lettsom, M.D.
F. A. S.

Sir Ashton Lever, Knt. F.A.S.

James Lind, M. D.

Peter Livius, Esq.

George Lloyd, Esq.

John Lloyd, Esq. F.A.S.

The Rev. John Lockman, D.D.

Soc. R. Gott. Soc.

The Rev. Michael Lort, D. D.

John Gideon Loten, Esq. F.A.S.

John Earl of Loudoun.

Richard Warburton Lytton, Esq.

Mr. John Landen.

Mr. Timothy Lane.

Jac. Frederick Lantsheer, Esq.

Thomas Lashley, M. D.

Mr. John Latham.

The Rev. Charles Peter Layard, M. A.

Mr. Murdoch Mackenzie.

Sir Herbert Macworth, Bart.
F. A. S.

Mr. John Hyacinth de Magellan,

Charles Viscount Mahon.

The:
H O M E M E M B E R S.

The Rev. John James Majendie, D. D.
John Malliet, Esq.
The Rev. Owen Manning, B. D.
F. A. S.
Hugh Earl of Marchmont.
Hon. Charles Marsham, M. P.
Robert Marsham, Esq.
Francis Maseres, Esq. Curator Baron of the Exchequer.
Mr. John Maud.
Israel Mauduit, Esq.
Lieut. General Robert Melvill, F. A. S.
Owen Putland Meyrick, Esq.
The Rev. John Michell, B. D.
Richard Michell, Esq. F. A. S.
The Rev. Jeremiah Milles, D. D.
Jeremiah Milles, Esq. F. A. S.
Francis Milman, M. D.
The Rev. Isaac Milner, A. M.
Daniel Minet, Esq. F. A. S.
William Mitford, Esq. F. A. S.
John Earl of Moira.
Hon. Coote Molesworth, M. D.
Donald Monro, M. D.
George Duke of Montagu, K. G. Master of the Horse to his Majesty.

The Rev. Thomas Morell, D. D.
John Morgan, M. D.
Michael Morris, M. D.
Leonard Morse, Esq.
Charles Morton, M. D. F. A. S.
Mr. Peter Moulton.
Mr. John Mudge.
Hon. Col. James Murray, M. P.
Robert Mylne, Esq.
Mr. Edward Nairne.
Sir James Napier, Knt. F. A. S.
Joseph Nash, Esq.
Mr. Turberville Needham, F. A. S.
[Direct. Acad. Imp. et R. Bruxell.
Henry Duke of Newcastle.
John Nicoll, Esq.
Baron Gustavus Adam Nolcken, Commander of the Order of Polar Star, and Envoy from the King of Sweden.
John Mervin Nooth, M. D.
Charles Duke of Norfolk, F. A. S.
Sir Lucius O'Brien, Bart. F. A. S.
Hon. Edward Onslow, M. P.
John
HOME MEMBERS.

John Ord, Esq. M. P.
John Osborne, Esq.
The Rev. Henry Owen, M. D.

HENRY VISC. PALMERSTON, M. P.
Lord of the Treasury, F. A. S.

Pascal de Paoli, Esq.
John Paradise, Esq.
John Parker, Esq.
The Rev. William Parker, D. D.
Henry Partridge, Esq.
Sir Ralph Payne, K. B.

John Peachey, Esq. F. A. S. M. P.
Charles Anderson Pelham, Esq. M. P.

The Rev. Richard Penneck, M. A.

Henry Penton, Esq. M. P. Lord of the Admiralty.

Lucas Pepys, M. D. F. A. S.
Physician extra to his Majesty.

Thomas Percival, M. D. F. A. S.

William Philp Perrin, Esq. F. A. S.

ROBERT EDW. LORD PETRE, F. A. S.

James Petty, Esq.
Granado Pigott, Esq.
Nathaniel Pigott, Esq. Acad. Imp.

John Pitt, Esq.

OTHER EARL OF PLYMOUTH.

Baron Jof. Lewis Podmaniczky.
Mr. Joseph Poli.

Allan Pollok, M. D.
ALEXANDER LORD POLWARTH.

Edward Poore, Esq.
W. HEN. Duke of PORTLAND,

Mr. Percivall Pott.

Thomas Pownall, Esq. F. A. S.
Jacob Preston, Esq. F. A. S.
The Rev. William Preston, M. A.
The Rev. Richard Price, D. D.
The Rev. Jof. Priestley, LL. D.

Samuel Prime, Esq.
Sir John Pringle, Bart. F. A. S.

Physician extra to his Majesty
and Physician to her Majesty,
Ac. R. Sc. Par. & Petrop. Soc.

Richard Pulteney, M. D.
The Rev. Mr. Henry Putman.

Major Gen. Charles Rainsford.
Sir Walter Rawlinson, Knt.
F. A. S. M. P.

Samuel Reynardson, Esq. F. A. S.
Sir Joshua Reynolds, Knt. Pr.
Roy. Acad.
The Rev. Robert Richardson,
D. D. F. A. S.

B CHARLES
HOME MEMBERS.

Charles Duke of Richmond.
Mr. David Riz.
Matthew Robinson, Esq.
Chas. Marquis of Rockingham, K. G. F. A. S.
John Roebuck, M. D.
Charles Rogers, Esq. F. A. S.
John Rogerston, M. D. Physician to the Empress of Russia.
Robert Lord Romney.
Colonel William Roy, F. A. S.
Deputy Quartermaster General.
Francis Russell, Esq. F. A. S.
Patrick Russell, M. D.
William Russell, Esq.
Thomas Ryves, Esq.

Count Jerom de Salis.
Joseph Salvador, Esq. F. A. S.
Sir George Savile, Bart.
Richard Saunders, M. D.
Kenneth Earl of Seaforth, F. A. S.
William Seward, Esq. F. A. S.
Lancelot Shadwell, Esq.
Mr. William Sharp.
Molyneux Lord Shuldharm, M. P. Vice Admiral of the Red.

Robert Shuttleworth, Esq.
Sir John Silvester, Knt. M. D.
John Silvester, Esq.
Samuel Foart Simmons, M. D.
Mr. John Smeaton.
Adam Smith, LL. D.
Sir John Smith, Bart. F. A. S.
James Carmichael Smith, M. D.
Daniel Charles Solander, LL. D.
Philip Earl Stanhope.
Edward Stanley, Esq. F. A. S.
The Rev. Henry Stebbing, D.D.
F. A. S.
Philip Stephens, Esq. M. P. F. A. S.
Secretary to the Admiralty.
Mr. Robert Sterling.
John Strange, Esq. his Majesty's Resident at Venice, F. A. S.
Instit. Bohem. Soc.
James Stuart, Esq. F. A. S.
Charles Earl of Surry, F. A. S.
The Rev. Philip Van Swinden, M. A.
The Rev. Sidney Swinney, D. D.
F. A. S.

Sir John Taylor, Bart. F. A. S.
Michael Teighe, M. D.
HOME MEMBERS.

Sir Noah Thomas, Knt. Physician to his Majesty.
Benjamin Thompson, Esq.

JOHN Earl of TILNEY.
John Topham, Esq. F.A.S.
Marmaduke Tunstal, Esq. F.A.S.
John Turton, M.D. Physician to her Majesty's Household.
Richard Twis, Esq.
Thomas Tyrwhitt, Esq.

Mr. Thomas Vage.

RALPH Earl VERNEY, M.P.

JOHN Earl of UPPER OSSORY, M.P.

John Upton, Esq. F.A.S.

Mr. William Wales, Master of the Mathematical School in Christ's Hospital.
Mr. George Walker.

James Walker, Esq.
Hon. Horatio Walpole.
John Walsh, Esq. F.A.S.

THOMAS Lord WALTHAM.

Edward Waring, M.D. Prof. of Math. Camb.
Richard Hill Waring, Esq.

Mr. Joseph Warner.

GEORGE Earl of WARWICK, F.A.S.
Mr. Henry Watson.
James Watson, L.L.D.
Jonathan Watson, Esq.
The Rev. Richard Watson, D.D.
Regius Prof. Div. Camb.
William Watson, M.D. Trust.

Br. Mag.

William Watson, Jun. M.D.
Sir John Webb, Bart. F.A.S.
William Webber, Esq.
George Samuel Wegg, Esq.
Hon. Thomas Francis Wenman.
Robert Wotton, Esq. F.A.S.

Mr. Charles White.

Thomas White, Esq.

Mr. John Whitchurch.

Thomas Wilbraham, M.D.

John Wilkes, Esq. M.P. Chamberlain of the City of London.

IsraeI Wilkes, Esq.

John Wilkinson, M.D. S.R. Gt. Cor.
Ralph Willet, Esq. F.A.S.

Mr. Dionysius Williams.

Sir Edward Wilmot, Bt. Physician to his Majesty.

John Wilmot, Esq.

Mr. Benjamin Wilson, Imp. Ac. Petr.

B 2 William
HOME MEMBERS.

William Windham, Esq.
Edward Earl Winterton.
John Winthrop, Esq.
Sir Clifton Wintringham, Bt.
 Physician to his Majesty.
Mr. George Witchell, Master of the Royal Academy at Portsmouth.
Nath. Matthew Wolf, M. D.
The Rev. Francis Wollaston, LL. B.
The Rev. George Wollaston, D. D.

Thomas Wood, Esq.
 F. A. S. M. P.
Mr. Peter Woulfe.
Daniel Wray, Esq. F. A. S.
Richard Wright, M. D.
William Wright, M. D.
Mr. John Wyatt.
The Rev. William Wyatt, M. A.

Hon. John Yorke, M. P.
Arthur Young, Esq.
Sir William Young, Bart.

FOREIGN MEMBERS.

D. Carolus Allioni, M. D. Bot. Prof. Taurinens.
D. Petrus Ascanius, M. D. Hafnica.
D. Lud. de Beaufort, L. U. D. Moso-Trajecta.
D. Thorbern Bergman, Chemiae Prof. Upsal.

D. Ferd.
FOREIGN MEMBERS.

D. Carolus Bonnet, Geneveniris.
D. Ignatius S. R. I. Eques a Born,
D. Roger Boscowich, Astron. Prof. Mediol.
D. G. L. le Clerc Comes de Buffon, R. S. A. Par. S. & Hort. R. Pr.
D. Paul Celesea, Nobil. Genoensis.
D. Petrus Davila, Hispanus.
D. A. Georgius Eckhard, Haga Com.

P. Paul.
FOREIGN MEMBERS.

D. Octavian. de Gualco, Abbas; Nob. Pedemont.
D. H. Lud. du Hamel du Monceau, R. S. A. Par. S.
D. Teffler Samuel Kuckhan, Jamaicensis.
D. Johannes Dux de La Foes, Luftanus.
D. Joh. Philip. de Limbourg, M. D. Spadensis.
D. Ferdinandus S. R. I. Princeps Lobkowitz.
D. Johannes Andreas de Luc, Genevensis.
D. Petr. de Lyonet, J. U. D. Hagaæ Com.
D. Martin. de Mello e Castro, Reg. Luf. a Sec. & Cons.
D. —— Secondat de Montesquieu, Burdegalensis.

D. Casimir
FOREIGN MEMBERS.

D. Camillus Paderni, Romanus.
D. Joseph Raulin, M. D. Parisiensis.
D. —— Raynal, Parisiensis.
Princps Abondio Rezzonico, Romanus.
D. Fulcus Marchio Rinuccinus, Nob. Florentinus.
D. David Van Royen, Bot. Prof. Lugd. Bat.
D. Georg. Ludov. le Sage, Genevensis.
D. Jof. Fr. Wicardel de Fleury, Comes de Saluce, Pedem.
D. Simon Stratico, Episcopus in Dalmatia.
D. S. A. D. —— Tiffot, M. D. Lausannensis.
D. Abrah. Trembley, Genevensis.
D. Dancé de Villoison, A. R. Insc. Par. Soc.

D. Anton.
FOREIGN MEMBERS.

D. Carolus Walmesley.
D. Eustatius Zanotti, Astronom. Bonon.
ERRATA.

Page 9. Over the table add, Grs.

The last line of the table read 0.035.

22. col. 1. 1. 18. read 18,445.

30. the whole of col. 7. and 8. should be removed one line lower.
CONTENTS

OF

VOL. LXXI. PART I.

V. *Essay on a new Method of applying the Screw.* By Mr. William Hunter, Surgeon; communicated by Lieutenant General Melville, F. R. S. p. 58.

VIII.
CONTENTS.

IX. An Account of the Ganges and Burrampooter Rivers. By James Rennell, Esq. F. R. S.; communicated by Joseph Banks, Esq. P. R. S. p. 78

X. Astronomical Observations on the Rotation of the Planets round their Axes, made with a View to determine whether the Earth's diurnal Motion is perfectly equable. In a Letter from Mr. William Herschel of Bath to William Watson, M. D. F. R. S. p. 115

XI. Some Account of the Termites, which are found in Africa and other hot Climates. In a Letter from Mr. Henry Smeathman, of Clement's Inn, to Sir Joseph Banks, Bart. P. R. S. p. 139

XII. An Account of several Earthquakes felt in Wales. By Thomas Pennant, Esq. F. R. S. in a Letter to Sir Joseph Banks, P. R. S. p. 193

XIII. Extract of a Letter from the Right Honourable Philip Earl Stanhope, F. R. S. to Mr. James Clow, Professor of Philosophy in the University of Glasgow. Dated Chevening, February 16, 1777. p. 195

XIV. Extract of Two Meteorological Journals of the Weather observed at Nain in 57° North Latitude, and at Okak in 57° 20' North Latitude, both on the Coast of Labrador. Communicated by Mr. De la Trobe. p. 197

XV. A Meteorological Journal kept at the House of the Royal Society, by Order of the President and Council. p. 197
CONTENTS

VOL. LXXI. PART II.

XV. NEW Experiments upon Gun-powder, with occasional Observations and practical Inferences; to which are added, an Account of a new Method of determining the Velocities of all Kinds of Military Projectiles, and the Description of a very accurate Eprouvette for Gun-powder. By Benjamin Thompson, Esq. F. R. S. Page 230

XVI. Account of a luminous Appearance in the Heavens. By Mr. Tiberius Cavallo, F. R. S. in a Letter to Sir Joseph Banks, Bart. P. R. S. p. 329

XIX. Account of the Appearance of the Soil at opening a Well at Hanby in Lincolnshire. In a Letter from Sir Henry C. Englefield, Bart. F. R. and A. S. to Sir Joseph Banks, Bart. P. R. S. p. 345

XXI. Abstract of a Register of the Barometer, Thermometer, and Rain, at Lyndon, in Rutland, 1780. By Thomas Barker, Esq. p. 351

XXII.
CONTENTS.

XXII. Some Calculations of the Number of Accidents or Deaths which happen in consequence of Parturition; and of the Proportion of Male to Female Children, as well as of Twins, monstrous Productions, and Children that are dead-born; taken from the Midwifery Reports of the Westminster General Dispensary: with an Attempt to ascertain the Chance of Life at different Periods, from Infancy to Twenty-six Years of Age; and likewise the Proportion of Natives to the rest of the Inhabitants of London. In a Letter from Robert Bland, M.D. Physician-Man-Midwife to the Westminster General Dispensary, to Samuel Foart Simmons, M.D. F.R.S. p. 355

XXIII. Account of a Child who had the Small-pox in the Womb. In a Letter from William Wright, M.D. F.R.S. to John Hunter, Esq. F.R.S. p. 572

XXIV. Natural History of the Insect which produces the Gum Lacca. By Mr. James Kerr, of Patna; communicated by Sir Joseph Banks, P.R.S. p. 374

XXV. Account of a Phenomenon observed upon the Island of Sumatra. By William Marwood, Esq.; communicated by Sir Joseph Banks, P.R.S. p. 383

XXVII. A general Theory for the Measurement of the Angle subtended by Two Objects, of which One is observed by Rays after Two Reflections from plane Surfaces, and the other by Rays coming directly to the Spectator's Eye. By George Atwood, M.A. F.R.S. p. 395

XXIX. A further Account of the Usefulness of washing the Stems of Trees. By Mr. Robert Marsham, of Stratton, F.R.S. p. 449

XXX. Hints relating to the Use which may be made of the Tables of natural and logarithmic Sines, Tangents, &c. in the numerical Resolution of algebraic Equations. By William Wales,
CONTENTS

Wales, F. R. S. and Master of the Royal Mathematical School in Christ's Hospital.

XXXI. Experiments on the Power that Animals, when placed in certain Circumstances, possess of producing Cold. By Adair Crawford, M. D.; communicated by Sir Joseph Banks, B. A. P. R. S. p. 454

XXXII. Account of a Comet. By Mr. Herschel, F. R. S.; communicated by Dr. Watson, Jun. of Bath, F. R. S. p. 479

XXXIII. A Letter from Mr. Joseph Willard to the Rev. Dr. Malkelyne, Astronomer Royal, concerning the Longitude of Cambridge in New England. p. 502

XXXIV. An Account of Some Thermometrical Experiments; containing, I. Experiments relating to the Cold produced by the Evaporation of various Fluids, with a Method of purifying Ether. II. Experiments relating to the Expansion of Mercury. III. Description of a Thermometrical Barometer. By Tiberius Cavallo, F. R. S. who was nominated by the President and Council to prosecute Discoveries in Natural History, pursuant to the Will of the late Henry Baker, Esq. F. R. S. p. 529
PHILOSOPHICAL

TRANSACTIONS.

I. Natural History and Description of the Tyger-cat of the Cape of Good Hope. By John Reinhold Forster, LL.D.
F. R. and A. S.

Read November 9, 1780.

FEW tribes of quadrupeds have in Africa more representatives of their different species than that of the Cat. The genus of Antelopes may perhaps be excepted, since, to my knowledge, about twenty different Gazelles and Antelopes are to be met with in Africa; but no more than about eight or nine of the Cat tribe have hitherto been discovered on that continent. However, I know about twenty-one different species of this

Vol. L:XXI. B

great
Dr. Forster's History and Description of
great classes; and, I suppose, these by no means exhaust this
numerous tribe.

The greater and more numerous the different genera of ani-
mals are, the more difficult it must be to the natural historian
properly to arrange the whole of such an extensive division of
animals, especially if they are not equally well known. To-
form new genera, in order to dispose and arrange them under,
is a remedy which increases the evil, instead of curing it. The
best method, therefore, which can be devised, is to make great
divisions in each genus, comprehending those species which, on
account of some common relation or character, have a greater
affinity to one another. The genus of Cat, to which the ani-
mal belongs we are going to speak of more at large, offers three-
very easy and natural sub-divisions. The first comprehends ani-
mals related to the Cat-tribe, with long hair or manes on their
necks; secondly, such as have remarkable long tails without any
marks of a mane on their necks; lastly, such as have a brush
of hair on the tips of their ears, and shorter tails than the sec-
ond sub-division. The first might be called in Latin Feles
jubatae; the second sub-division should be named Aelures; and
the third and last, Lynces. To the first sub-division the Lion
and the hunting Leopard or Indian Chittab, belong. The sec-
ond sub-division consists of the Tyger, the Panther, the Leo-
pard, the Ounce, the Puma, the Jaguar-ete, the Jaguara, the
Ocelot, the Gingy of Congo, the Marakaya, the Tyger-cat of
the Cape or the 'Njufi of Congo, the Tibetan Tyger-cat which I
saw at Petersburg, the common Bush-cat of the Cape; and,
lastly, the wild Cat, and its domestic varieties. To the third
division belong the Lynx, the Caracal, the Serval, the Bay
Lynx, and the Ghaus of Professor Guldenstein.
the Tyger-cat of the Cape of Good Hope.

Since it is quite foreign to my purpose to speak of those species which are known already to the naturalists, I confine myself to that species only which hitherto has been imperfectly known to naturalists.

The first notice we had of the Cape Cat is, in my opinion, to be met with in LABAT’s Relation Historique de l’Éthiopie occidentale, tom. I. p. 177. taken as is supposed from Father CARAZZI. LABAT mentions there the ’Nṣuṭi, a kind of wild Cat of the size of a Dog, with a coat as much striped and varied as that of a Tyger. Its appearance bespeaks cruelty, and its eyes fierceness; but it is cowardly, and gets its prey only by cunning and insidious arts. All these characters are perfectly applicable to the Cape Cat, and it seems the animal is found in all parts of Africa, from Congo to the Cape of Good Hope, in an extent of country of about eleven degrees of latitude. KOLBE, in his Present State of the Cape Good Hope, vol. II. p. 127. (of the English edition) speaks of a Tyger Bush-cat, which he describes as the largest of all the wild Cats of the Cape-countries, and is spotted something like a Tyger. A skin of this animal was seen by MR. PENNANT in a furrier’s shop in London, who thought it came from the Cape of Good Hope; from this skin MR. PENNANT gave the first description which could be of any utility to a natural historian*. All the other authors mention this animal in a vague manner. When I and my son touched the second time at the Cape of Good Hope in the year 1775, an animal of this species was offered me to purchase; but I refused buying it because it had a broken leg, which made me apprehensive of losing it by death during the passage from the Cape to London. It was very gentle and tame. It was brought in a

* PENNANT’s Synopsia of Quadrupeds, p. 181. first edit.

basket
Dr. Forster’s History and Description of

basket to my apartment, where I kept it above four and twenty hours, which gave me the opportunity of describing it, and of observing its manners and œconomy; as it did to my son that of making a very accurate drawing of it.

After a most minute examination, I found its manners and œconomy perfectly analogous to those of our domestic Cats. It ate fresh raw meat, and was very much attached to its feeders and benefactors: though it had broke the fore-leg by accident, it nevertheless was very easy. After it had been several times fed by me, it soon followed me like a tame favourite Cat. It liked to be stroked and caressed; it rubbed its head and back always against the person’s cloaths who fed it, and desired to be made much of. It purred as our domestic Cats do when they are pleased. It had been taken when quite young in the woods, and was not above eight or nine months old; I can, however, positively aver, having seen many skins of full-grown Tyger-cats *, that it had already very nearly, if not quite, attained its full growth. I was told, that the Tyger-cats live in mountainous and woody tracts, and that in their wild state they are very great destroyers of Hares, Rabbits, Yerbuas, young Antelopes, Lambkins, and of all the feathered tribe.

DESCRIPTIO FELIS CAPENSIS.

Felis cauda sub-elongata, annulata; corpore fulvo, supra maculis virgatis infra orbicularibus, auriculis nigris, macula lunata alba.

* These skins, with several others of rare and non-descript animals, I bought at a very considerable expense, and deposited in the British Museum, that valuable national repository of artificial and natural curiosities.

[Njuii]
Tyger-cat of the Cape of Good Hope.

Cape-cat. Pennant Syn. Quadrup. p. 181. (1st edit.)

Corpus magnitudine Felis Cati sylvestris vel paulo majus. In genere supra colore pallide fulvo, subtus e cinereo albo, maculis atris.

(Pili apice pallide fulvi, basi albi.)

Linea alba utrinque naso parallela, ad interiora oculorum latera. Linea nigra paullulum convergens a cantho anteriore oculorum descendit in nasum; alia duae nigrae supra oculos infra convergentes, inque frontem ascendentes; praeterea in capite puntea et lineolae nigrae plures sparvae.

Auriculae amplae, longitudine fere capitis, ovatae, subereactae, intus villosae, ochroleucae; extus nigrae, macula lunata, transversa alba. Margo exterior sacculo membranaceo nudo, lobato.

Corpus ovatum, elegans. Linea atræ longitudinales quatuor in service inter aurium bases orsae, in Dorfo interruptae; Superiora laterum obtinent maculae oblongae, lineares, oblique. Inferiora laterum maculis rotundis sparvae. Abdomen e cinereoalbum, maculis rotundis parvis, sparvae, nigris.
Pedes omnes superne subfasciati, extrematibus punctis numero-
sis, nigris conspersi. Digitum quinque felini. Ungues modici,
retractiles, nigrī.
Cauda attingit basin tarśī, annulis circiter octo vel decem
nigrī cinetă.

M E N S U R A E.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab apice rostri ad basin caudae</td>
<td>18 unciae</td>
<td>ped. Angl.</td>
</tr>
<tr>
<td>Cauda</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Caput longum</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Auriculæ margine exteriores</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pedes anteriores a cubito</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Pedes postici (tarśī ścilīcet)</td>
<td>4¼</td>
<td></td>
</tr>
</tbody>
</table>
II. Experiments and Observations on the specific Gravities and attractive Powers of various saline Substances. By Richard Kirwan, Esq. F. R. S.

Read November 16, 1780.

The doctrine of chymical affinities hath of late received great improvements from the labours of the very excellent Mr. Bergman of Upsal, and the still later researches of Mr. Wentzel; but the order of these attractions has hitherto been the only point attended to by these philosophers, as well as by most preceding chymists: for I know of none, except Mr. Morveau of Dijon, who has thought of ascertaining the various degrees of force of chemical attraction, by which one body acts on various other bodies, or even on the same body in various circumstances. He has, however, so ably shewn the advantages arising from such an inquiry, that I have made it the object of my attention, and bestowed much pains on it for some time past; and have been thereby enabled to determine pretty exactly the proportion of the ingredients of many neutral salts, and the specific gravity of the mineral acids in their purest state, and free from all water. The principles on which these determinations are founded are the following.

1st. That the specific gravity of bodies is as their weight, divided by the weight of an equal bulk of rain or distilled water, this being at present the standard with which every other body is compared.
2dly. That if bodies, specifically heavier than water, be weighed in air and in water, they lose in water part of the weight which they were found to have in air; and that the weight so lost is just the same as that of an equal bulk of water, and consequently that their specific gravity is equal to their weight in air, or absolute weight, divided by their loss of weight in water.

3dly. That if a solid, specifically heavier than a liquid, be weighed first in air, and then in that liquid, the weight it loses is equal to the weight of an equal volume of that liquid; and consequently if such solid be weighed first in air, then in water, and afterwards in any other liquid, the specific gravity of this liquid will be as the weight lost in it by such solid, divided by the loss of weight of the same solid in water. This method of finding the specific gravity of liquids I have found much more exact than that by the areometer, or the comparison of weights of equal measures of such liquids and water, both of which are subject to several inaccuracies.

4thly. That where the specific gravity of bodies is already known, the weight of an equal bulk of water may also be found, it being as the quotient of their absolute weight divided by their specific gravity. This I shall call their loss of weight in water.

Hence, where the specific gravity and absolute weight of the ingredients of any compound are known, the specific gravity of such compound may easily be calculated as it ought to be intermediate betwixt that of the lighter and that of the heavier, according to their several proportions: this I call the mathematical specific gravity. But, in fact, the specific gravity of compounds, found by actual experiment, seldom agrees with that found by calculation, but is often greater without any diminution.
and attractive Powers of various saline Substances.

...tion of the lighter ingredient. This increase of density must then arise from a closer union of the component parts to each other than either had separately with its own integrant parts; and this more intimate union must proceed from the attraction or affinity of these parts to each other: I therefore imagined this attraction might be estimated by the increase of density or specific gravity and was proportionable to it, but was soon undeceived.

I must also premise, that the absolute weights of many sorts of air have been accurately determined by Mr. Fontana, at whose experiments I was present, the thermometer being at 55°, and the barometer at 294 inches, or nearly so. Their weights were as follows:

<table>
<thead>
<tr>
<th></th>
<th>Cubic inch of common air</th>
<th>Fixed air</th>
<th>Marine air</th>
<th>Nitrous air</th>
<th>Vitriolic air</th>
<th>Alkaline air</th>
<th>Inflammable air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.385</td>
<td>0.570</td>
<td>0.654</td>
<td>0.399</td>
<td>0.778</td>
<td>0.2</td>
<td>0.03</td>
</tr>
</tbody>
</table>

OF SPIRIT OF SALT.

From the time I first read in Dr. Priestley's Experiments on Air (that inexhaustible source of future discoveries) of the exhibition of marine acid in the form of air, free from water; and that this air, reunited with water, formed an acid liquor in all respects the same as common spirit of salt; I conceived the possibility of discovering the exact quantity of acid in spirit of salt of any given specific gravity, and by means of this...
Mr. Kirwan's Experiments, &c. on the Specific Gravities

this the exact proportion of acid in all other acid liquors; for if a given quantity of pure fixed alkali were saturated, first by a certain quantity of spirit of salt, and then by determined quantities of the other acids, I concluded, that each of these quantities of acid liquor must contain the same quantity of acid, and this being known, the remainder being the aqueous part, this also must be known; but this conclusion entirely rested on the supposition that the same quantity of all the acids was requisite for the saturation of a given quantity of fixed alkali; for if such given quantity of fixed alkali might be saturated by a smaller quantity of one acid than of another, the conclusion fell to the ground. This point might, indeed, be in some measure determined by weighing the neutral salts, formed by these acids, when thoroughly dry; but still a source of inaccuracy remained: for if they were exposed to a considerable heat, part of the acid would necessarily be expelled, and more of one acid than of another, and if the heat were not considerable, much of the water of crystallization would remain; so that if the weights were found to be equal, this equality could not be ascribed to equal quantities of acid, but might perhaps arise from a smaller proportion of acid in one of them, and a larger proportion of water, and in another from a larger proportion of acid and a smaller proportion of water; and if the weights were unequal, no certain conclusion could be drawn. To obviate this difficulty I used the following expedient. I supposed the quantities of nitrous and vitriolic acids, necessary to saturate a given quantity of fixed alkali, exactly the same as that of marine acid whose quantity I determined; and to prove the truth of this supposition, I observed the specific gravity of the spirit of nitre and oil of vitriol I made use of, and in which I supposed, from the trial with alkalies, a certain proportion of
and attractive Powers of various saline Substances.

acid and water; I then added to these more acid and water, and calculated what their specific gravities should be upon the above supposition, and finding the result to tally with the supposition, I concluded the latter to be exact.

The experiments made on the marine acid were as follows.

I took two bottles, which I filled nearly to the top with distilled water, of which they contained in all 1399.9 gr. and introduced them successively into two cylinders filled with marine air, which I had obtained from common salt by means of dilute oil of vitriol and heat, in a mercurial apparatus; and this process I renewed until the water had imbibed, in eighteen days, about 794 cubic inches of the marine air. The thermometer did not rise this time above 55°, nor sink, unless perhaps at night, under 50°, and the barometer was between 29 and 30 inches. This water, or rather spirit of salt, I then found to weigh 1920 gr. that is 520.1 more than before. The quantity of marine air absorbed amounted then to 520.1 gr. I then examined the specific gravity of this spirit of salt, and found it to be 1.225. Its loss of weight in water (that is, the weight of an equal bulk of water) should then be 1567.346 gr. nearly; but it contained only, as we have seen, 1399.9 gr. of water: therefore subtracting this from 1567.346, the remainder (that is, 167.446) must be the loss of 520.1 gr. of marine acid; and consequently the specific gravity of the pure marine acid, in such a condensed state as it is in when united to water, must be

\[
\frac{520.1}{167.446} = 3.100.
\]

But still it might be suspected, that the density of this spirit did not entirely proceed from the mere density of the marine acid, but in part also from the attraction of this acid to water, and though the length of time requisite to make water imbibe this quantity of acid made me judge that the attraction
attraction was not very considerable, yet the following experiment was more satisfactory.

I exposed 1440 gr. of this spirit to marine air for five days, the thermometer being at 50° or under; it then weighed 1562 gr. and consequently imbibed 122 gr. of marine air; its specific gravity was then 1,253, which agrees exactly with what it should be by calculation.

N. B. I have not repeated the whole of these experiments, as they were very tedious; but I began them over again several times before I could ascertain with any precision the quantity of marine air absorbed, as, when the whole of a cylinder full of air was absorbed, it was difficult to stop the bottles so as to prevent any mercury from falling in; and I was obliged every night to fill the cylinders with air, left if there remained but a small quantity it might be imbibed before morning, and the mercury fall into the bottles. I also made some allowance for the common air which I could not avoid letting into the cylinder with the marine air, as will be very apparent to whoever repeats the experiment.

Being now satisfied I had discovered the proportion of acid and water in spirit of salt, I was impatient to find it in other acids also; and for that purpose I took 180 gr. of very strong oil of tartar per deliquium, but of whose specific gravity I can find no note, and found it to be saturated by 180 gr. of spirit of salt, whose specific gravity was 1,225. Now, by calculation it appears, that 180 gr. of this spirit contains 48,7 gr. of acid and 131,3 of water, and hence I drew up the following table.
and attractive Powers of various saline Substances.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Parts.</td>
<td>1,497</td>
<td></td>
</tr>
<tr>
<td>60 Parts.</td>
<td>1,431</td>
<td></td>
</tr>
<tr>
<td>70 Parts.</td>
<td>1,381</td>
<td></td>
</tr>
<tr>
<td>80 Parts.</td>
<td>1,341</td>
<td></td>
</tr>
<tr>
<td>90 Parts.</td>
<td>1,308</td>
<td></td>
</tr>
<tr>
<td>100 Parts.</td>
<td>1,282</td>
<td></td>
</tr>
<tr>
<td>110 Parts.</td>
<td>1,259</td>
<td></td>
</tr>
<tr>
<td>120 Parts.</td>
<td>1,246</td>
<td></td>
</tr>
<tr>
<td>130 Parts.</td>
<td>1,223</td>
<td></td>
</tr>
<tr>
<td>140 Parts.</td>
<td>1,209</td>
<td></td>
</tr>
<tr>
<td>150 Parts.</td>
<td>1,196</td>
<td></td>
</tr>
<tr>
<td>160 Parts.</td>
<td>1,185</td>
<td></td>
</tr>
<tr>
<td>170 Parts.</td>
<td>1,175</td>
<td></td>
</tr>
<tr>
<td>180 Parts.</td>
<td>1,166</td>
<td></td>
</tr>
<tr>
<td>190 Parts.</td>
<td>1,158</td>
<td></td>
</tr>
<tr>
<td>200 Parts.</td>
<td>1,151</td>
<td></td>
</tr>
<tr>
<td>210 Parts.</td>
<td>1,144</td>
<td></td>
</tr>
<tr>
<td>220 Parts.</td>
<td>1,138</td>
<td></td>
</tr>
<tr>
<td>230 Parts.</td>
<td>1,132</td>
<td></td>
</tr>
<tr>
<td>240 Parts.</td>
<td>1,127</td>
<td></td>
</tr>
<tr>
<td>250 Parts.</td>
<td>1,122</td>
<td></td>
</tr>
<tr>
<td>260 Parts.</td>
<td>1,118</td>
<td></td>
</tr>
<tr>
<td>270 Parts.</td>
<td>1,114</td>
<td></td>
</tr>
<tr>
<td>280 Parts.</td>
<td>1,110</td>
<td></td>
</tr>
<tr>
<td>290 Parts.</td>
<td>1,106</td>
<td></td>
</tr>
<tr>
<td>300 Parts.</td>
<td>1,103</td>
<td></td>
</tr>
<tr>
<td>310 Parts.</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>320 Parts.</td>
<td>1,097</td>
<td></td>
</tr>
<tr>
<td>330 Parts.</td>
<td>1,091</td>
<td></td>
</tr>
<tr>
<td>340 Parts.</td>
<td>1,089</td>
<td></td>
</tr>
<tr>
<td>350 Parts.</td>
<td>1,084</td>
<td></td>
</tr>
<tr>
<td>360 Parts.</td>
<td>1,082</td>
<td></td>
</tr>
<tr>
<td>370 Parts.</td>
<td>1,080</td>
<td></td>
</tr>
<tr>
<td>380 Parts.</td>
<td>1,078</td>
<td></td>
</tr>
<tr>
<td>390 Parts.</td>
<td>1,076</td>
<td></td>
</tr>
<tr>
<td>400 Parts.</td>
<td>1,074</td>
<td></td>
</tr>
</tbody>
</table>

The specific gravity of the strongest spirit of salt, made in the usual way, is, according to Mr. Baume, 1,187, and according to Mr. Bergman, 1,190; but we read in the Paris Memoirs for the year 1700, p. 191, that Mr. Homberg passed a spirit whose specific gravity was 1,300; and that made by Dr. Priestley (see vol. III. p. 275.) must have been about 1,500.

Hence we see, that spirit of salt, whose specific gravity is 1,261 or less, has little or no attraction with water, and therefore attracts none from air, and on that account does not heat a thermometer whose ball is dipped in it as spirit of vitriol and spirit of nitre do, as has lately been observed by the Friendly Society of Berlin.

This table is not exactly accurate, as I had not in this first experiment found the point of saturation as nicely as was requisite. However, I have not corrected it, as the error is but small, and the proportion may at any time be found by calculation; at least when the specific gravity of this spirit does not exceed 1,253. Whether the mathematical specific gravity and that by observation differ in the higher degrees of specific gravity, I have not examined; but the table is formed on the supposition that they do not.
Mr. Kirwan's Experiments, &c. on the Specific Gravities

Common spirit of salt is always adulterated with vitriolic acid, and therefore not fit for these trials.

Intending to determine by this experiment the proportion of acid, water, and fixed alkali in digestive salt, as it is called, I took 100 gr. of a solution of a tolerably pure vegetable alkali that had been three times calcined to whiteness, the specific gravity of which solution was 1.097. I also diluted the spirit of salt with different portions of water; the specific gravity of one fort was 1.115, and of another 1.098.

I then found that the above quantity of the solution of a vegetable alkali required for its saturation 27 gr. of that spirit of salt whose specific gravity was 1.098, and 23.35 gr. of that spirit of salt whose specific gravity was 1.115. Now, 27 gr. of spirit of salt, whose specific gravity is 1.098, contain 3.55 gr. of marine acid, as appears by calculation. As the principle on which this calculation, by which the proportion of substances in alloy is found, may not be generally known, I shall here mention them in the words of Mr. Cornes.

"The data requisite are the specific gravities of the mixture and of the two ingredients. . . . Then, as the difference of the specific gravities of the mixture and the lighter ingredient is to the difference of the specific gravities of the mixture and the heavier ingredient, so is the magnitude of the heavier to the magnitude of the lighter ingredient. Then, as the magnitude of the heavier multiplied into its specific gravity is to the magnitude of the lighter multiplied into its specific gravity, so is the weight of the heavier to the weight of the lighter . . . Then, as the sum of these weights is to the given weight of either ingredient, so is the weight given to the weight of the ingredient sought."

Thus,
and attractive Powers of various saline Substances. 15

Thus, in this case, $1.098 - 1.000 = .098$ is the magnitude of the heavier ingredient, viz. the marine acid; and, $0.98 \times 3.100 = 0.3038$ the weight of the marine acid; and, on the other hand, $3.100 - 1.098 = 2.002$ the magnitude of the water; and $2.002 \times 1.000 = 2.002$ its weight; the sum of these weights is 2.3058: then, if 2.3058 parts of spirit of salt contain 0.3038 parts acid, 27 gr. of this spirit of salt will contain 3.55 acid.

In the same manner it will be found, that 23.35 gr. of spirit of salt, whose specific gravity was 1.115, contained 3.55 gr. acid.

The point of saturation was pretty accurately found by putting the glass cylinder which contained the alkaline solution on the scale of a very sensible balance, and at the same time weighing the acid liquor in another pair of scales, when the loss of weight indicated the escape of nearly equal quantities of the fixed air contained in the solution; then the acid was gradually added, by dipping a glass rod into it, to the top of which a small drop of acid adhered: with this the solution was stirred, and very small drops taken up and laid on bits of paper stained blue with radish juice. As soon as the paper was in the least reddened, the operation was completed so that there was always a very small excess of acid, for which half a grain was constantly allowed; but no allowance was made for the fixed air, which always remains in the solution; but as, on this account, only a small quantity of the alkaline solution was used, this proportion of fixed air must have been inconsiderable. If an ounce of the solution had been employed, this inappreciable portion of fixed air would be sufficient to cause a sensible error: for I judged of the quantity of fixed air lost by the difference betwixt the weight added to the 100 gr. and the actual weight off
of the compound. When this difference amounted to 2,2 gr.
then I judged the whole of the fixed air expelled, and found it to
be so, as 100 gr. of this alkaline solution, being evaporated to
dryness in a heat of 300°, left a residuum which amounted to
10½ gr.; which 10½ gr. contained 2,2 gr. of fixed air, as will
hereafter be seen.

Hence 8,3 gr. of pure vegetable fixed alkali, free from fixed
air and water, or 10,5 of mild fixed alkali, were saturated by
3,55 gr. of pure marine acid, and consequently the resulting
neutral salt should, if it contained no water, weigh 11,85 gr.;
but the salts resulting from this union (the solution being eva-
porated to perfect dryness in a heat of 160° kept up for four
hours) weighed at a medium 12,66 gr. Of this weight 11,85
gr. were acid and alkali; therefore the remainder, \(\text{viz.} \) 0,81 of
gr. were water; therefore 100 gr. of perfectly dry, digestive
salt contain 28 gr. acid, 6,55 water, 65,4 of fixed alkali.

I was then curious to compare my experiments with those
made by others, but could not find any made with sufficient
precision but those of Mr. Homberg in the Paris Memoirs for
1699. However, as to spirit of salt I did not think proper to
compare them, as he mentions that his could dissolve gold, and
therefore was probably impure.

OF SPIRIT OF NITRE.

The common reddish brown or greenish spirit of nitre con-
taining, besides acid and water, a certain portion of phlogiston,
and being also mixed with some portion of the acid of sea salt,
I judged unfit for these trials, and therefore used only the de-
phlogisticated sort, which is quite colourless, and resembles pure
water in its appearance. This pure acid cannot be made to exist
in the form of air, as Dr. Priestley has shewn; for when it is deprived of water and phlogiston, and furnished with a due proportion of elementary fire, it ceases to have the properties of an acid, and becomes dephlogisticated air; I could not, therefore, determine its proportion in spirit of nitre as I had done that of the marine acid, but was obliged to use another method.

1st. To 1963.25 gr. of this spirit of nitre, whose specific gravity was 1.419, I gradually added 179.5 gr. of distilled water, and when it cooled I found the specific gravity of this mixture 1.389.

2dly. To 1984.5 gr. of this I again added 178.75 gr. of water; its specific gravity was then 1.362.

I then took 100 gr. of a solution of fixed vegetable alkali, whose specific gravity was 1.097, the same I had before used in the trials with spirit of salt, and found this quantity of alkali to be saturated by 11 gr. of the spirit of nitre, whose specific gravity was 1.419; and by 12 gr. of the spirit, whose specific gravity was 1.389; and by 13.08 of that, whose specific gravity was 1.362. The quantities here mentioned were the medium of five experiments. I found it necessary to dilute the nitrous acid with a small proportion of water, of which I kept an account. When I neglected this precaution, I found that part of the acid was phlogisticated, and went off with the fixed air. Note also, that after each effusion of acid ten minutes were allowed to the matters to unite, a precaution which I also found absolutely necessary.

Hence (upon the supposition that a given quantity of fixed vegetable alkali is saturated by the same weight of both acids) we see that 11 gr. of spirit of nitre, whose specific gravity is 1.419, contain the same quantity of acid as 27 gr. of spirit of salt,
falt, whose specific gravity is 1,098, that is, 3.55 gr.; the remainder of 11 gr. is therefore mere water, viz. 7.45 gr.; consequently, if the density of the acid and water had not been increased by their union, the specific gravity of the pure and mere nitrous acid should be 11,8729; for the specific gravity of this acid should be as its absolute weight divided by its loss of weight in water, and this loss should be as the total loss of these 11 gr. minus the loss of the aqueous part. Now the total loss $= \frac{11}{1,419} = 7.749$, and the loss of the aqueous part $= 7.45$, and consequently the loss of the acid part is $7.749 - 7.45 = 0.299$, and therefore the specific gravity of the acid part, that is, of the pure nitrous acid, is $\frac{3.55}{0.296} = 11,8729$.

But it is well known, that the density of the nitrous acid, as well as that of the vitriolic, is increased by its union with water; and therefore the loss above found is not the whole of its real loss in its natural state (if it could be so found), but partly the loss that arises from the density that accrues to it from its union with water: for since its density is increased by this union, its loss is less than it would be if the nitrous acid had only its own proper density, and consequently the specific gravity above found is greater than its real specific gravity.

To determine, therefore, the real specific gravity of this acid in its natural state, the quantity of accrued density must be found, and subtracted from the specific gravity of the spirit of nitre, whose true mathematical specific gravity will then appear. I endeavoured to effect this by mixing different portions of spirit of nitre and water, remarking the diminution of their joint volume below the sum of the spaces occupied by their separate volumes; but could never attain a sufficient degree of precision.
and attractive Powers of various saline Substances.

precision. The following method, though not exactly accurate, I found more satisfactory. 12 gr. of the spirit of nitre, whose specific gravity by observation was 1,389, contained as I supposed from the former experiment 3,55 gr. of acid, and 8,45 of water; then if the specific gravity of the pure nitrous acid were 11,872, the specific gravity of this compound of acid and water should be 1,371; for the loss of 3,55 gr. acid should be 0,299, and the loss of the water 8,45; the sum of the losses 8,749.

\[
\frac{12}{8,749} = 1,371;
\]

but, as I already said, the specific gravity by observation was 1,389, therefore the accrued density in this case was at least 0,018, the difference between 1,389 and 1,371. I say at least, for as the specific gravity 11,872 was certainly too high, the loss of 3,55 gr. acid was certainly too small; and if it were greater, the mathematical specific gravity 1,371 would have been still lower. However, 0,018 is certainly a near approximation to the degree of density that accrues to 3,55 gr. acid by their union to 7,45 gr. of water, and differs inconsiderably from the truth, as will appear by the sequel: therefore subtracting this quantity from 1,419 we have nearly the mathematical specific gravity of that proportion of acid and water, namely, 1,401. And since 11 gr. of this spirit of nitre contain 3,55 gr. acid and 7,45 of water, its loss of weight should be

\[
\frac{11}{1,401} = 7,855;
\]

and subtracting the loss of the aqueous part from this, the remainder 0,405 is the loss of the 3,55 gr. acid, and consequently the true specific gravity of the pure and mere nitrous acid is

\[
\frac{3,55}{0,405} = 8,7654;
\]

this being settled, the mathematical specific gravity and true increase of density of the above mixtures will be found. Thus the mathematical specific gravity of 12 gr. of that spirit of nitre, whose specific gravity by observation
Mr. Kirwan's Experiments, &c. on the specific Gravities

observation was 1,389, must be 1,355, supposing it to contain 3,55 gr. acid and 8,45 of water; for the loss of 3,55 gr. acid is
\[
\frac{3,55}{8,763} = 0,405, \text{ and the loss of water 8,45; the sum of these losses is 8,855. Then, } \frac{12}{8,855} = 1,355, \text{ and consequently the accrued density is 1,389 - 1,355 = .034. In the same manner it will be found, that the mathematical specific gravity of 13,08 gr. of that spirit of nitre, whose specific gravity by observation was 1,362, must be 1,315, and consequently its accrued density .047.}

But the whole still rests upon the supposition that each of these portions of spirit of nitre contain 3,55 gr. of acid. To verify this supposition, I could think of no better method than that of examining the mathematical specific gravities of the first mixture I had made of spirit of nitre and water in large quantities; for if the mathematical specific gravities of these agreed exactly with those of the quantities I had supposed in smaller portions of each, I could not but conclude, that the suppositions of such proportions of acid and water, as I had determined in each, was just; and that this was the case will appear by the following calculations.

1st. When to 1963,25 gr. of spirit of nitre, whose specific gravity was 1,419, 179,5 gr. of water were added, the quantity of acid upon the above supposition should be 634,53 gr.; for :
\[11 \cdot 3,55 : 1963,25 \cdot 634,53\] the quantity of water in those 1963,25 gr. of spirit of nitre should then be 1328,72, and after adding 179,5 gr. of water, the whole quantity of acid and water should be 2142,75, the loss of acid was \[
\frac{634,53}{8,7654} = 71,24, \text{ and the sum of the losses 1580,46: then the mathematical specific}
\]
specific gravity should be \(\frac{2142.75}{1580.46} = 1.355 \), which is exactly the same as that which was found in 12 gr. of this spirit of nitre, on the supposition that they contained 3.55 gr. acid.

Again: when to 1984.5 gr. of this mixture I added 178.75 gr. of water, the whole quantity of diluted spirit of nitre was 2163.25 gr. and the quantity of acid in 1984.5 gr. was 587.081 gr. for :: 12 : 3,55 :: 1984.5 : 587.081; the loss of this quantity of acid is 66.96 gr. and the sum of the losses of acid and water is 1643.129 gr.; and consequently the mathematical specific gravity should be \(\frac{2163.75}{1643.125} = 1.315 \), which is the same as that determined in 13.08 gr. of the same mixture.

By continuing these mixtures until I found the mathematical specific gravity and that by observation nearly to coincide, I was enabled to draw up the following table, in which if any errors be found, I hope they will be excused, from the impossibility of avoiding them where the weights must be found with such extreme precision; the two first series were only found by analogy.
<table>
<thead>
<tr>
<th>Spirit of nitre</th>
<th>Acid.</th>
<th>Water.</th>
<th>Accrue density.</th>
<th>Mathematical specific gravity.</th>
<th>Specific gravity by observation</th>
<th>Attract. of the acid to water</th>
<th>Attract. of water to the acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-</td>
<td>5.45</td>
<td>.000</td>
<td>1.537</td>
<td>1.537</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>6.45</td>
<td>.009</td>
<td>1.458</td>
<td>1.467</td>
<td>.009</td>
<td>.054</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>7.45</td>
<td>.018</td>
<td>1.401</td>
<td>1.419</td>
<td>.018</td>
<td>.045</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>8.45</td>
<td>.034</td>
<td>1.355</td>
<td>1.389</td>
<td>.027</td>
<td>.036</td>
</tr>
<tr>
<td>13.08</td>
<td>-</td>
<td>9.53</td>
<td>.047</td>
<td>1.315</td>
<td>1.362</td>
<td>.036</td>
<td>.027</td>
</tr>
<tr>
<td>14.15</td>
<td>-</td>
<td>10.53</td>
<td>.051</td>
<td>1.286</td>
<td>1.337</td>
<td>.045</td>
<td>.018</td>
</tr>
<tr>
<td>15.23</td>
<td>-</td>
<td>11.08</td>
<td>.054</td>
<td>1.260</td>
<td>1.314</td>
<td>.054</td>
<td>.009</td>
</tr>
<tr>
<td>16.305</td>
<td>-</td>
<td>12.755</td>
<td>.054</td>
<td>1.238</td>
<td>1.292</td>
<td>.054</td>
<td>.009</td>
</tr>
<tr>
<td>17.38</td>
<td>-</td>
<td>13.83</td>
<td>.051</td>
<td>1.220</td>
<td>1.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.445</td>
<td>-</td>
<td>14.9</td>
<td>.047</td>
<td>1.205</td>
<td>1.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.53</td>
<td>-</td>
<td>15.98</td>
<td>.044</td>
<td>1.191</td>
<td>1.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.005</td>
<td>-</td>
<td>17.055</td>
<td>.042</td>
<td>1.180</td>
<td>1.222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.68</td>
<td>-</td>
<td>18.13</td>
<td>.040</td>
<td>1.177</td>
<td>1.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.755</td>
<td>-</td>
<td>19.205</td>
<td>.038</td>
<td>1.160</td>
<td>1.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.93</td>
<td>-</td>
<td>20.28</td>
<td>.036</td>
<td>1.152</td>
<td>1.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.905</td>
<td>-</td>
<td>21.45</td>
<td>.033</td>
<td>1.144</td>
<td>1.177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.17</td>
<td>-</td>
<td>22.62</td>
<td>.030</td>
<td>1.132</td>
<td>1.162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.34</td>
<td>3.55</td>
<td>23.79</td>
<td>.027</td>
<td>1.130</td>
<td>1.157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.51</td>
<td>-</td>
<td>24.96</td>
<td>.026</td>
<td>1.124</td>
<td>1.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.08</td>
<td>-</td>
<td>26.13</td>
<td>.024</td>
<td>1.114</td>
<td>1.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.85</td>
<td>-</td>
<td>27.30</td>
<td>.022</td>
<td>1.113</td>
<td>1.135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.02</td>
<td>-</td>
<td>28.47</td>
<td>.020</td>
<td>1.109</td>
<td>1.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.09</td>
<td>-</td>
<td>29.54</td>
<td>.018</td>
<td>1.102</td>
<td>1.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.26</td>
<td>-</td>
<td>30.71</td>
<td>.016</td>
<td>1.101</td>
<td>1.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.43</td>
<td>-</td>
<td>31.88</td>
<td>.014</td>
<td>1.097</td>
<td>1.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.60</td>
<td>-</td>
<td>33.05</td>
<td>.012</td>
<td>1.094</td>
<td>1.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.77</td>
<td>-</td>
<td>34.22</td>
<td>.010</td>
<td>1.090</td>
<td>1.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.94</td>
<td>-</td>
<td>35.39</td>
<td>.008</td>
<td>1.088</td>
<td>1.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.11</td>
<td>-</td>
<td>36.56</td>
<td>.006</td>
<td>1.085</td>
<td>1.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.28</td>
<td>-</td>
<td>37.73</td>
<td>.004</td>
<td>1.082</td>
<td>1.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.45</td>
<td>-</td>
<td>38.90</td>
<td>.002</td>
<td>1.080</td>
<td>1.082</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The intermediate specific gravities may be found by taking an arithmetical mean between the specific gravities by observation betwixt which that sought lies, and noting how much it exceeds or falls short of such arithmetical mean; and then taking also an arithmetical mean betwixt the mathematical specific gravities.
and attractive Powers of various saline Substances. gravities betwixt which that sought for must lie, and a proportionate excess or defect.

I have added a column of attraction of the nitrous acid to water as far as it keeps pace with the increase of density, but no farther, as I am unacquainted with the law of its further increase.

The specific gravity of the strongest spirit of nitre yet made is, according to Mr. Baume, 1,500; and according to Mr. Bergman, 1,586.

I next proceeded to examine the proportion of acid, water, and fixed alkali in nitre, in the same manner as I had before done that in digestive salt, and found that 100 gr. of perfectly dry nitre contain 28,48 gr. acid, 5,2 of water, and 66,32 of fixed alkali.

I shall now compare the result of these experiments with those of Mr. Homberg.

The specific gravity of the spirit of nitre which Mr. Homberg made use of was 1,349; and of this, he says, 1 oz. 2 dr. and 36 gr. that is, 621 Troy, are requisite to saturate 1 French (oz. 472,5 Troy) of dry salt of tartar; according to my computation 613 gr. are sufficient; for this specific gravity lies between the tabular specific gravities by observation 1,362 and 1,337, and is nearly an arithmetical mean between them. The corresponding mathematical specific gravity lies betwixt the tabular quantities 1,315 and 1,286, and is nearly 1,300. Now, the proportion of acid and water in this is, 2,629 of acid, and 7,465 of water; for \[\frac{8,765}{1,300} = 7,465 \text{ water and } \frac{8,765 \times .300}{2,629} \text{ of acid;} \]

and the sum of both is 10,044. Now, since 10,5 gr. mild vegetable fixed alkali require 3,55 gr. of acid for their saturation,
Mr. Kirwan’s Experiments, &c. on the specific Gravities

472.5 will require 159.7; therefore, if 10,044 gr. of nitre contain 2,629 gr. acid, the quantity of this spirit of nitre requisite to give 159.7 will be 613.2 nearly, and hence the difference betwixt us is only about 8 gr.

2dly. Mr. Homberg says, he found his salt, when evaporated to dryness, to weigh 186 gr. more than before; whereas, by my experiment, it should weigh but 92.8 gr. more than at first. I shall mention the cause of this difference in treating of tartar vitriolate, for it cannot be entirely attributed to the difference of evaporation.

3dly. Mr. Homberg infers, that 1 oz. (that is, 472.5 Troy gr.) of this spirit of nitre contains 141 gr. Troy of real acid: by my computation it contains but 123.08 gr. of real acid. This difference evidently proceeds from his neglecting the quantity of water that certainly enters into the composition of nitre; for he proceeds on this analogy, 621 : 186,6 :: 472.5 : 141.

The proportion of fixed alkali I have assigned to nitre is fully confirmed by a very curious experiment of Mr. Fontana’s, inserted in Rozier’s Journal for November 1778. This ingenious philosopher decomposed 2 oz. of nitre by distilling it in a strong heat for eighteen hours. After the distillation there remained in the retort a substance purely alkaline, amounting to 10 French dr. and 12 gr. Now 2 French oz. = 944 gr. Troy, and the alkaline matter amounts to 607 gr. Troy; and, according to my computation, 944 gr. of nitre should contain 625 of alkali. So small a difference may fairly be attributed to the loss in transferring from one vessel to another, weighing, filtering, evaporating, &c.

Mr. Lavoisier, in the Paris Memoirs for the year 1776, has given us, after Dr. Priestley, the analysis of the nitrous acid.
and attractive Powers of various saline Substances.

In 2 oz. French measure (= 945 gr. Troy) of spirit of nitre, whose specific gravity was 1,3160, he dissolved 2 oz. and 1 dr. of mercury; the quantity of air obtained during the solution was 190 cubic inches French (= 202,55 English). This air was all nitrous. There remained a white mercurial salt, which, being distilled, afforded 12 cubic inches (= 12,785 English) of air mixed with red vapours, and which differed little from common air. There afterwards arose 224 cubic inches (= 238,56 English) of dephlogisticated air, during the production of which, the mercury was almost revivified, there remaining but a few grains of a yellow sublimate. The 12 inches of air mixed with red vapours arose, he says, from a mixture of 36 cubic inches of nitrous air (= 38,34 English) and 14 of dephlogisticated air (14,91 English); and as the mercury was almost wholly revived, he concludes, these airs arose from the nitrous acid, and formed it; and hence infers, that 16 oz. of this spirit of nitre (= 7560 gr. Troy) contained 13 oz. 7 dr. 36½ gr. (that is, 6589 gr. Troy) of water, and consequently only 971 gr. Troy of real acid, and therefore 2 oz. of this spirit of nitre contained but 120 gr. Troy of real acid: but, by my calculation, 2 oz. of this spirit of nitre contained 213 gr. acid; for its mathematical specific gravity is 1,265. The same weight of acid will also be found in it by computing the weight of the volumes of the different airs he himself found it consist of, or at least to afford by its decomposition; for 202,55 cubic inches of nitrous air weigh, by Mr. Fontana’s experiment, 80,8174 gr. Troy, and 238,56 inches of dephlogisticated air weigh 100,1952 gr. Troy, and adding to these the weight of 38,34 inches of nitrous air, and of 14,91 of dephlogisticated air, which made the 12 cubic inches of air mixed with red vapours, we shall find the whole weight of these airs to be 202,181 gr.;
the few grains wanting of 213 gr. may be accounted for from the absorption of the water in which he received the airs, and by allowing for that still remaining in the yellow sublimate.

OF OIL OF VITRIOL.

The oil of vitriol I made use of was not perfectly dephlogisticated; but though pale yet a little inclined to red. It contained some whitish matter, as I perceived by its growing milky on the affusion of pure distilled water. How far this may alter the result of the following experiments I have not tried; but believe it to be as pure as that which is commonly used in all experiments, and therefore the fittest for my purpose.

To 2519.75 gr. of this oil of vitriol, whose specific gravity was 1.819, I gradually added 180 gr. of distilled water, and six hours after found its specific gravity to be 1.771.

To this mixture I again added 178.75 gr. of water, and found its specific gravity, when cooled to the temperature of the atmosphere, to be 1.719; it was then milky.

I then saturated the same quantity of the oil of tartar above mentioned with each of these sorts of oil of vitriol in the manner already mentioned, and found the saturation to be effected (taking the medium of five experiments) by 6.5 gr. of that whose specific gravity was 1.819; by 6.96 gr. of that whose specific gravity was 1.771; and by 7.41 gr. of that whose specific gravity was 1.719.

I was obliged to add a certain proportion of water to each of these sorts of oil of vitriol; for when they were not diluted, I perceived that part of the acid was phlogisticated, and went off with the fixed air; but knowing the quantity of water that was added, it was easy to find, by the rule of proportion, the quantity
and attractive Powers of various saline Substances.

ity of each sort of oil of vitriol that was taken up by the alkali.

Hence I supposed, that each of these quantities of oil of vitriol of different densities contained 3,55 gr. of acid, as they saturated the same quantity of vegetable fixed alkali as 11 gr. of spirit of nitre, which contained that quantity of acid.

I then endeavoured to find the specific gravity of the pure vitriolic acid in the same manner as I before had that of the nitrous, as it cannot be had in the shape of air unless united to such a quantity of phlogiston as quite alters its properties. The loss of 6,5 gr. of oil of vitriol, whose specific gravity is 1,819 is \(\frac{6,5}{1,819} = 3,572 \); but as these 6,5 gr. contained, besides 3,55 gr. acid, 2,95 of water, the loss of this must be subtracted from the entire loss, and then the remainder 0,622 is the loss of the pure acid part in that state of density to which it is reduced by its union with water. The specific gravity therefore of the pure vitriolic acid in this state of density is \(\frac{3,55}{0,622} = 5,707 \). But to find its natural specific gravity we must find how much its density is increased by its union with this quantity of water: and, in order to observe this, I proceeded as before with the nitrous acid. 6,96 gr. of oil of vitriol, whose specific gravity was 1,771, contained 3,55 gr. acid, and 3,41 of water; then its specific gravity by calculation should be 1,726, for the loss of 3,55 gr. acid is \(\frac{3,55}{5,707} = 0,622 \); the loss of 3,41 gr. water is 3,41; the sum of the losses 4,032. Then, \(\frac{6,96}{4,032} = 1,726 \); therefore the accrued density is 1,771 - 1,726 = .045. Taking this therefore from 1,819, its mathematical specific gravity will be 1,774, then the loss of 6,5 gr. of oil of vitriol, whose
specific gravity by observation is $1,819$, will be found to be \(\frac{6.5}{1,774} = 3.664\); but of this 2.95 gr. are the loss of the water it contains, and the remainder 0.714 * are the loss of the mere acid part. Then, \(\frac{3.55}{0.715} = 4.9649\) is nearly the true specific gravity of the pure vitriolic acid.

I then found the true increase of density arising from the union of the vitriolic acid and water in the foregoing mixtures, and observed, that in oil of vitriol, whose specific gravity was 1.771, it was 0.84, and in that whose specific gravity was 1.719, it was 0.100.

To obtain a synthetical proof of these deductions, I compared them with the specific gravities of the first mixtures I had made; for if these deductions were true, the mathematical specific gravities, and the accrued densities, added to each other, should amount to the same quantity as the specific gravities by observation; and this I found to happen very nearly; for in the first experiment, where 2519.75 gr. of oil of vitriol, whose specific gravity was 1.819, were mixed with 180 gr. of water, that oil of vitriol contained by my calculation 1376.171 gr. of acid and 1143.597 gr. of water, besides the 180 gr. of water that were added to it, the loss of the acid was $\frac{1376.171}{4964} = 277.22$. The whole quantity of oil of vitriol was 2699.75 gr.; then the sum of the losses was 1600.81; and therefore the mathematical specific gravity $\frac{2699.75}{1600.81} = 1.686$; to which, adding 0.084 the degree of accrued density, the specific gravity by observation

* By mistake, the following calculations were made on the supposition that the loss was 0.715; the difference being immaterial, the calculations were not repeated.

\[\text{should}\]
should be 1,770, which wants less than 1000th part in 2700 of being just.

Again: in the mixture, whose specific gravity was 1,719, the sum of the losses was 1779.549, and the weight of the whole 2878.4, the mathematical specific gravity should be \(\frac{2778.400}{1779.549} = 1.617 \), to which adding 0.100, the specific gravity by observation should be 1,717, which is nearly the truth.

By continuing these mixtures until the specific gravities by calculation and observation nearly coincided, I formed the following table. The extra-tabular proportions are to be sought in the manner already shewn; the two first series were formed by ...
<table>
<thead>
<tr>
<th>Oil and spirit of vitriol</th>
<th>Acid.</th>
<th>Water</th>
<th>Accrued density</th>
<th>Mathematical specific gravity</th>
<th>Specific gravity by observation</th>
<th>Attract. of the acid to water</th>
<th>Attract. of water to the acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grs.</td>
<td>Grs.</td>
<td>Grs.</td>
<td>.000</td>
<td>2.032</td>
<td>1.884</td>
<td>1.889</td>
<td>0.045</td>
</tr>
<tr>
<td>5.58</td>
<td></td>
<td>2.03</td>
<td>.005</td>
<td>1.774</td>
<td>1.819</td>
<td>0.084</td>
<td>0.139</td>
</tr>
<tr>
<td>6.04</td>
<td></td>
<td>2.49</td>
<td>.045</td>
<td>1.687</td>
<td>1.771</td>
<td>0.100</td>
<td>0.137</td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>2.95</td>
<td>.084</td>
<td>1.619</td>
<td>1.719</td>
<td>0.112</td>
<td>0.129</td>
</tr>
<tr>
<td>6.96</td>
<td></td>
<td>3.41</td>
<td>.100</td>
<td>1.563</td>
<td>1.675</td>
<td>0.122</td>
<td>0.122</td>
</tr>
<tr>
<td>7.41</td>
<td></td>
<td>3.86</td>
<td>.112</td>
<td>1.515</td>
<td>1.637</td>
<td>0.129</td>
<td>0.112</td>
</tr>
<tr>
<td>7.87</td>
<td></td>
<td>4.32</td>
<td>.122</td>
<td>1.476</td>
<td>1.605</td>
<td>0.137</td>
<td>0.100</td>
</tr>
<tr>
<td>8.33</td>
<td></td>
<td>4.78</td>
<td>.129</td>
<td>1.441</td>
<td>1.578</td>
<td>0.139</td>
<td>0.084</td>
</tr>
<tr>
<td>8.79</td>
<td></td>
<td>5.24</td>
<td>.137</td>
<td>1.412</td>
<td>1.551</td>
<td>0.149</td>
<td>0.045</td>
</tr>
<tr>
<td>9.25</td>
<td></td>
<td>5.70</td>
<td>.139</td>
<td>1.385</td>
<td>1.525</td>
<td>0.140</td>
<td>0.005</td>
</tr>
<tr>
<td>9.71</td>
<td></td>
<td>6.16</td>
<td>.140</td>
<td>1.359</td>
<td>1.502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.17</td>
<td></td>
<td>6.62</td>
<td>.139</td>
<td>1.324</td>
<td>1.475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.63</td>
<td></td>
<td>7.08</td>
<td>.132</td>
<td>1.325</td>
<td>1.452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.09</td>
<td></td>
<td>7.54</td>
<td>.127</td>
<td>1.308</td>
<td>1.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.55</td>
<td></td>
<td>8.00</td>
<td>.120</td>
<td>1.306</td>
<td>1.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.01</td>
<td></td>
<td>8.46</td>
<td>.100</td>
<td>1.280</td>
<td>1.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.47</td>
<td></td>
<td>8.92</td>
<td>.094</td>
<td>1.273</td>
<td>1.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.93</td>
<td></td>
<td>9.39</td>
<td>.083</td>
<td>1.257</td>
<td>1.351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.39</td>
<td></td>
<td>9.84</td>
<td>.078</td>
<td>1.247</td>
<td>1.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.85</td>
<td></td>
<td>10.30</td>
<td>.066</td>
<td>1.228</td>
<td>1.306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.31</td>
<td></td>
<td>10.76</td>
<td>.059</td>
<td>1.212</td>
<td>1.282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.77</td>
<td></td>
<td>11.22</td>
<td>.059</td>
<td>1.199</td>
<td>1.261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.23</td>
<td></td>
<td>11.68</td>
<td>.050</td>
<td>1.187</td>
<td>1.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td></td>
<td>12.14</td>
<td>.047</td>
<td>1.176</td>
<td>1.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.15</td>
<td></td>
<td>12.60</td>
<td>.040</td>
<td>1.167</td>
<td>1.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.61</td>
<td></td>
<td>13.06</td>
<td>.038</td>
<td>1.158</td>
<td>1.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.07</td>
<td></td>
<td>13.52</td>
<td>.035</td>
<td>1.149</td>
<td>1.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.53</td>
<td></td>
<td>13.98</td>
<td>.032</td>
<td>1.135</td>
<td>1.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.99</td>
<td></td>
<td>14.44</td>
<td>.029</td>
<td>1.125</td>
<td>1.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.45</td>
<td></td>
<td>14.90</td>
<td>.026</td>
<td>1.116</td>
<td>1.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.91</td>
<td></td>
<td>15.36</td>
<td>.023</td>
<td>1.104</td>
<td>1.169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.37</td>
<td></td>
<td>15.82</td>
<td>.020</td>
<td>1.105</td>
<td>1.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.83</td>
<td></td>
<td>16.28</td>
<td>.018</td>
<td>1.102</td>
<td>1.157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.29</td>
<td></td>
<td>16.74</td>
<td>.016</td>
<td>1.101</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.75</td>
<td></td>
<td>17.20</td>
<td>.014</td>
<td>1.100</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.21</td>
<td></td>
<td>17.66</td>
<td>.011</td>
<td>1.098</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.67</td>
<td></td>
<td>18.12</td>
<td>.008</td>
<td>1.096</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.13</td>
<td></td>
<td>18.58</td>
<td>.006</td>
<td>1.094</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.59</td>
<td></td>
<td>19.04</td>
<td>.004</td>
<td>1.092</td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.05</td>
<td></td>
<td>19.50</td>
<td>.002</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.51</td>
<td></td>
<td>19.96</td>
<td>.001</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.97</td>
<td></td>
<td>20.42</td>
<td>.000</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.43</td>
<td></td>
<td>20.88</td>
<td>.001</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.89</td>
<td></td>
<td>21.34</td>
<td>.000</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.35</td>
<td></td>
<td>21.80</td>
<td>.002</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.81</td>
<td></td>
<td>22.26</td>
<td>.002</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.27</td>
<td></td>
<td>22.72</td>
<td>.001</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.73</td>
<td></td>
<td>23.18</td>
<td>.000</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.19</td>
<td></td>
<td>23.64</td>
<td>.000</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.65</td>
<td></td>
<td>24.10</td>
<td>.000</td>
<td>1.114</td>
<td>1.142</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and attractive Powers of various saline Substances.

The specific gravity of the most concentrated oil of vitriol yet made is, according to Mr. Baume and Bergman, 2,125.

I ascertained the proportion of acid water and fixed alkali in tartar vitriolate, as before, in nitre and digestive salt. I found the salts, resulting from the saturation of the same oil of tartar, with portions of oil of vitriol of different specific gravities, to weigh, at a medium, 12.45 gr. Of this weight only 11.85 gr. were alkali and acid, the remainder therefore was water, viz. 0.6 of a grain; consequently 100 gr. of perfectly dry tartar vitriolate contain 28.51 gr. acid, 4.82 of water, and 66.67 of fixed vegetable alkali. Note, in drying this salt I used a heat of 240° to expel the adhering acid more thoroughly. I kept it in that heat a quarter of an hour.

According to Mr. Homberg, 1 French oz. (or 472.5 gr. Troy) of dry salt of tartar required 297.5 gr. Troy of oil of vitriol, whose specific gravity was 1.674, to saturate it; but, by my calculation, this quantity of fixed alkali would require 325 gr.: a difference which, considering our different methods of determining the specific gravity of liquids (his method, viz. that by mensuration, giving it always less than mine) the different desiccation of our alkalies, &c. may pass for inconsiderable.

The resulting salt weighed, according to Mr. Homberg, 182 gr. Troy above the original weight of the fixed alkali; but by my experiment it should weigh but 87.7 gr. more; for :: 10.5 . 12.45 :: 472.5 . 560.2. It is hard to say how Mr. Homberg could find this great excess of weight both in nitre and tartar vitriolate, unless he meant by the original weight of the salt of tartar the weight of the mere alkaline part, distinct from the fixed air it contained: and indeed one would be tempted to think, he did make this distinction; for in that case
case the excess of weight will be very nearly such as he determined it: for \(\frac{10.5 \cdot 8.3}{2} = 472.5 \cdot 373.3 \). Now, the whole weight of his nitre was 560,2, as I have above shewn: then
\[560.2 - 373.3 = 116.9, \]
which is only 4 gr. more than he determined it.

Hence he inferred, that 1 oz. (472.5 gr. Troy) of this oil of vitriol contains 291.7 gr. of acid. By my computation it contains but 213.3; but it must be considered, he made no allowance for the water contained in tartar vitriolate, and imagined the whole of the increase of weight proceeded from the acid that is united in it to the fixed alkali. Now the aqueous part in 560 gr. of tartar vitriolate amounts to 37 gr. the remaining difference may be attributed to the different degrees of desiccation, &c.

OF THE ACETOUS ACID.

I have made no experiment on this acid; but, by calculating from the experiment of Mr. Hoppe, I find the specific gravity of the pure acetous acid, free from superfluous water, should be 2.130. It is probable, its affinity to water is not strong enough to cause any irregular increase in its density, at least that can be expressed by three decimals; and hence its proportion of acid and water may always be calculated from its specific gravity and absolute weight.

100 parts of foliated tartar, or (as it should rather be called) acetous tartar, contain well dried 32 of fixed alkali, 19 of acid, and 49 parts of water.

The specific gravity of the strongest concentrated vinegar yet made is 1.069.
and attractive Powers of various saline Substances.

It is harder to find the point of saturation with the vegetable than with the mineral acids; because they contain a mucilage that prevents their immediate union with alkalies, and hence they are commonly used in too great quantity. They should be used moderately hot, and sufficient time allowed them to unite.

From these experiments it follows:

1st. That fixed vegetable alkalies take up an equal quantity of the three mineral acids, and probably of all pure acids; for we have seen, that 8.3 grains of pure vegetable alkali (that is, free from fixed air) take up 3.55 gr. of each of these acids, and consequently 100 parts of caustic fixed alkali would require 42.4 parts of acid to saturate them. Now, Mr. Bergman has found, that 100 parts of caustic fixed vegetable alkali take up 47 parts of the aerial acid, which, considering his alkali might contain some water, differs but little from my calculation. It should therefore seem, that alkalies have a certain determinate capacity of uniting to acids, that is, to a given weight of acids; and that this capacity is equally satiated by that given weight of any pure acid indiscriminately. This weight is about 2.35 of the weight of the vegetable alkali.

2dly. That the three mineral acids, and probably all pure acids, take up 2.253 times their own weight of pure vegetable alkali, that is, are saturated by that quantity.

3dly. That the density accruing to compound substances from the union of their component parts, and exceeding its mathematical ratio, increases from a minimum, when the quantity of one of them is very small in proportion to that of the other, to a maximum, when their quantities differ less; but that the attraction, on the contrary, of that part which is in the smallest quantity to that which is in the greater, is at its maximum.
Mr. Kirwan's Experiments, &c. on the specific Gravities

maximum when the accrued density is at its minimum, but not reciprocally; and hence the point of saturation is probably the maximum of density and the minimum of sensible attraction of one of the parts. Hence no decomposition operated by means of a substance that has a greater affinity with one part of a compound than with the other, and than these parts have to each other, can be complete, unless the minimum affinity of this third substance be greater than the maximum affinity of the parts already united. Hence few decompositions are complete without a double affinity intervenes; and hence the last portion of the separated substance adheres so obstinately to that to which it was first united, as all chemists have observed. Thus, though acids have a greater affinity to phlogiston than the earths of the different metals have to it, yet they can never totally dephlogisticate these earths but only to a certain degree; so though atmospheric air, and particularly dephlogisticated air, attracts phlogiston more strongly than the nitrous acid does; yet not even dephlogisticated air can deprive the nitrous acid totally of its phlogiston, as is evident from the red colour of the nitrous acid when nitrous air and dephlogisticated air are mixed together. Hence also mercury precipitated from its solution in any acid, even by fixed alkalies, constantly retains a portion of the acid to which it was originally united, as Mr. Bayen has shewn; so also does the earth of allum, when precipitated in the same manner from its solution; and thus several anomalous decompositions may be explained. Indeed, I have reason to doubt, whether mercury does not attract acids more strongly than alkalies attract them.

4thly. That concentrated acids are, in some measure, phlogisticated, and evaporate by union with fixed alkalies.

5thly.
5thly. That, knowing the quantity of fixed alkali in oil of tartar, we may determine the quantity of real pure acid in any other acid substance that is difficultly decomposed, as the sedative acid, and those of vegetables and animals; for 10.5 gr. of the mild alkali will always be saturated by 3.55 gr. of real acid: and reciprocally, the quantity of acid in any acid liquor being known, the quantity of real alkali in any vegetable alkaline liquor may be found.

OF THE SPECIFIC GRAVITY OF FIXED AIR IN ITS FIXED STATE.

Being desirous to know the specific gravity of some substances which are difficultly procured, or at least preserved for any time, free from fixed air, such as fixed and volatile alkalies, I was induced to seek the specific gravity of the former in its fixed state as of an element necessary to the calculation of the latter; it being very evident, that its density, in its fixed state, must be very different from that which it possesses in its fluid elastic state.

I therefore took a piece of white marble, of the purest kind, which weighed 440.25 gr. and weighing it in water, found it to lose 162 gr.; its specific gravity was therefore 2.7175.

Of this marble, reduced to a fine powder, I put 180 gr. into a phial, and expelling the fixed air by the dilute vitriolic acid and heat, I found its quantity amount to 105.28 cubic inches; the thermometer being at 65°, and the barometer between 29 and 30 inches, this bulk of air would, at 55° of Fahrenheit, occupy but 102.4 cubic inches; at which temperature, according to the experiment of Mr. Fontana, a
cubic inch of fixed air (the barometer being at 29°4) would weigh 0.57 of a grain; therefore the weight of the whole quantity of fixed air amounted to 58,368 gr. which is nearly one third of the weight of the marble. At this rate, 100 gr. of the marble contained 32.42 of fixed air.

To determine the proportion of water and calcareous earth, and also the specific gravity of this latter, I put 3009.25 gr. of the same marble finely powdered into a crucible, loosely covered; the crucible and its contents, before calcination, weighed 8394 gr. and after remaining fourteen hours in a white heat I found it to weigh 7067.5 gr. The weight of the crucible alone was 5384.75 gr.; therefore the weight of the lime singly was 1682.75 gr. The marble then lost by calcination 1326.5 gr.; 180 gr. of the marble should then lose 79343 gr. and 100 gr. should lose 44.08; but of these 44.08, 32.42 were fixed air, as is already seen, therefore the remainder, that is, 11.66 gr. were water, and the quantity of pure calcareous earth in 100 gr. of the marble was 55.92 gr.

I next proceeded to discover the specific gravity of the lime.

Into a brass box, which weighed 607.65 gr. and in the bottom of which a small hole was drilled, I stuffed as much as possible of the finely powdered lime, and then screwed the cover on, and weighed it both in air and water. When immersed in this latter, a considerable quantity of common air was expelled; when this ceased, I weighed it. The result of this experiment was as follows:

Weight
and attractive Powers of various saline Substances.

Gr.

Weight of the box in air 607.65
Its loss of weight in water 73.75
Weight of the box and lime in air 1043.5
Weight of the lime singly in air 435.85
Loss of weight of the box and lime in water 256.5
Loss of weight of the lime singly 182.3

Hence, dividing the absolute weight of the lime by its loss in water, its specific gravity was found to be 2.3908.

From these data I deduced the specific gravity of fixed air in its fixed state; for 100 gr. of marble consist of 55.92 of earth, 32.42 of fixed air, and 11.66 of water; and the specific gravity of the marble is 2.717. Now, the specific gravity of the fixed air, in its fixed state, is as its absolute weight divided by its loss of weight in water; and its loss of weight in water is as the loss of 100 gr. of marble minus the losses of the pure calcareous earth and of the water.

\[
\text{Loss of 100 gr. of marble} = \frac{100}{2.717} = 36.8 \text{ gr.}
\]

\[
\text{Loss of 55.92 gr. calcareous earth} = \frac{55.92}{2.390} = 23.39 \text{ gr.}
\]

\[
\text{Loss of 11.66 gr. water} = 11.66 \\
= 35.05
\]

Then the loss of the fixed air 36.8 - 35.05 = 1.75; consequently, its specific gravity is \(\frac{32.42}{1.75} = 18.52\); by which it appears to be the heaviest of all acids, or even of all bodies yet known, gold and platina excepted.
OF FIXED VEGETABLE ALKALI.

As the manner of conducting the experiments I made on this salt was nearly the same as that I used in the foregoing (except that to find its specific gravity I weighed it in aether instead of water), I shall content myself, to avoid the repetition of tedious calculation, with relating the result of these experiments.

1st. I found that 100 gr. of this alkali contain about 6.7 gr. of earth, which, according to Mr. Bergman, is siliceous: this earth passes the filter with it when the alkali is not saturated with fixed air, so that it seems to be held in solution as in liquor silicium.

2dly. I found, that the quantity of fixed air in oil of tartar and dry vegetable fixed alkali is various at various times and in various parcels of the same salt; but that at a medium in the purer alkalies it may be rated at 21 gr. in 100; and hence the quantity of this alkali in any solution of it may be very nearly guessed at, by adding a known weight of a dilute acid to a given weight of such solution, and then weighing it again; for as 21 is to 100, so is the weight lost to the weight of mild alkali in such solution.

The specific gravity of mild and perfectly dry four times calcined fixed alkali, free from siliceous earth, and containing 21 per cent. of fixed air, I found to be 3.0527.

When it contains more fixed air, its specific gravity is probably higher, except it were not perfectly dry: from whence I inferred the specific gravity of this alkali, when caustic and free from water, to be 4.234.
and attractive Powers of various saline Substances. 39

From the weight of the aerial acid, in its fixed state, it happens, that fixed alkalies, when united to it, are specifically heavier than when united either to the vitriolic or nitrous acids. Thus Mr. R. Watson, in the Phil. Trans. for the year 1770, p. 337. found the specific gravity of dry salt of tartar (including siliceous earth) to be 2,761: whereas the specific gravity of tartar vitriolate was only 2,636, and that of nitre 1,933. The reason why nitre is so much lighter than tartar vitriolate, is, because it contains much more water, and its union with the alkali is less intimate.

Lastly, I have drawn up a table of the quantity of mild alkali, containing 6,7 per cent. of earth (which is its usual degree of purity) to be found in natural or artificial solutions of this alkali, the thermometer at 63°; and though it is not quite accurate, wanting about 1,1 per cent. of the truth, yet, I presume, it may be found useful, as this error is easily corrected.
Table of the contents of a solution of mild vegetable alkali, according to its specific gravity.

<table>
<thead>
<tr>
<th>Gr. of the solution</th>
<th>Gr. of alkali</th>
<th>Gr. of water</th>
<th>Accrued density</th>
<th>Mathematical specific gravity</th>
<th>Specific gravity by observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.92</td>
<td>-</td>
<td>38.67</td>
<td>.050</td>
<td>1.445</td>
<td>1.495</td>
</tr>
<tr>
<td>70.60</td>
<td>-</td>
<td>44.35</td>
<td>.049</td>
<td>1.393</td>
<td>1.440</td>
</tr>
<tr>
<td>76.28</td>
<td>-</td>
<td>50.03</td>
<td>.048</td>
<td>1.359</td>
<td>1.404</td>
</tr>
<tr>
<td>81.96</td>
<td>-</td>
<td>55.71</td>
<td>.047</td>
<td>1.324</td>
<td>1.371</td>
</tr>
<tr>
<td>87.64</td>
<td>-</td>
<td>61.39</td>
<td>.046</td>
<td>1.297</td>
<td>1.343</td>
</tr>
<tr>
<td>93.32</td>
<td>-</td>
<td>67.07</td>
<td>.045</td>
<td>1.274</td>
<td>1.319</td>
</tr>
<tr>
<td>99.00</td>
<td>-</td>
<td>72.75</td>
<td>.044</td>
<td>1.254</td>
<td>1.298</td>
</tr>
<tr>
<td>104.68</td>
<td>-</td>
<td>78.43</td>
<td>.043</td>
<td>1.237</td>
<td>1.274</td>
</tr>
<tr>
<td>110.36</td>
<td>-</td>
<td>84.11</td>
<td>.042</td>
<td>1.223</td>
<td>1.265</td>
</tr>
<tr>
<td>115.98</td>
<td>-</td>
<td>89.79</td>
<td>.041</td>
<td>1.209</td>
<td>1.250</td>
</tr>
<tr>
<td>121.66</td>
<td>-</td>
<td>95.40</td>
<td>.040</td>
<td>1.198</td>
<td>1.238</td>
</tr>
<tr>
<td>127.34</td>
<td>-</td>
<td>101.15</td>
<td>.039</td>
<td>1.187</td>
<td>1.226</td>
</tr>
<tr>
<td>133.02</td>
<td>-</td>
<td>106.83</td>
<td>.038</td>
<td>1.178</td>
<td>1.216</td>
</tr>
<tr>
<td>138.7</td>
<td>-</td>
<td>112.51</td>
<td>.037</td>
<td>1.170</td>
<td>1.207</td>
</tr>
<tr>
<td>144.3</td>
<td>-</td>
<td>118.19</td>
<td>.036</td>
<td>1.162</td>
<td>1.198</td>
</tr>
<tr>
<td>149.98</td>
<td>-</td>
<td>123.87</td>
<td>.035</td>
<td>1.155</td>
<td>1.190</td>
</tr>
<tr>
<td>155.66</td>
<td>-</td>
<td>129.55</td>
<td>.034</td>
<td>1.149</td>
<td>1.183</td>
</tr>
<tr>
<td>161.34</td>
<td>-</td>
<td>135.23</td>
<td>.033</td>
<td>1.143</td>
<td>1.176</td>
</tr>
<tr>
<td>167.02</td>
<td>26.25</td>
<td>140.91</td>
<td>.032</td>
<td>1.138</td>
<td>1.170</td>
</tr>
<tr>
<td>172.70</td>
<td>-</td>
<td>146.59</td>
<td>.031</td>
<td>1.132</td>
<td>1.163</td>
</tr>
<tr>
<td>178.38</td>
<td>-</td>
<td>152.27</td>
<td>.030</td>
<td>1.128</td>
<td>1.158</td>
</tr>
<tr>
<td>184.06</td>
<td>-</td>
<td>157.95</td>
<td>.029</td>
<td>1.123</td>
<td>1.152</td>
</tr>
<tr>
<td>189.74</td>
<td>-</td>
<td>163.63</td>
<td>.028</td>
<td>1.119</td>
<td>1.147</td>
</tr>
<tr>
<td>195.42</td>
<td>-</td>
<td>169.31</td>
<td>.027</td>
<td>1.115</td>
<td>1.142</td>
</tr>
<tr>
<td>201.10</td>
<td>-</td>
<td>174.99</td>
<td>.026</td>
<td>1.112</td>
<td>1.138</td>
</tr>
<tr>
<td>206.78</td>
<td>-</td>
<td>180.67</td>
<td>.025</td>
<td>1.108</td>
<td>1.133</td>
</tr>
<tr>
<td>212.46</td>
<td>-</td>
<td>186.35</td>
<td>.024</td>
<td>1.105</td>
<td>1.129</td>
</tr>
<tr>
<td>218.14</td>
<td>-</td>
<td>192.03</td>
<td>.023</td>
<td>1.100</td>
<td>1.123</td>
</tr>
<tr>
<td>223.82</td>
<td>-</td>
<td>197.71</td>
<td>.022</td>
<td>1.099</td>
<td>1.121</td>
</tr>
<tr>
<td>229.50</td>
<td>-</td>
<td>203.39</td>
<td>.021</td>
<td>1.097</td>
<td>1.118</td>
</tr>
<tr>
<td>235.18</td>
<td>-</td>
<td>209.07</td>
<td>.020</td>
<td>1.094</td>
<td>1.114</td>
</tr>
<tr>
<td>240.86</td>
<td>-</td>
<td>214.75</td>
<td>.019</td>
<td>1.092</td>
<td>1.111</td>
</tr>
<tr>
<td>246.54</td>
<td>-</td>
<td>220.43</td>
<td>.018</td>
<td>1.089</td>
<td>1.107</td>
</tr>
<tr>
<td>252.12</td>
<td>-</td>
<td>226.11</td>
<td>.017</td>
<td>1.087</td>
<td>1.104</td>
</tr>
<tr>
<td>257.80</td>
<td>-</td>
<td>231.79</td>
<td>.016</td>
<td>1.085</td>
<td>1.101</td>
</tr>
<tr>
<td>263.48</td>
<td>-</td>
<td>237.47</td>
<td>.015</td>
<td>1.083</td>
<td>1.098</td>
</tr>
<tr>
<td>269.16</td>
<td>-</td>
<td>243.15</td>
<td>.014</td>
<td>1.081</td>
<td>1.095</td>
</tr>
</tbody>
</table>
and attractive Powers of various saline Substances.

<table>
<thead>
<tr>
<th>Gr. of the solution</th>
<th>Gr. of alkali</th>
<th>Gr. of water</th>
<th>Accrued density</th>
<th>Mathematical specific gravity</th>
<th>Specific gravity by observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>274,78</td>
<td>-</td>
<td>248,83</td>
<td>.013</td>
<td>1.079</td>
<td>1.092</td>
</tr>
<tr>
<td>280,46</td>
<td>-</td>
<td>254,51</td>
<td>.012</td>
<td>1.077</td>
<td>1.089</td>
</tr>
<tr>
<td>286,14</td>
<td>-</td>
<td>260,19</td>
<td>.011</td>
<td>1.076</td>
<td>1.087</td>
</tr>
<tr>
<td>291,82</td>
<td>-</td>
<td>265,87</td>
<td>.010</td>
<td>1.074</td>
<td>1.084</td>
</tr>
<tr>
<td>297,50</td>
<td>-</td>
<td>271,55</td>
<td>.009</td>
<td>1.070</td>
<td>1.079</td>
</tr>
<tr>
<td>303,18</td>
<td>-</td>
<td>277,23</td>
<td>.008</td>
<td>1.069</td>
<td>1.077</td>
</tr>
<tr>
<td>308,86</td>
<td>26,25</td>
<td>282,91</td>
<td>.007</td>
<td>1.068</td>
<td>1.075</td>
</tr>
<tr>
<td>314,54</td>
<td>-</td>
<td>288,59</td>
<td>.006</td>
<td>1.066</td>
<td>1.072</td>
</tr>
<tr>
<td>319,22</td>
<td>-</td>
<td>294,27</td>
<td>.005</td>
<td>1.065</td>
<td>1.070</td>
</tr>
<tr>
<td>324,90</td>
<td>-</td>
<td>300,45</td>
<td>.004</td>
<td>1.064</td>
<td>1.068</td>
</tr>
<tr>
<td>330,58</td>
<td>-</td>
<td>306,13</td>
<td>.003</td>
<td>1.063</td>
<td>1.066</td>
</tr>
<tr>
<td>336,26</td>
<td>-</td>
<td>311,81</td>
<td>.002</td>
<td>1.062</td>
<td>1.064</td>
</tr>
<tr>
<td>341,94</td>
<td>-</td>
<td>317,49</td>
<td>.001</td>
<td>1.061</td>
<td>1.062</td>
</tr>
</tbody>
</table>

Impure vegetable fixed alkalies such as pearl ash, pot ashes, &c. contain more fixed air, as appears by the experiments of Dr. Lewis. Pearl ash, according to Mr. Cavendish, contains 28.4 or 28.7 per cent. of fixed air. Hence in lyes of equal specific gravity with those of a purer alkali, the quantity of saline matter will be more probably in the ratio of 28.4 or 28.7 to 21; but this surplus weight is only fixed air; and hence even in these lyes the quantity of depurated salt they will afford will be found by the above table. Much also depends on their age, the oldest containing most fixed air.

Vol. LXXI. G
III. Account of the violent Storm of Lightning at East-bourn, in Sussex, Sept. 17, 1780; communicated by Owen Salusbury Brereton, Esq. F. R. and A. S.

Read December 14, 1780.

S I R,

I am desired by my friend and neighbour James Adair, Esq. of Soho Square, to communicate to you an account of the dreadful accident which happened to him and his family at East-bourn, in the county of Sussex, at nine o'clock in the morning, on Sunday the seventeenth of September last. He rented a house which stood by itself, built of various sorts of stone, three stories high, and facing the sea, which was nearly South-east of it. The morning was very stormy, with rain, thunder, and lightning; and just at nine o'clock a horrid black cloud appeared, out of which Mr. Adair saw several balls of fire drop into the sea successively, as he was approaching the window in a one-pair of stairs-room; and very soon after, as he was standing at it with his hands clasped, and extended open against the middle of the frame, a most violent flash of fire forced his hands asunder, and threw him several yards upon the floor on his back, with both his legs upright in the air, which remained long so fixed. He was very sensible of his situation all the time, but could not open his eyes or speak; nor had he the least power of motion of any of his limbs for a long time. On help...
help coming in, and examining his cloaths, which were blue cloth, his right sleeve, both of coat and waistcoat, and also shirt, were all torn on the inside of the arm entirely open, as if by a dog, from the shoulder to the wrist; the right side of the breeches was torn in the same manner, and part of each of the brass buttons melted.

He had in his fob a gold watch with a steel chain; the button which opens it and three other places of the case were melted. The pendant to which the chain is fixed was almost melted through, and much of the steel chain is incorporated with it, as is reciprocally some gold on that part of the steel which was within the fob. The going of the watch had stopped instantaneously, occasioned, as at first appeared by the small pendulum spiral steel spring having been lengthened; not that it was absolutely so, but relatively, respecting the escapement of the watch, the several inner turns being brought closer together.

His right-arm, right-side, and thigh, were miserably scorched, and the flesh torn; the foot of the stocking of his right leg and his shoe were torn in several places between the buckle and the toe end of the shoe, and one of his toes split almost to the bone; but the buckle, which was a broad silver one, was not the least hurt or even marked, and remained buckled as before. His sleeve button of gold, in which was platted hair covered with crystal, was broken from its link, and neither hair or crystal have been found since. A key and a pen-knife in his right side breeches pocket have several marks of fusion upon them.

The frame of the window on which Mr. Adair was leaning was little damaged; but every pane of glass so completely smashed, you could scarce perceive it had ever had glass in it. The room was stuccoed and papered, and between the windows hung a large pier glass, which, with much of the stucco, was shivered to pieces, and strewed over the floor. A door opposite the window was
Mr. Brereton's Account of the violent Storm

was shattered to pieces, and the posts of a bed in a room behind it, and all the bell-wires were destroyed.

Under the dining-room Mr. Adair was in, on the parlour floor, were his coachman, butler, and footman. The coachman was going to open a glass-door to go towards the sea, and was struck dead. His body was totally black. His cloaths, and the caul of his wig, and cravat, were much torn; but no particular flesh wound was found. The enamelled face of his silver watch was broken to pieces, and the links of his steel chain fastened together.

The footman was dressing his hair near a window, when he was thrown dead on the ground. He appeared much scorched, bruised, and black. He had a very large wound in his side which penetrated near his heart; but very little, if any, blood came from it. His buck-skin breeches were much torn, and the steel of a metal knee-buckle driven through them. The window dash was driven into the room, and a stone, about eight inches square, forced out of the wall into the middle of the room, not far from the body. The butler was a yard or two behind the coachman, and going out with a telescope in his hand, which was forced in pieces from him, his hat and wig were thrown to some distance, and he perceived a violent pressure on his skull and on his back, but was no otherwise hurt. He had a silver watch with a silver chain, which received no damage.

In the room over Mr. Adair's, a young lady was dressing, and her maid attending. They were both driven to a distant part of the room, and rendered insensible for some time, but not hurt. The posts of the bed she had just left were all shivered to pieces, and the bell wires destroyed, and the chimney thrown down on the roof.
of Lightning at Eastbourne, in Sussex.

It is to be remarked, that though the bodies of the two servants lay unburied from the Sunday till Tuesday, all their limbs were as entirely flexible as those of a living person.

Multitudes on the shore before the house saw the meteor dart in a right line over their heads, and break against the front of the house in different directions, and all agreed the form and flame was exactly like that of an immense sky-rockeet.
IV. An Account of the Harmattan, a singular African Wind.
By Matthew Dobson, M. D. F. R. S.; communicated by John Fothergill, M. D. F. R. S.

Read December 7, 1780.

THE Harmattan is a periodical wind which blows from the interior parts of Africa towards the Atlantic Ocean, and possesses such extraordinary properties, as to merit the attention of the naturalist, making a curious and important article in the history and theory of the winds.

The first information I had on this subject was from my friend Mr. Norris, who has frequently visited the Coast of Africa, and is a gentleman of an excellent understanding and strict veracity. This information immediately excited my attention; and as Mr. Norris was preparing to make another voyage to that part of the world, I desired him to confirm the facts which he had related, by further inquiries, experiments, and observations; and it is from these materials, with which I have been obligingly furnished by Mr. Norris, that the following account is drawn up.

On that part of the Coast of Africa which lies between Cape Verd and Cape Lopez, an easterly wind prevails during the months of December, January, and February, which by the Fantees, a nation on the Gold Coast, is called the Harmattan. Cape Verd is in 15° N. latitude, and Cape Lopez in 1° S. latitude, and the coast between these two Capes runs, in an oblique direction,
Dr. Dobson's Account of the Harmattan, &c. 47
direction, nearly from W.S.W. to E.S.E. forming a range of
upwards of two thousand one hundred miles. At the Isles de
Los, which are a little to the northward of Sierra Leone, and
to the Southward of Cape Verd, it blows from the E.S.E. on
the Gold Coast from the N.E. and at Cape Lopez and the River
Gabon from the N.N.E. This wind is, by the French and Portu-
guese who frequent the Gold Coast, called simply the N.E.
wind, the quarter from which it blows. The English, who
sometimes borrow words and phrases from the Fantee language,
which is less guttural and more harmonious than that of their
neighbours, adopt the Fantee word Harmattan.

The Harmattan comes on indiscriminately at any hour of the
day, at any time of the tide, or at any period of the Moon,
and continues sometimes only a day or two, sometimes five or
six days, and it has been known to last fifteen or sixteen days.
There are generally three or four returns of it every season. It
blows with a moderate force, not quite so strong as the sea
breeze (which every day sets in during the fair season from the
W. W.S.W. and S.W.); but somewhat stronger than the land
wind at night from the N. and N.N.W.

1. A fog or haze is one of the peculiarities which always ac-
companies the Harmattan. The gloom occasioned by this fog
is so great, as sometimes to make even near objects obscure.
The English fort at Whydah stands about the midway between
the French and Portuguese forts, and not quite a quarter of a
mile from either, yet very often from thence neither of the
other forts can be discovered. The sun, concealed the greatest
part of the day, appears only about a few hours about noon, and,
then of a mild red, exciting no painful sensation on the eye.

As the particles which constitute the fog are deposited on the
grass, the leaves of trees, and even on the skin of the nègros,
Dr. Dobson's Account of the Harmattan,
so as to make them appear whitish, I recommended to Mr. Norris the use of a good microscope, as this might possibly discover something concerning the nature of these particles. "I was prevented," says Mr. Norris, "by the bad state of my health from availing myself of the microscope; neither could I discover anything by the taste, or by exposing plates covered thinly with melasses, for when I had dropped an acid or alkali into the water in which I had dissolved the melasses, nothing followed to enable me to judge of the nature of the particles. Surely they cannot be insects, or animalculæ of insects? for we have no appearance of any thing produced from the myriads of them which are deposited on the earth. They do not flow far over the surface of the sea: at two or three miles distance from the shore the fog is not so thick as on the beach; and at four or five leagues distance it is entirely lost, though the Harmattan itself is plainly felt for ten or twelve leagues, and blows fresh enough to alter the course of the current."

2. Extreme dryness makes another extraordinary property of this wind. No dew falls during the continuance of the harmattan; nor is there the least appearance of moisture in the atmosphere. Vegetables of every kind are very much injured; all tender plants, and most of the productions of the garden, are destroyed; the grass withers, and becomes dry like hay; the vigorous ever-greens likewise feel its pernicious influence; the branches of the lemon, orange, and lime trees droop, the leaves become flaccid, wither, and, if the harmattan continues to blow for ten or twelve days, are so parched as to be easily rubbed to dust between the fingers: the fruit of these trees, deprived of its nourishment, and stinted in its growth, only appears to ripen, for it becomes yellow and dry, without acquiring
acquiring half the usual size. The natives take this opportunity of the extreme dryness of the grass and young trees to set fire to them, especially near their roads, not only to keep those roads open to travellers, but to destroy the shelter which long grass, and thickets of young trees, would afford to skulking parties of their enemies. A fire thus lighted flies with such rapidity as to endanger those who travel: in that situation a common method of escape is, on discovering a fire to windward, to set the grass on fire to leeward, and then follow your own fire. There are other extraordinary effects produced by the extreme dryness of the Harmattan. The covers of books, Mr. Norris informs me, even closely shut up in a trunk, and lying among his clothes, were bent as if they had been exposed to the fire. Household furniture is also much damaged: the panes of doors and of wainscot split, and any veneered work flies to pieces. The joints of a well-laid floor of seasoned wood open sufficiently to lay one's finger in them; but become as close as before on the ceasing of the Harmattan. The seams also in the sides and decks of ships are much injured and become very leaky, though the planks are two or three inches in thickness. Iron-bound casks require the hoops to be frequently driven tighter; and a cask of rum or brandy, with wooden hoops, can scarcely be preserved; for, unless a person attends to keep it moistened, the hoops fly off.

The parching effects of this wind are likewise evident on the external parts of the body. The eyes, nostrils, lips, and palate, are rendered dry and uneasy, and drink is often required, not so much to quench thirst, as to remove a painful aridity in the saucers. The lips and nose become sore, and even chapped; and though the air be cool, yet there is a troublesome sensation of prickling heat on the skin. If the Harmattan continues
Dr. Dobson's Account of the Harmattan, four or five days, the scarf skin peels off, first from the hands and face, and afterwards from the other parts of the body, if it continues a day or two longer. Mr. Norris observed, that when sweat was excited by exercise on those parts which were covered by his cloaths from the weather, it was peculiarly acrid, and tasted, on applying his tongue to his arm, something like spirit of hart's-horn diluted with water.

As the state of salt of tartar placed in the open air, and the quantity evaporated from a given surface of water, are obvious proofs of the comparative moisture or dryness of the atmosphere, I desired Mr. Norris to put the Harmattan to each of these tests; and particularly to moisten salt of tartar ad deliquium, and expose it to the night air during the time that the Harmattan was blowing. The following is the account of the result of these experiments. Salt of tartar will not only remain dry during the night as well as in the day; but, when liquified so as to run upon a tile, and exposed to the Harmattan, becomes perfectly dry in two or three hours; and, exposed in like manner to the night air, will be dry before morning.

With respect to evaporation Mr. Norris says, "I fixed the "‘tin vessel, with which you favoured me, on a grass plat "behind my house, upon a stand four feet high, and exposed "by its situation most part of the day to the sun, but shel- "tered in some measure from the wind by the house."
a Singular African Wind.

<table>
<thead>
<tr>
<th>Day of the Month</th>
<th>Evaporation of one tenth of an inch</th>
<th>Thermometer Morn. Noon. Even.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 27</td>
<td>1 1/2</td>
<td>6 1 6</td>
<td>Light breeze and hazy.</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>- 2 -</td>
<td>Ditto and fair weather.</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>- 2 -</td>
<td>Hazy with regular land and sea breezes.</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>- 2 -</td>
<td>Ditto.</td>
</tr>
<tr>
<td>30</td>
<td>1 1/2</td>
<td>- 2 -</td>
<td>Ditto.</td>
</tr>
<tr>
<td>Dec. 1</td>
<td>1 1/2</td>
<td>76 80 79</td>
<td>Fresh breezes and fair.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>76 76 76</td>
<td>Harmattan began to blow moderately.</td>
</tr>
<tr>
<td>Day, Night</td>
<td>3</td>
<td>74 76 75</td>
<td>Harmattan still blowing, but moderately, and the fog not considerable.</td>
</tr>
<tr>
<td>4</td>
<td>2 1/2</td>
<td>75 77 76</td>
<td>Harmattan almost over.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>74 76 76</td>
<td>Harmattan over, sea breeze as usual, hazy.</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>76 80 78</td>
<td>Light breeze and hazy.</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>76 80 78</td>
<td>Ditto.</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>76 80 78</td>
<td></td>
</tr>
</tbody>
</table>

"The thermometer hung in a large warehouse near a window on which the sun never came at that season of the year, as it had a north aspect, and where little reflected heat came, a grass plat being before it. When removed into the next room, which had three windows and a door opening into the parade, the thermometer usually rose 4° higher than it did in the warehouse; its general height in the room, from one to three o'clock, was 84°.

"On the 14th of December, when there was no Harmattan, the thermometer at noon, on putting it into the evaporating vessel, rose to 88°; on taking it out, it sunk to 79°, whilst the moisture on its surface was evaporating; but on exposing it five minutes to the sun it rose to 102°. On the fifteenth of December the thermometer, exposed to the wind in my room"
Dr. Dobson's Account of the Harmattan.

room window, but not to the sun, stood at noon at 84°; at
88° in the evaporating vessel; sunk to 80° as the water evap-
orated from its surface; rose in the sun in six minutes to
104°; and, on putting it into the water-jar in my room,
sunk to 76°.

It appears from the preceding experiments made by Mr. Norris, that, if the evaporation of the whole year be supposed to go on in the same proportion with what occurred during a short and very moderate return of the Harmattan, the annual Harmattan evaporation would be 133 inches; and if the calculation was made in proportion to the evaporation which occurs during a longer visit from the Harmattan, and a more forcible breeze, the annual Harmattan evaporation would be much more considerable. If the annual evaporation be in like manner calculated, in proportion to the evaporation which took place subsequent to and preceding the Harmattan, the annual evaporation at Whydah on the Gold Coast would be 64 inches, and I have found the annual evaporation at Liverpool to be 36 inches.* These three therefore are in the following proportion; Harmattan 133 inches, Whydah 64 inches, and Liverpool 36 inches.

As the names of things are often derived from some remarkable property in the thing denoted, I desired Mr. Norris to inquire into the derivation of the word Harmattan. He found it to be a corruption of Aberramantab, the name of that season in which this wind blows. Aherramantab is compounded of Aberraman, which in the Fantee language signifies to blow, and tab, tallow or grease, with which the natives rub their skins to prevent their growing dry and rough.

* Philosophical Transactions, vol. LXXII. p. 252.
a singular African Wind.

The Harmattan season is in the Dunco language called Pep-peth, signifying a dry and rough skin.

3. Salubrity forms a third peculiarity of the Harmattan. Though this wind is so very prejudicial to vegetable life, and occasions such disagreeable parching effects on the human species, yet it is highly conducive to health. Those labouring under fluxes and intermittent fevers generally recover in an Harmattan. Those weakened by fevers, and sinking under evacuations for the cure of them, particularly bleeding, which is often injudiciously repeated, have their lives saved, and vigour restored, in spite of the doctor. It stops the progress of epidemics: the small-pox, remittent fevers, &c. not only disappear, but those labouring under these diseases when an Harmattan comes on, are almost certain of a speedy recovery. Infection appears not then to be easily communicated even by art. In the year 1770 there were on board the Unity, at Whydah, above 200 slaves; the small-pox broke out among them, and it was determined to inoculate; those who were inoculated before the Harmattan came on got very well through the disease. About seventy were inoculated a day or two after the Harmattan set in; but not one of them had either sickness or eruption. It was imagined, that the infection was effectually dispersed, and the ship clear of the disorder; but in a very few weeks it began to appear among those seventy. About fifty of them were inoculated the second time; the others had the disease in the natural way: an Harmattan came on, and they all recovered, except one girl, who had an ugly ulcer on the inoculated part, and died some time afterwards of a locked jaw. The great salubrity, and the power of checking epidemics, are such extraordinary properties of the Harmattan, that I desired Mr. Norris, on his next voyage to the Coast, to ascertain these points by further inquiries.
Dr. Dobson's Account of the Harmattan.

inquiries. "I have not much new," says Mr. Norris, "on these points, save the general testimony of the natives in confirmation of what I have already communicated; and that I had been very ill myself for nine days with a remittent fever this voyage, of which I recovered immediately upon the Harmattan beginning to blow; whether from the medicines which I had taken, or from the alteration in the state of the atmosphere, I pretend not to determine. I now learned, for the first time, that the Harmattan is noted for contributing much to the cure of ulcers, as well as cutaneous eruptions." Mr. Norris is sorry to be obliged to dissent from so respectable an authority as that of Dr. Lind, who speaks of the Harmattan as "fatal and malignant; that its noxious vapours are destructive to Blacks as well as Whites; and that the mortality which it occasions is in proportion to the density and duration of the fog." The baneful effects here pointed out proceed from the periodical rains which fall in March, April, &c. and which are ushered in by the Tornadoes, or strong gusts of wind from the N.E. and E.N.E. accompanied with violent thunder and lightning, and very heavy showers. The earth drenched by these showers, and acted upon with an intense solar heat as soon as the storm is over, sends forth such noisome vapours as strike the nostrils with a most offensive stench, and occasion bilious vomitings, fluxes, and putrid fevers. Besides these vapours, which are annual, there appears to be a collection of still more pestiferous matter, confined for a longer time, and issuing from the earth after an interval of five, six, or seven years. "The periods," says Mr. Norris, "which I remember to have been thus marked, were in 1756, when Governor Melville and most of the gentlemen and soldiers at Cape Coast, died; in 1763, 1769, and 1775. The mortality in
"in some of these years, for they were not all equally fatal, "was so great that, as Dr. Lind says, the living were scarce "sufficient to remove and bury the dead."

It is to be observed, that there may be instances in which the Harmattan comes loaded with the effluvia of a putrid marsh; and if there are any such situations, the nature of the wind may be so changed as to become even noxious.

Another inquiry which I desired Mr. Norris to make respected the source of the Harmattan, and the nature of the soil over which it blows. It appears that, except a few rivers and some lakes, the country about and beyond Whydah is covered for four hundred miles back with verdure, open plains of grass, clumps of trees, and some woods of no considerable extent. The surface is sandy, and below that a rich reddish earth; it rises with a gentle ascent for one hundred and fifty miles from the sea before there is the appearance of any hill, without affording a stone of the size of a walnut. Beyond these hills there is no account of any great ranges of mountains.

With respect to the origin of this wind, Mr. Norris says, "the Harmattan, according to Dr. Lind, arises from the con- "flux of several rivers about Benin; but when I was on a "visit to the King of Dahomey, one hundred and twenty "miles North, or inland from the Fort at Whydah, I there "felt the Harmattan blowing from the N.E. stronger than I "have at any other time, though Benin then bore from me "S.E."

On this head Mr. Norris makes the following conjecture: "The intersection of three lines, viz. an east line drawn from "Cape Verd, a north-east one from the centre of the Gold "Coast, and a north line from Cape Lopez, would, I think, "point out a probable source of this extraordinary wind."
Dr. Dobson's Account of the Harmattan,

Three lines, drawn according to the direction of Mr. Norris, towards the points of the compass from which the Harmattan blows on Cape Verd, the Gold Coast, and Cape Lopez, converge I find to a part of Africa about the 15th degree of N. latitude, and the 25th degree of E. longitude, which I also find to be that part of Africa where, according to Ptolemy, the mountains of Caphas are situated. From these mountains, according to the same authority, the river Daradus arose, supposed by some to be now the river Senegal.

It may be conjectured, that the disagreeable Levant wind of the Mediterranean proceeds from the same part of the Continent of Africa; for it prevails during the same season of the year, and may derive its qualities from the surface over which it passes.

The last article of information with which I have been favoured by Mr. Norris, is an account of the manner in which the Fantee nation divide their year.

Aherramantah, from the 1st of December to the middle of February, about 10 weeks.

Quakorah, a wind up the coast, from S.S.W. to S.S.E. from the middle of February to the first week in March, about 3 weeks.

Pempina, or Tornado season, part of March, all April, and the greatest part of May, about 12 weeks.

Abrenama, or the old man's and woman's children, that is, the Pleiades, the rainy season, the latter end of May, all June, and to about the 20th of July, 8 weeks.

Atukogan, or five stars, that is, Orion, high wind and squally, the rains very heavy, to the middle of August, 3 weeks.

Worrobakorow,
a singular African Wind.

Worrobakorou, or one star, the ceasing of the rains, about 3 weeks.

Mawurrah, the name of a certain star; close, foggy weather and no breeze, the first three weeks in September.

Boutch, no land breeze in this season, the wind blows fresh down the Coast, about six weeks.

Autiophi, or the Croziers; Tornadoes and southerly wind, with some rain, generally called the latter rains, about four weeks, to the beginning of December, when the Aherraman-tah season again commences.
V. Essay on a new Method of applying the Screw. By Mr. William Hunter, Surgeon; communicated by Lieutenant General Melville, F. R. S.

Read December 21, 1780.

I HAVE some time ago been led to think, that the screw, which of all the mechanical powers is the most commonly employed in performing motions which require great accuracy, might be applied in a manner which would better answer many intentions than that commonly used. The plan is somewhat similar to NONIUS's division of the circle; but before I explain myself farther it may be proper to lay down a few general rules on which we may found a comparison.

The perfection of any machine consists in accomplishing the end proposed in a manner the most effectual, the most expeditious, and the least cumbersome possible. In order to attain this end the following things are required.

1. That the strength of the several parts of the engine be so adjusted to the force they are intended to exert, as that they shall not break under the weight they ought to counteract, nor yet encumber the motion by a greater quantity of matter than is necessary to give them a proper degree of strength.

2. That the increase of power, by means of the machine, be so regulated, that while the force we can exert is thereby rendered adequate to the effect, it may not be retarded in procuring it more than is absolutely necessary.

3. Th
3. That the machine be as simple as is consistent with other conditions.

4. That it be as portable and as little troublesome in the application as possible.

5. That the contrivance be such that the moving power may be applied in such a way as to act to the greatest advantage; and that the motion ultimately produced may have that direction and velocity which is most adapted to the execution of the design proposed by the whole.

6. Of two machines, equal in other respects, that deserves the preference in which the friction least diminishes the effect proposed by the whole.

It will easily appear, that some of these conditions, if carried to an extreme, will be inconsistent with some of the others. Here the proper medium consists in adapting them to each other in such a manner, as that the result of the advantages of both may be the greatest, and that of the defects the least, that is possible.

The following method of applying the screw, I think, may in certain cases be attended with some of these advantages to a greater degree than by those commonly practised.

Let AB (fig. 1.) be a plate of metal in which the screw CD plays, having a number of threads in an inch equal to a. Within the screw CD there is a female screw, by which is received the smaller screw DE of a + 1 threads in an inch. This screw is retained from moving round along with the screw CD by means of the apparatus at AFGB.

Now, if the handle CKL be turned a times round the screw, CD will advance upwards an inch, and if we suppose the screw DE to move round along with CD, the point E will also advance an inch. If we now turn the screw DE a times backwards, the point...
point E will move downwards $\frac{a}{a+1}$ of an inch, and the result of both motions will be to lift the point E upward $(1 - \frac{a}{a+1} =)$ $\frac{1}{a+1}$ of an inch. But if, while the screw CD is turned a times round, DE be kept from moving, the effect will be the same as if it had moved a times round with CD and been a times turned back, that is, it will advance $\frac{1}{a+1}$ of an inch. At one turn therefore of the handle CKL it will move upwards $(\frac{1}{a+1} \times \frac{1}{a} =)$ $\frac{1}{a+1+a}$ of an inch. If then we suppose the handle CKL to be b inches long, the power gained by the machine will be as $\frac{1}{a+1+a} \times 6,2832$ to unity.

To illustrate this by a particular example, let the screw CD have 10 threads in an inch, and DE 11: then, while the handle CKL is turned 10 times round, the point D will rise one inch above its former situation. But at 10 turns it can only pass over 10 threads of the screw DE, and consequently it will advance upon that screw $\frac{11}{10}$ths of an inch. The point E therefore must rise $\frac{11}{10}$th of an inch, that the point D may have room to rise a complete inch above its former place: therefore, at one turn of the handle, the point E will rise $\frac{11}{10}$th of an inch; and if the handle be supposed half a foot long, the power, to produce an equilibrium, must be to the weight as 1 to $110 \times 6,2832 \times 6 = 4146,912$, which is the very number expressed by the general theorem, viz. $\frac{a^2+a \times 6,2832}{b}$, calling $a = 10$ and $b = 6$.

Now let us compare, according to the rules before laid down, this method of using the screw with the common one. And, first, in order to have the same power by means of the common screw that is exerted by this machine, it must have a number of threads
threads in an inch equal to \(a^2 + a \), which would render it too weak to resist any considerable violence. For example, if \(\text{DC} \) have five threads in an inch, and \(\text{DE} \) six, and if the handle \(\text{CKL} \) is a foot in length, the power gained by the engine will be nearly as \((a^2 + a 	imes 6b =) \) 2160 to 1; whereas, to have the same force by means of the common screw, it must have 30 threads in an inch, and so must yield under a resistance which the other screw would overcome without any difficulty. Upon this principle, the screw may be applied with advantage in pressles of different kinds, by fixing one of the plates of the press to the end of the screw at \(\text{E} \).

As to the second requisite, both methods may be equally adapted to it; yet other circumstances will determine us to apply the common screw where a small increase of power is necessary, and the present contrivance, when we stand in need of a greater.

This will follow from the third rule, as in the method now proposed a double number of screws is required, which makes the structure more complicated, occasions more expence, and requires a greater accuracy of construction, since, unless this is attended to, the machine will not move.

However, the machine may, in some cases, answer the fourth intention better than the common one, as the power gained by the additional screw enables us to shorten the handle which will tend to make the whole more portable.

The power is here applied in the same direction as in the common screw, so that both equally answer the first part of the fifth rule; but as to the last, the motion ultimately produced, it will depend on particular circumstances which of them is most fit for use in any case. Thus, if the screw \(\text{DE} \) be intended to carry an index which must turn round at the same time that it rises upwards, the common screw is preferable; for although It can
can see a method by which the machine before described may be made to answer this purpose, I am almost afraid to propose it. I mean, that within the screw DE another still smaller should be made to play, and be connected with the screw CD, so as to move round along with it. It must have $a^2 + a + 1$ threads in an inch, and they must be in the contrary direction to those of CD, so that when they are both turned together, and CD moves upwards, this other may move downwards. At one turn of the handle this will move upwards

$$\frac{1}{a^2 + a} \times \frac{1}{a^2 + a + 1}$$

$$= \frac{1}{a^2 + 2a^3 + 2a^2 + a}$$

of an inch, and at the same time will move round in a circular direction. For example, let CD have 5 threads ($= a$) in an inch, DE 6 ($= a + 1$), and a third screw within DE, but connected with CD so as to partake of its motion, 3 ($= a^2 + a + 1$). At one turn of the handle, this screw will rise upwards

$$\frac{1}{a + 1} \times \frac{1}{a^2 + a + 1} = \frac{1}{a + 1} \times \frac{1}{a^2 + a + 1}$$

of an inch; but this appears too complicated for use, and the least inaccuracy in the construction would hinder it from moving.

But, on the other hand, if while the point E rises it is of consequence that it be kept from going round, the machine under consideration will best answer this purpose. On this principle it may be useful in several respects: for instance, let A (fig. 2.) represent a magnifying lens, and let it be moveable upon the screw BC of 16 threads in an inch, which turns within the larger screw CD of 15 threads in an inch, and that again moves within the plate EF in the end of the cylinder GF.

To use the instrument, fix the object to be magnified upon the pin GL, and then turn the lens A upon the screw BC, till it be

* The screw BC is restrained from moving along with CD by the small pillar HK, which slides backwards and forwards in a groove in the cylinder GF.
nearly at the proper distance from the pin, and opposite to it. You may then adjust the distance more accurately by turning the screw DC, at each turn of which the lens will recede from, or approach to, the pin $\frac{1}{8}$ th of an inch. This it will do and not turn aside, but still remain opposite to the pin EG. A double microscope might be fitted on in the place of the lens A. The whole instrument may be furnished with a handle, as at M; or, if larger, it may have three feet to stand on a table.

On the last principle it must be owned, the common screw has the advantage, as two screws will produce more friction than one; and, besides, in the compound engine there is an additional friction from the piece FG (fig. 1.) upon the pillars between which it moves.

Another case in which this machine may be employed is in the micrometer. Thus, let the screw AB (fig. 3) of 50 threads in an inch be turned round by the index C, which moves upon the graduated circle ECD in the direction CD. Within the screw AB is the smaller one AF of 51 threads in an inch, retained from moving round by the bar GH. The piece AF is continued to K, where it forms a fine point. To use the instrument, let it be adjusted to the telescope or microscope by which you are to view a star, or some small object, and let the point K appear just to touch one edge of the object. Then turn the index C, and the point K will advance upwards till it appears to cover the other edge of the object, and thus you can determine its size. The point K will advance at each complete turn of the index $\frac{1}{12}$ of an inch; and if the circle be divided into 80 equal parts, one of which, if it is an inch in diameter, will be very observable, while the index moves over one of these, the point K will advance $\frac{1}{12}$ of an inch.

Thus,
Thus, for example, suppose I am to measure the diameter of a nervous fibre in the medullary substance of the brain, I make the point \(k \) appear close to one edge, and turn the index till the same point passes over the fibre, and appear to touch the other edge: I then look on the graduated circle \(\text{ECD} \), and perceive that the index \(c \) has passed over, suppose, \(232 \) divisions. Hence I conclude the diameter of the fibre to be \(232 \times \frac{1}{500} = \frac{232}{500} \) of an inch, which is nearly the size as found by the accurate observations of Dr. Monro. There should be a Nonius's scale on the index which will measure to one tenth of a division.

As the index \(c \) must continue close to the plate \(\text{ECD} \), while at the same time it turns round the screw \(\text{AB} \), which is continually rising, it must be made as in fig. 4. where \(a, b \), are two small pieces which play in a groove in the screw \(\text{AB} \) (fig. 3.) while the groove \(\text{CD} \) (fig. 4.) in the index is filled up by a protuberance of the plate \(\text{ECD} \) (fig. 3.); the piece below the groove \(\text{CD} \) (fig. 4.) being sunk into that plate. The whole machinery may be enclosed in a cylinder of brass reaching from \(\text{B} \) to \(\text{L} \) (fig. 3.), so that the point of the screw \(\text{KL} \) may be without it, and the sides of the cylinder may be open at \(\text{ECD} \).

It is farther to be observed, that what has been said goes on the supposition that the point \(k \), in the micrometer, is equally magnified with the object we are to measure. But, if this point be placed in the focus of the eye-glass of a double microscope; when it moves it will pass over, not the object itself, but its image, magnified by the object-glass. In this case, if the object-glass magnify the diameter 10 times, while the index passes over one division, the point \(k \) will pass over the image of an object, the diameter of which is \(\frac{232}{500} \) of an inch. As in this mode of application the point \(k \) must fall between the object...
of applying the Screw.

object and eye-glass, the screws may be contained within the fulcrum by which the microscope is supported.

The machine (fig. 1.) may be applied as a jack to raise great weights a little way from the ground, by substituting two cross hand-spikes for the handle CKL; or a vertical handle may be employed in the following manner. Let A (fig. 5.) be a pinion turned by the handle AB, which we suppose a foot in length. Let the pinion A have 4 teeth, and move the wheel CD of 16 teeth. The screw EF of 4 threads in an inch is fixed in this wheel, and turns round along with it. Within it plays the screw FG of 5 threads in an inch, and which we suppose prevented from following the motion of EF: it terminates in such a shoulder as that represented at G, and being continued to H ends in a foot as in the figure. The whole is inclosed in a strong frame. The pinion A must be connected in such a manner with the wheel CD as to rise within the frame along with it, which may easily be done by making its axis play in a piece of wood or metal, which is connected by the end to the screw EF. Or, if this should be deemed inconvenient, as the rising of the pinion must raise the handle AB, the wheel CD may be hindered from rising, and at the same time turn the screw EF, by a contrivance similar to that used with the index C (fig. 3.) in the micrometer. In either case, the axis of the pinion should be continued through the opposite side of the frame, and armed with a heavy fly to regulate the motion. When the machine is to be applied to use, the bottom of the frame resting on the ground, if the body to be lifted is already as high as the top G, that top is applied below it; but if it is close to the ground, we put below it the foot H; then, if the handle AB be turned once round, the wheel CD and screw EF will turn a part round, and the point F will rise $\left(\frac{4}{3} \times \frac{4}{3} = \right)$ $\frac{1}{36}$th of an inch. The point G or H will therefore
Mr. Hunter on a new Method of applying the Screw.
therefore be lifted upwards \((\frac{7}{6} \times \frac{1}{7} =) \frac{1}{6}\) th of an inch. But the end \(B\) of the handle \(AB\) has described above six feet; therefore the velocity of the point \(G\) is to that of the point \(B\) as one to \((72 \times 80 =) 5760\). Therefore, if we suppose a man to act at the handle with a force equal to 30 lbs. he may keep in equilibrio a weight of 172800 lbs. But a subduction of perhaps more than one half of this must be made, that he may raise the weight, as the friction of the engine will be considerable. Suppose it to be two-thirds, the effect still remains equal to 57600 lbs. or 25 tons 14 cwt. and 32 lbs.

It will easily appear, that this method of applying the screw may have a place in many other engines, particularly where great accuracy is required; or we want a motion to be performed with great power, while at the same time it need not have any large compass. The few examples given above may serve as a specimen.
VI. An Account of the Turkey. By Thomas Pennant, Esq.
F. R. S.; communicated by Joseph Banks, Esq. P. R. S.

Read December 21, 1781.

TURKEY. Bill convex, short and strong.
Head and neck covered with a naked tuberose flesh, with a long fleshy appendage hanging from the base of the upper mandible.
On the breast a long tuft of coarse black hairs.

Wild Turkey. JOSSELYN'S Voy. 99. Rarities 8. CLAYTON'S Virgin: Phil. Trans. abridged, III. 590. LAWSON, 149. CATESBY Topp. XLIV.
Le coq d'Inde, BELON 248.
Gallo-pavo, GESNER Av. 481. Icon. 56.
Gallo-pavo, ALDROV. Av. 11. 18.
Gallo-pavo, the Turkey, A. 3. Gallo-pavo sylvestris Novæ Angliæ, a New England wild Turkey, RAIß Synopsis Avium 51.
Meleagris Gallo-pavo. M. capite caruncula frontali gularique, maris pectore barbato, LIN. Syft. 268.
Le Dindon de BUFFON III. BRISSON. I. 158.
tab. xvi. Pl. Enl. 97.
K 2 Description.
Description. T. with the characters described in the definition of the genus. The plumage, dark glossed with variable copper colour, and green. Coverts of the wings and the quill feathers barred with black and white. Tail consists of two orders. The upper or shorter very elegant, the ground colour a bright bay; the middle feather marked with numerous bars of shining black and green. The greatest part of the exterior feathers of the same ground with the others marked with three broad bands of mallard green, placed remote from each other. The two next are coloured like those of the middle; but the end is plain and crossed with a single bar, like the exterior.

The longer or lower order are of a rusty white colour, mottled with black; and crossed with numerous narrow-waved lines of the same colour; and near the end with a broad band.

Wild Turkies preserve a sameness of colouring; the tame, as usual with domestic animals, vary. It is needless to point out the differences in so well known a bird: the black approaches nearest to the original stock. This variety I have seen nearly in a state of nature in Richmond and other parks. A most beautiful kind has of late been introduced into England of a snowy whiteness, finely contrasting with its red head. These, I think, came out of Holland, probably bred from an accidental white pair; and from them preserved pure from any dark or variegated birds.

Size.
of the Turkey.

The sizes of the wild Turkies have been differently represented. Some writers assert, that there have been instances of their weighing sixty pounds; but I find none who, speaking from their own knowledge, can prove their weight to be above forty. JOSSELYN says, that he has eaten part of a cock, which after it was plucked, and the entrails taken out, weighed thirty*. LAWSON, whose authority is unquestionable, saw half a Turkey serve eight hungry men for two meals†; and says, that he had seen others which he believed weighed forty pounds. CATESBY tells us, that out of the many hundreds which he had handled§, very few exceeded thirty pounds; each of these speak of their being double that size merely from the reports of others.

Manners.

The manners of these birds are as singular as their figure. Their attitudes in the season of courtship are very striking. The males fling their heads and neck backwards, bristle up their feathers, drop their wings to the ground, strut and pace most ridiculously; wheel round the females with their wings rustling along the earth, at the same time emitting a strange sound through their nostrils not unlike the Grurr of a great spinning wheel. On being interrupted they fly into great rages, and change their notes into a loud and guttural gobble,

† History of Carolina, p. 149. and 27.
§ App. XLIV. The greatest certain weight is given by Mr. CLAYTON; who saw one that reached 38 lbs. Phil. Trans.
and then return to dalliance. The sound of the female is plaintive and melancholy.

Iracible. The passions of the males are very strongly expressed by the change of colours in the fleshy substance of the head and neck, which alters to red, white, blue, and yellowish, as they happen to be affected. The sight of any thing red excites their choler greatly.

Polygamous. They are polygamous, one cock serving many hens. They lay in the spring, and produce a great number of eggs. They will persist in laying for a great while. They retire to some obscure place to sit, the cock through rage at the loss of its mate being very apt to break the eggs. The females are very affectionate to their young, and make great moan on the loss of them. They sit on their eggs with such perseverance, that if they are not taken away when addle, the hens will almost perish with hunger before they will quit the nest.

Turkies greatly delight in the seeds of nettles; but those of the purple-fox glove prove fatal to them*.

Turkies are very stupid birds, quarrelsome, and cowardly. It is diverting to see a whole flock attack the common cock, who will, for a long time, keep a great number at bay.

Swift. They are very swift runners in the tame as well as the wild state: they are but indifferent flyers.

Perch high. They love to perch on trees, and gain the height

* De Buffon.
of the Turkey.

they wish by rising from bough to bough. In a wild state they get to the very summit of the loftiest trees, even so high as to be beyond the reach of the musquet *.

Gregarious. In the state of nature they go in flocks even of five hundred †, feed much on the small red acorns, and grow so fat in March that they cannot fly more than three or four hundred yards, and are soon ran down by a horseman. In the unfrequented parts bordering on the Mississippi, they are so tame as to be shot with even a pistol ‡.

Haunts. They frequent the great swamps § of their native country, and leave them at sun-rising to repair to the dry woods in search of acorns and berries; and before sun-set retire to the swamps to roost:

The flesh of the wild Turkey is said to be superior in goodness to the tame, but redder. Eggs of the former have been taken from the nest, and hatched under tame Turkies. The young will still prove wild, perch separate, yet mix and breed together in the season. The Indians sometimes use the breed produced from the wild as decoy birds to seduce those in a state of nature within their reach ||.

* LAWSON, 45.
† ADAIR's Amer. 360.
‡ LAWSON, 149.
§ It is in the swamps that the loftiest and most bulky trees are. The wet with which they are environed makes them a secure retreat.
|| LAWSON, 149.
Mr. Pennant's Account

Wild Turkeys are now grown most excessively rare in the inhabited parts of America, and are only found in numbers in the distant and most unfrequented spots.

The Indians make a most elegant cloathing of the feathers. They twist the inner webs into a strong double thread of hemp, or inner bark of the mulberry tree, and work it like matting; it appears very rich and glossy, and as fine as a silk shag*. They also make fans of the tail; and the French of Louisiana were wont to make umbrellas by the junction of four of the tails †.

When disturbed, they do not take wing, but run out of sight. It is usual to chase them with dogs, when they will fly and perch on the next tree. They are so stupid or so insensible of danger, as not to fly on being shot at; but the survivors remain unmoved at the death of their companions ‡.

Place.

Turkies are natives only of America, or the New World, and of course unknown to the ancients. Since both these positions have been denied by some of the most eminent naturalists of the sixteenth century, I beg leave to lay open, in as few words as possible, the cause of their error.

Mistaken by Belon §, the earliest of those writers who are of opinion that these birds were natives of the

† Du Pratz, II. 85.
‡ Du Pratz, 224.
§ Hist. des Oys. 248.
of the Turkey.

old world, founds his notion on the description of the Guinea fowl, the Meleagrides of Strabo, Athenæus, Pliny, and others of the ancients. I rest the refutation on the excellent account given by Athenæus, taken from Clytus Milesius, a disciple of Aristotle, which can suit no other than that fowl. "They want," says he, "natural affection towards their young; their head is naked, and on the top is a hard round body like a peg or nail: from their cheeks hangs a red piece of flesh like a beard. It has no wattles like the common poultry. The fea-thers are black, spotted with white. They have no spurs; and both sexes are so like as not to be distinguished by the sight." Varro * and Pliny † take notice of the spotted plumage and the gibbous substance on the head. Athenæus is more minute, and contradicts every character of the Turkey, whose females are remarkable for their natural affection, and differ materially in form from the males, whose heads are destitute of the callous substance and whose heels (in the males) are armed with spurs.

Algró-vandus; and Gesner.

* Lib. III. c. 9.
† Lib. X. c. 26.
‡ Av. 481.

Vol. LXXI. L Turkey
Mr. Pennant's Account

Turkey to be thought a native of India. He quotes Ælian for that purpose, who tells us, "That in India are very large poultry not with combs, but with various coloured crests interwoven like flowers, with broad tails neither bending nor displayed in a circular form, which they draw along the ground as peacocks do when they do not erect them; and that the feathers are partly of a gold colour, partly blue, and of an emerald colour".

This in all probability was the same bird with the Peacock Pheasant of Mr. Edwards, Le Paon de Tibet of M. Brisson, and the Pavo bicalcaratus of Linnaeus. I have seen this bird living. It has a crest, but not so conspicuous as that described by Ælian; but it has those striking colours in form of eyes, neither does it erect its tail like the Peacock, but trails it like the Pheasant. The Catreus of Strabo seems to be the same bird. He describes it as uncommonly beautiful and spotted, and very like a Peacock. The former author gives a more minute account of this species, and under the same name. He borrows it from Clitarchus, an attendant of Alexander the Great in all his conquests. It is evident from his description, that it was of this kind; and it is likewise probable, that it was the same with his large Indian poultry.

* De Anim. lib. XVI. c. 2.
† Edw. II. 67.
‡ Lib. XV. p. 1046
§ De Anim. lib. XVII. c. 23.
poultry before cited. He celebrates it also for its fine note; but allowance must be made for the credulity of Alian. The Catreus, or Peacock Pheasant, is a native of Tibet, and in all probability of the north of India, where Clitarchus might have observed it; for the march of Alexander was through that part which borders on Tibet, and is now known by the name of Penj-ab or five rivers.

I shall now collect from authors the several parts of the world where Turkies are unknown in the state of nature. Europe has no share in the question; it being generally agreed that they are exotic in respect to that continent.

Neither are they found in any part of Asia Minor, or the Asiatic Turk, notwithstanding ignorance of their true origin first caused them to be named from that empire. About Aleppo, capital of Syria, they are only met with, domesticated like other poultry*. In Armenia they are unknown, as well as in Persia; having been brought from Venice by some Armenian merchants into that empire†, where they are still so scarce as to be preserved among other rare fowl in the royal menagery‡.

Du Halde acquaints us, that they are not natives of China; but were introduced there from other

* Russel, 63.
† Tavernier, 146.
‡ Bell's Travels, I. 128.
Mr. Pennant's Account
countries. He errs from misinformation in saying
that they are common in India.

I will not quote Gemelli Careri, to prove that
they are not found in the Philippine Islands, be-
cause that gentleman with his pen travelled
round the world in his easy chair, during a very
long indisposition and confinement * in his native
country.

But Dampier bears witness that none are found
in Mindanao †.
	nor Africa;
The hot climate of Africa barely suffers these
birds to exist in that vast continent, except under
the care of mankind. Very few are found in
Guinea, except in the hands of the Europeans,
the negroes declining to breed any on account of
the great heats §. Prosper Alpinus satisfies us,
they are not found either in Nubia or in Egypt.
He describes the Meleagrides of the ancients, and
only proves that the Guinea hens were brought
out of Nubia, and sold at a great price at Cairo ||;
but is totally silent about the Turkey of the
moderns.

Let me in this place observe, that the Guinea
hens have long been imported into Britain. They
were cultivated in our farm-yards; for I discover
in 1277, in the Grainge of Clifton, in the

* Sir James Porter's Obs. Turkey, I. i. 321.
† Barbot in Churchill's Coll. V. 29.
§ Bosman, 229.
|| Hist. Nat. Aegypti, I. 201.
of the Turkey.

parish of Ambrosden in Buckinghamshire, among other articles, six *Mutilones* and six *Africanae feminae* *, for this fowl was familiarly known by the names of Afra Avis and Gallina Africana and Numida. It was introduced into Italy from Africa, and from Rome into our country. They were neglected here by reason of their tenderness and difficulty of rearing. We do not find them in the bills of fare of our ancient feasts †; neither do we find the Turkey: which last argument amounts to almost a certainty, that such a hardy and princely bird had not found its way to us. The other likewise was then known by its classical name; for that judicious writer Doctor Caius describes, in the beginning of the reign of Elizabeth, the Guinea fowl, for the benefit of his friend Gesner, under the name of Meleagris, bestowed on it by Aristotle ‡.

Having denied, on the very best authorities, that the Turkey ever existed as a native of the old world, I must now bring my proofs of its being only a native of the new, and of the period in which it first made its appearance in Europe.

The first precise description of these birds is given by Oviedo, who in 1525 drew up a summary of his greater work, the History of the

* Kennet's Parochial Antiq. 287.
† Neither in that of George Neville nor among the delicacies mentioned in the Northumberland household book begun in the beginning of the reign of Henry VIII.
‡ CaII Opus. 13. Hist. An. lib. VI, c. 2.
Indies, for the use of his monarch Charles V. This learned man had visited the West Indies and its islands in person, and payed particular regard to the natural history. It appears from him, that the Turkey was in his days an inhabitant of the greater islands, and of the main-land. He speaks of them as Peacocks; for being a new bird to him, he adopts that name from the resemblance he thought they bore to the former. "But," says he, "the neck is bare of feathers, but covered with a skin which they change after their phantast into diverse colours. They have a horn as it were on their front, and hairs on the breast." He describes other birds which he also calls Peacocks. They are of the gallinaceous genus, and known by the name of Curassao birds, the male of which is black, the female ferruginous.

The next who speaks of them as natives of the main-land of the warmer parts of America, is Francisco Fernandez, sent there by Philip II. to whom he was physician. This naturalist observed them in Mexico. We find by him, that the Indian name of the male was Huexoloti, of the female Cihuatotolin. He gives them the title of Gallus Indicus and Gallo Pavo. The Indians, as well as Spaniards, domesticated these useful birds. He speaks of the size by comparison, saying, that the wild were twice the magnitude of

* In the Spaniah Peçon corto.
† In Purchas, III. 995.
the tame; and that they were shot with arrows or guns*. I cannot learn the time when Fernandes wrote. It must be between the years 1555 and 1598, the period of Philip's reign.

Pedro de Ciesa mentions Turkies on the Isthmus of Darien†. Dery, a Portuguese author, asserts, that they are found in Brazil, and gives them an Indian name‡; but since I can discover no traces of them in that diligent and excellent naturalist Marcgrave, who resided long in that country, I must deny my assent. But the former is confirmed by that able and honest navigator Dampier, who saw them frequently, as well wild as tame, in the province of Yucatan§, now reckoned part of the kingdom of Mexico.

North America. In North America they were observed by the very first discoverers. When René de Laudonniere, patronized by Admiral Coligni, attempted to form a settlement near the place where Charlestown now stands, he met with them on his first landing in 1564, and by his historian has represented them with great fidelity in the fifth plate of the recital of his voyage||: from his time the witnesses to their being natives of the continent are innumerable. They have been seen in flocks of hundreds in all parts from Louisiana.

† Seventeen Years Travels, 20.
‡ In de laert's Deffcr. des Indes, 491.
|| DE BRY.
Mr. Pennant's Account

even to Canada; but at this time are extremely rare in a wild state, except in the more distant parts, where they are still found in vast abundance.

When first introduced into Europe. It was from Mexico or Yucatan that they were first introduced into Europe; for it is certain, that they were imported into England as early as the year 1524, the 15th of Henry VIII.*

We probably received them from Spain, with which we had great intercourse till about that time. They were most successfully cultivated in our kingdom from that period; insomuch, that they grew common in every farm-yard, and became even a dish in our rural feasts by the year 1585; for we may certainly depend on the word of old Tusser, in his Account of the Christmas Husbandlie Fare†.

Beefe, Mutton, and Porke, shred pies of the best, Pig, Veale, Goose, and Capon, and Turkie well dreft, Cheese, Apples, and Nuts, jolie carols to heare, As then in the countrie, is counted good cheare.

But at this very time they were so rare in France, that we are told, that the very first which was eaten in that kingdom appeared at the nuptial feast of Charles IX. in 1570‡.

* Baker's Chr. Anderson's Dict. Com. I. 354. Hackluyt, IL 165. makes their introduction about the year 1532. Barnaby Googe, one of our early writers on Husbandry, says, they were not seen here before 1530. He highly commends a Lady Hales of Kent, for her excellent management of these fowl, p. 166.
† Five Hundred Points of good Husbandrie, p. 57.
To this account I beg leave to lay before you the very extraordinary appearance on the thigh of a Turkey, bred in my poultry yard, and which was killed a few years ago for the table. The servant in plucking it was very unexpectedly wounded in the hand. On examination the cause appeared so singular, that the bird was brought to me. I discovered, that from the thigh-bone issued a short upright process, and to that grew a large and strong toe, with a sharp and crooked claw, exactly resembling that of a rapacious bird.

Read January 11, 1781.

REV. SIR,

As my father generally addresses to you such papers as he communicates to the Royal Society, I beg the favour of you to acquaint that learned body, that, on the 23d of March, I discovered a nebula in the constellation of Coma Berenices, hitherto, I presume, unnoticed; at least not mentioned in M. de la Lande's Astronomy, nor in M. Messier's ample Catalogue of nebulous Stars. I have observed it in an achromatic transit instrument, three feet long, and deduced its mean R. A. by comparing it to the following stars, having made the necessary corrections for aberration and nutation, the results are:

<table>
<thead>
<tr>
<th>Star</th>
<th>R.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ Gemini</td>
<td>191 28 35</td>
</tr>
<tr>
<td>γ Canis Majoris</td>
<td>191 28 41</td>
</tr>
<tr>
<td>ζ Virginis</td>
<td>191 28 45</td>
</tr>
<tr>
<td>υ Virginis</td>
<td>191 28 36</td>
</tr>
<tr>
<td>δ Leonis</td>
<td>191 28 34</td>
</tr>
</tbody>
</table>

Mean R. A. of the nebula for April 20, 1779, 191 28 38

Its
Mr. Pigott's Account of a Nebula, &c.

Its light being exceedingly weak, I could not see it in the two-feet telescope of our quadrant, so was obliged to determine its declination likewise by the transit instrument. This determination, however, I believe, may be depended upon to two minutes: hence its declination north is $22^\circ 53'\frac{3}{4}''$. The diameter of this nebula I judged to be about two minutes of a degree.

I am, &c.

E. Pigott.

Read January 11, 1781.

TO THE REV. NEVIL MASKELYNE.

REV. SIR,

October 27, 1779.

Inclosed are the determinations of the places of three double stars, which I discovered this summer; at least, I presume, they have not been observed before, because I do not find them inserted in Dr. Bradley's catalogue, published in the Nautical Almanac 1773, or in the Connoissance des Tems, no more than in other catalogues in my possession. γ Delphini, indeed, is in M. de la Caille's catalogue; but not as a double star. The instrument he used was not, probably, powerful enough for that purpose. In the two-feet telescope of my quadrant it appears only as a single star. These stars were observed by me in a three-feet achromatic telescope of a transit instrument, with an object-glass near two inches diameter. The R. A. are nicely determined by several observations, which always agree with each to a fraction of a second in time. The declinations
declinations were deduced from the difference of altitudes between the double stars and the known stars, to which they were compared, as shewn by the graduated semi-circle of the transit instrument, which, being divided to two minutes only, cannot be supposed to give any great precision: however, I believe, their declinations, hence deduced, to be correct to one minute, or one minute and a half.

In observing the double star compared to ζ Pegasi, I found it impossible to illuminate the wires of the transit instrument, without nearly obliterating the star. This difficulty led me to a method, which, as it completely succeeded, may, under similar circumstances, possibly be of use to others. A person illuminating the wires very faintly, so that I could but perceive the double star, at a signal totally withdrew the light: this signal I made when the double star was nearly as far distant from the first wire as the five wires are distant from each other, which, in this case, was 13" by the clock. I then counted the seconds, and did not fail to see the star disappear a second or two within the time expected. On its disappearing, I made a signal to write down; and then beginning to count again, did the same at each wire. I have since tried this method with other stars, and think they may be thus observed, even with greater precision than when the wires are illuminated. Hence the troublesome busines, well known to astronomers, of illuminating faint objects, may be removed.

The preceding star of each double star was observed on the first, third and fifth wires, and the following one on the second and fourth wires; and thus their difference in R. A. in time, converted into parts of a great circle, obtained. Supposing the apparent R. A. and App. declinations of α Delphini, β Aquarii, and ζ Pegasi, as here assumed, the places of these double stars were found to be as follows.
Mr. Pigott's Account of double Stars, &c.

I beg you to communicate these observations to the Royal Society; and to receive my thanks for those I received in your letter of the 7th instant.

I am, &c.

N. Pigott.

September 5, 1779.

<table>
<thead>
<tr>
<th>App. R. A.</th>
<th>App. declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>307 21' 5</td>
<td>15 8' 53 N.</td>
</tr>
<tr>
<td>309 6 30</td>
<td>15 20 40 N.</td>
</tr>
<tr>
<td></td>
<td>9 1/2 diff. R.A. of the 2 stars in γ Delphini.</td>
</tr>
</tbody>
</table>

Note, both the stars in γ Delphini have the same, or nearly the same, declination. The 1st is of the 6th, the 2d of the 4th mag.

September 19.

<table>
<thead>
<tr>
<th>App. R. A.</th>
<th>App. declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>319 59 27+</td>
<td>6 31 34 S.</td>
</tr>
<tr>
<td>318 3 21</td>
<td>7 40 34 S.</td>
</tr>
<tr>
<td>0 11</td>
<td>diff. R.A. between 1st and 2d of the double star.</td>
</tr>
</tbody>
</table>

Note, the 1st seemed of the 5th, the 2d of the 7th mag. The 1st is perhaps 6" or 8' S. of the following one.

<table>
<thead>
<tr>
<th>App. R. A.</th>
<th>App. declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>337 36 55+</td>
<td>9 41 24 N.</td>
</tr>
<tr>
<td>346 53 36 1/2</td>
<td>3 59 17 N.</td>
</tr>
</tbody>
</table>

Note, both the stars of this double star have the same, or nearly the same, R.A.; their difference in declination is 15" or perhaps 20'.

* * *
IX. An Account of the Ganges and Burrampooter Rivers. By James Rennell, Esq. F. R. S.; communicated by Joseph Banks, Esq. P. R. S.

Read January 25, 1781.

The Ganges and Burrampooter Rivers, together with their numerous branches and adjuncts, intersect the country of Bengal in such a variety of directions, as to form the most compleat and easy inland navigation that can be conceived. So equally and admirably diffused are those natural canals, over a country that approaches nearly to a perfect plane, that, after excepting the lands contiguous to Burdwan, Birboom, &c. (which altogether do not constitute a sixth part of Bengal) we may fairly pronounce, that every other part of the country has, even in the dry season, some navigable stream within 25 miles at farthest, and more commonly within a third part of that distance.

It is supposed, that this inland navigation gives constant employment to 30,000 boatmen. Nor will it be wondered at, when it is known, that all the salt, and a large proportion of the

* The proper name of this river in the language of Hindoostan (or Indostan) is Pudda or Padda. It is also named Burra-Gonga, or the Great River; and Gonga, the River, by way of eminence; and from this, doubtless, the European names of the river are derived.

† The orthography of this word, as given here, is according to the common pronunciation in Bengal; but it is said to be written in the Sanscrit language, Brahma-pootar, which signifies the Son of Brahma.
food consumed by ten millions of people are conveyed by water within the kingdom of Bengal and its dependencies. To these must be added, the transport of the commercial exports and imports, probably to the amount of two millions sterling per annum; the interchange of manufactures and products throughout the whole country; the fisheries; and the article of travelling *.

These rivers, which a late ingenious gentleman aptly termed sisters and rivals (he might have said twin sisters, from the contiguity of their springs), exactly resemble each other in length of course; in bulk, until they approach the sea; in the smoothness and colour of their waters; in the appearance of their borders and islands; and, finally, in the height to which their floods rise with the periodical rains. Of the two, the Burrem-pooter is the largest; but the difference is not obvious to the eye. They are now well known to derive their sources from the vast mountains of Thibet †; from whence they proceed in opposite directions; the Ganges seeking the plains of Hindoostan (or Indoostan) by the west; and the Burrem-pooter by the east; both pursuing the early part of their course through rugged vallies and defiles, and seldom visiting the habitations of men. The Ganges, after wandering about 750 miles through these mountainous regions, issues forth a deity to the superfi-

* The embarkations made use of vary in bulk from 180 tons down to the size of a wherry. Those from 30 to 50 tons are reckoned the most eligible for transporting merchandize.

† These are amongst the highest of the mountains of the old hemisphere. I was not able to determine their height; but it may in some measure be guessed, by the circumstance of their rising considerably above the horizon, when viewed from the plains of Bengal, at the distance of 150 miles.
Ganges and Burmanpooter Rivers.

ious, yet gladdened, inhabitant of Hindoostan*. From Hurdwar (or Hurdoar) in latitude 30°, where it gushes through an opening in the mountains, it flows with a smooth navigable stream through delightful plains during the remainder of its course to the sea (which is about 1350 miles) diffusing plenty immediately by means of its living productions; and secondarily by enriching the adjacent lands, and affording an easy means of transport for the productions of its borders. In a military view, it opens a communication between the different parts, and serves in the capacity of a military way through the country; renders unnecessary the forming of magazines; and infinitely surpasses the celebrated inland navigation of North America, where the carrying places not only obstruct the progress of an army, but enable the adversary to determine his place and mode of attack with certainty.

In its course through the plains, it receives eleven rivers, some of which are equal to the Rhine, and none smaller than the

* The fabulous account of the origin of the Ganges (as communicated by my learned and ingenious friend C. W. Bougton Robinson, Esq.) is, that it flows out of the foot of Bechhan* (from whence, say the Bramins, it has its name Pada; that word signifying foot in the Sanskrit language); and that in its course to the plains of Hindoostan it passes through an immense rock shaped like a Cow's-head.

The allegory is highly expressive of the veneration which the Hindoos have for this famous stream; and no less so of their gratitude to the Author of Nature for beflowing it: for it describes the blessing as flowing purely from his bounty and goodness.

The rock before mentioned has, I believe, never been visited by any European; and is even allowed by most of the natives to bear no resemblance to the object from whence it is denominated. However, as the effects of superstition do often long survive the illusions that gave it birth, the rock or cavern still preserves the name of Gosmook, or Cow's-head.

* Bechhan is the same with Vishnou, the preserving deity.
Mr. Rennell's Account of the Thames, besides as many others of lesser note. It is owing to this vast influx of streams, that the Ganges exceeds the Nile so greatly in point of magnitude, whilst the latter exceeds it in length of course by one-third. Indeed, the Ganges is inferior in this last respect, to many of the northern rivers of Asia; though I am inclined to think that it discharges as much or more water than any of them, because those rivers do not lie within the limits of the periodical rains.

The bed of the Ganges is, as may be supposed, very unequal in point of width. From its first arrival in the plains at Hurd-

* The proportional lengths of course of some of the most noted rivers in the world are shewn nearly by the following numbers:

<table>
<thead>
<tr>
<th>European Rivers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thames</td>
<td>1</td>
</tr>
<tr>
<td>Rhine</td>
<td>5 1/2</td>
</tr>
<tr>
<td>Danube</td>
<td>7</td>
</tr>
<tr>
<td>Wolga</td>
<td>9 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asiatic Rivers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indus</td>
<td>5 1/2</td>
</tr>
<tr>
<td>Euphrates</td>
<td>8 1/2</td>
</tr>
<tr>
<td>Ganges</td>
<td>9 1/2</td>
</tr>
<tr>
<td>Burrampooter</td>
<td>9 1/2</td>
</tr>
<tr>
<td>Nou Kian, or Ava River</td>
<td>9 1/2</td>
</tr>
<tr>
<td>Jennisca</td>
<td>10</td>
</tr>
<tr>
<td>Oby</td>
<td>10 1/2</td>
</tr>
<tr>
<td>Amoor</td>
<td>11</td>
</tr>
<tr>
<td>Lena</td>
<td>11 1/2</td>
</tr>
<tr>
<td>Hoanho (of China)</td>
<td>13 1/2</td>
</tr>
<tr>
<td>Kian Keu (of ditto)</td>
<td>15 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>African Rivers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>12 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American Rivers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississipi</td>
<td>8</td>
</tr>
<tr>
<td>Amazons</td>
<td>15 1/2</td>
</tr>
</tbody>
</table>
war, to the conflux of the Jumnah (the first river of note that joins it) its bed is generally from a mile to a mile and a quarter wide; and, compared with the latter part of its course, tolerably straight. From hence, downward, its course becomes more winding, and its bed consequently wider*, till, having alternately received the waters of the Gogra, Soane, and Gunduck, besides many smaller streams, its bed has attained its full width; although, during the remaining 600 miles of its course it receives many other principal streams. Within this space it is, in the narrowest parts of its bed, half a mile wide, and in the widest, three miles; and that, in places where no islands intervene. The stream within this bed is always either increasing or decreasing, according to the season. When at its lowest (which happens in April) the principal channel varies from 400 yards to a mile and a quarter; but is commonly about three quarters of a mile.

The Ganges is fordable in some places above the conflux of the Jumnah, but the navigation is never interrupted. Below that, the channel is of considerable depth, for the additional streams bring a greater accession of depth than width. At 500 miles from the sea, the channel is thirty feet deep when the river is at its lowest; and it continues at least this depth to the sea, where the sudden expansion of the stream deprives it of the force necessary to sweep away the bars of sand and mud thrown across it by the strong southerly winds; so that the principal branch of the Ganges cannot be entered by large vessels.

About 220 miles from the sea (but 300 reckoning the windings of the river) commences the head of the Delta of the Ganges, which is considerably more than twice the area of that of the Nile. The two westernmost branches, named the

* This will be explained when the windings of the river are treated of.
Coimbulazar and Jellinghy Rivers, unite and form what is afterwards named the Hoogly River, which is the port of Calcutta, and the only branch of the Ganges that is commonly navigated by ships*. The Coimbulazar River is almost dry from October to May; and the Jellinghy River (although a stream runs in it the whole year) is in some years un navigable during two or three of the driest months; so that the only subordinate branch of the Ganges, that is at all times navigable, is the Chundnah River, which separates at Moddapour, and terminates in the Hooringotta.

That part of the Delta bordering on the sea, is composed of a labyrinth of rivers and creeks, all of which are salt, except those that immediately communicate with the principal arm of the Ganges. This tract, known by the name of the Woods, or Sunderbunds, is in extent equal to the principality of Wales; and is so completely enveloped in woods, and infested with Tygers, that if any attempts have ever been made to clear it (as is reported) they have hitherto miscarried. Its numerous canals are so disposed as to form a compleat inland navigation throughout and across the lower part of the Delta, without either the delay of going round the head of it, or the hazard of putting to sea. Here salt, in quantities equal to the whole consumption of Bengal and its dependencies, is made.

* The Hoogly River, or westernmost branch of the Ganges, has a much deeper outlet to the sea than the principal branch. Probably this may be owing to its precipitating a less quantity of mud than the other; the quantity of the Ganges water discharged here being less than in the other in the proportion of one to six. From the difficulties that occur in navigating the entrance of the Hoogly River, many are led to suppose, that the channels are shallow. The difficulties, however, arise from bringing the ships across some of the sand-banks, which project so far into the sea, that the channels between them cannot easily be traced from without.
Ganges and Burrampooter Rivers.

and transported with equal facility: and here also is found an inexhaustible store of timber for boat-building. The breadth of the lower part of this Delta is upwards of 180 miles; to which, if we add that of the two branches of the river that bound it, we shall have about 200 miles for the distance to which the Ganges expands its branches at its junction with the sea.

It has been observed before, that the course of this river, from Hardwar to the sea, is through an uniform plain, or, at least, what appears such to the eye: for, the declivity is much too small to be perceptible. A section of the ground, parallel to one of its branches, in length 60 miles, was taken by order of Mr. Hastings; and it was found to have about nine inches descent in each mile, reckoning in a straight line, and allowance being made for the curvature of the earth. But the windings of the river were so great, as to reduce the declivity on which the water ran, to less than four inches per mile: and by a comparison of the velocity of the stream at the place of experiment with that in other places, I have no reason to suppose, that its general descent exceeds it.

The medium rate of motion of the Ganges is less than three miles an hour in the dry months. In the wet season, and during the draining off of the waters from the inundated lands, the current runs from five to six miles an hour; but there are instances of its running seven, and even eight miles, in particular situations, and under certain circumstances. I have an

* M. de Condamine found the descent of the river Amazon, in a straight course of about 1860 miles, to be about 1020 English feet, or 6½ inches in a mile. If we allow for the windings, it comes out nearly the same as the Ganges (which winds about 1½ mile in three, taking its whole course through the plains), namely, about 4 inches in a mile.
Mr. Rennell's Account of the experiment of my own on record, in which my boat was carried 56 miles in eight hours; and that against so strong a wind, that the boat had evidently no progressive motion through the water.

When we consider, that the velocity of the stream is three miles in one season, and five or more in the other, on the same descent of four inches per mile; and, that the motion of the inundation is only half a mile per hour, on a much greater descent; no further proof is required how small the proportion of velocity is, that the descent communicates. It is then, to the impetus originating at the spring head, or at the place where adventitious waters are poured in, and successively communicated to every part of the stream, that we are principally to attribute the velocity, which is greater or lesser, according to the quantity of water poured in.

In common, there is found on one side of the river an almost perpendicular bank, more or less elevated above the stream, according to the season, and with deep water near it: and on the opposite side a bank, shelving away so gradually as to occasion shallow water at some distance from the margin. This is more particularly the case in the most winding parts of the river, because the very operation of winding produces the steep and shelving banks*: for the current is always strongest on the external side of the curve formed by the serpentine course of the river; and its continual action on the banks

* Hence it is, that the section of a river, that winds through a loose soil, approaches nearly to an obtuse angled-triangle, one of whose sides is exceedingly short and disproportioned to the other two —. But when a river perseveres in a straight course, the section becomes nearly the half of an ellipse divided longitudinally —.
either undermines them *, or washes them down. In places where the current is remarkably rapid, or the soil uncommonly loose, such tracts of land are swept away in the course of one season, as would astonish those who have not been eyewitnesses to the magnitude and force of the mighty streams occasioned by the periodical rains of the tropical regions. This necessarily produces a gradual change in the course of the river; what is lost on one side being gained on the other, by the mere operation of the stream: for the fallen pieces of the bank dissolve quickly into muddy sand, which is hurried away by the current along the border of the channel to the point from whence the river turns off to form the next reach, where the stream growing weak, it finds a resting place, and helps to form a shelving bank, which commences at the point, and extends downwards, along the side of the succeeding reach.

To account for the slackness of the current at the point, it is necessary to observe, that the strongest part of it, instead of turning short round the point, preserves for some time the direction given it by the last steep bank, and is accordingly thrown obliquely across the bed of the river to the bay on the opposite side, and pursues its course along it, till the intervention of another point again obliges it to change sides.

In those few parts of the river that are straight, the banks undergo the least alteration †, as the current runs parallel to

* In the dry season some of these banks are more than 30 feet high, and often fall down in pieces of many tons weight, and occasion so sudden and violent an agitation of the water, as sometimes to sink large boats that happen to be near the shore.

† It is more than probable, that the straight parts owe their existence to the tenacity of the soil of which their banks are composed. Whatever the cause may be, the effect very clearly points out such situations as the properest for placing towns in.
them; but the least inclination of course has the effect of throwing the current against the bank; and if this happens in a part where the soil is composed of loose sand, it produces in time a serpentine winding.

It is evident, that the repeated additions made to the shelving bank before mentioned, become in time an encroachment on the channel of the river; and this is again counter-balanced by the depredations made on the opposite steep bank, the fragments of which, either bring about a repetition of the circumstances above recited, or form a bank or shallow in the midst of the channel. Thus a steep and a shelving bank are alternately formed in the crooked parts of the river (the steep one being the indented side, and the shelving one the projecting); and thus, a continual fluctuation of course is induced in all the winding parts of the river; each meander having a perpetual tendency to deviate more and more from the line of the general course of the river, by eating deeper into the bays, and at the same time adding to the points, till either the opposite bays meet, or the stream breaks through the narrow isthmus, and restores a temporary straightness to the channel.

Several of the windings of the Ganges and its branches are fast approaching to this state; and in others, it actually exists at present. The experience of these changes should operate against attempting canals of any length, in the higher parts of the country; and I much doubt, if any in the lower parts would long continue navigable. During eleven years of my residence in Bengal, the outlet or head of the Jellinghy River was gradually removed three quarters of a mile farther down: and by two surveys of a part of the adjacent bank of the Ganges, taken about the distance of nine years from each other, it appeared that the breadth of an English mile and a half had been taken.
taken away. This is, however, the most rapid change that I have noticed; a mile in ten or twelve years being the usual rate of incroachment, in places where the current strikes with the greatest force, namely, where two adjoining reaches approach nearest to a right angle. In such situations it not unfrequently excavates gulls * of considerable length within the bank. These gulls are in the direction of the strongest parts of the stream; and are, in fact, the young shoots (if I may so express myself) which in time strike out and become branches of the river; for we generally find them at those turnings that have the smallest angles †.

Two causes, widely different from each other, occasion the meandering courses of rivers; the one, the irregularity of the ground through which they run, which obliges them to wander in quest of a declivity; the other, the looseness of the soil, which yields to the friction of the border of the stream. The meanders in the first case, are, of course, as digressive and irregular as the surface they are projected on: but, in the latter, they are so far reducible to rule, that rivers of unequal bulk will, under similar circumstances, take a circuit to wind in, whose extent is in proportion to their respective breadths: for I have observed, that

* The Count de Buffon advises the digging of such gulls in the banks of ordinary rivers, with a view to divert the current, when bridges or other buildings are endangered by it.

† The courses of these branches at the efflux, generally, if not always, become retrograde to the course of the river: for, a sand bank accumulating at the upper point of separation, gives an oblique direction upwards, to the stream, which would otherwise run out at right angles. This sand bank being always on the increase, occasions a corrosion of the opposite bank; and by this means all, or most of the outlets have a progressive motion downwards; as I have before remarked of the Jellinghy River, in the foregoing page.
when a branch of the Ganges is fallen so low as to occupy only a part of its bed, it no longer continues in the line of its old course; but works itself a new channel, which winds from side to side across the former one. I have observed too, that in two streams, of equal size, that which has the lowest current has also the smallest windings: for as these (in the present case) are solely owing to the depredations made on the banks by the force of the current; so the extent of these depredations, or, in other words, the dimensions of the windings, will be determined by the degree of force acting on the banks.

The windings of the Ganges in the plains, are, doubtless, owing to the looseness of the soil: and (I think) the proof of it is, that they are perpetually changing; which those, originally induced by an inequality of surface, can seldom, or never do *.

I can easily suppose, that if the Ganges was turned into a straight canal, cut through the ground it now traverses in the most winding parts of its course, its straightness would be of short duration. Some yielding part of the bank, or that which happened to be the most strongly acted on, would first be corroded or dissolved: thus a bay or cavity would be formed in the side of the bank. This begets an inflection of the current, which, falling obliquely on the side of the bay, corrodes it incessantly. When the current has passed the innermost part of the bay, it receives a new direction, and is thrown

* It has been remarked, that the courses of rivers become more winding as they approach the sea. This, I believe, will only hold good in such as take the latter part of their course through a sandy soil. In the Ganges, and other rivers subject to considerable variations in the bulk of their streams, the best marks of the vicinity of the sea are, the lowness of the river banks, and the increasing muddiness of the shallows in its bed.
Ganges and Burrampooter Rivers.

obliquely towards the opposite side of the canal, depositing in its way the matter excavated from the bay, and which begins to form a shallow or bank contiguous to the border of the canal. Here then is the origin of such windings as owe their existence to the nature of the soil. The bay, so corroded, in time becomes large enough to give a new direction to the body of the canal: and the matter excavated from the bay is so disposed as to assist in throwing the current against the opposite bank, where a process, similar to that I have been describing, will be begun.

The action of the current on the bank will also have the effect of deepening the border of the channel near it; and this again increases the velocity of the current in that part. Thus would the canal gradually take a new form, till it became what the river now is. Even when the windings have lessened the descent one half, we still find the current too powerful for the banks to withstand it.

There are not wanting instances of a total change of course in some of the Bengal rivers*. The Cofa River (equal to the Rhine) once ran by Purneah, and joined the Ganges opposite Rajemal. Its junction is now 45 miles higher up. Gour, the ancient capital of Bengal, stood on the banks of the Ganges.

Appearances favour very strongly the opinion, that the Ganges had its former bed in the tract now occupied by the lakes and morasses between Nattore and Jaffiergunge, striking out of its present course at Bauleah, and passing by Pootyah. With an equal degree of probability (favoured by tradition) we may trace its supposed course by Dacca, to a junction with the Burrampooter or Megna near Fringybazar; where the accumu-

* The Mootyjyl lake is one of the windings of a former channel of the Cof-
fimbuzar River.
Mr. Rennell's Account of the
lation of two such mighty streams probably scooped out the present amazing bed of the Megna *

In tracing the sea coast of the Delta, we find no less than eight openings; each of which, without hesitation, one pronounces to have been in its time the principal mouth of the Ganges. Nor is the occasional deviation of the principal branch, probably, the only cause of fluctuation in the dimensions of the Delta. One observes, that the Deltas of capital rivers (the tropical ones particularly) encroach upon the sea. Now, is not this owing to the mud and sand brought down by the rivers, and gradually deposited, from the remotest ages down to the present time? The rivers, we know, are loaded with mud and sand at their entrance into the sea; and we also know, that the sea recovers its transparency at the distance of twenty leagues from the coast; which can only arise from the waters having precipitated their earthy particles within that space. The sand and mud banks at this time, extend twenty miles off some of the islands in the mouths of the Ganges and Burrampooter; and in many places rise within a few feet of the surface. Some future generation will probably see these banks rise above water, and succeeding ones possess and cultivate them! Next to earthquakes, perhaps the floods of the tropical rivers produce the quickest alterations in the face of our globe. Extensive islands are formed in the channel of the Ganges, during a period far short of that of a man's life; so that the whole process lies

* Megna and Burrampooter are names belonging to the same river in different parts of its course. The Megna falls into the Burrampooter; and, though a much smaller river, communicates its name to the other during the rest of its course.
within the compass of his observation*. Some of these islands, four or five miles in extent, are formed at the angular turnings of the river, and were originally large sand banks thrown up round the points (in the manner before described) but afterwards insulated by breaches of the river. Others are formed in the straight parts of the river, and in the middle of the stream; and owe their origin to some obstruction lurking at the bottom. Whether this be the fragments of the river bank; a large tree swept down from it; or a sunken boat; it is sufficient for a foundation: and a heap of sand is quickly collected below it. This accumulates amazingly fast: in the course of a few years it peeps above water, and having now usurped a considerable portion of the channel, the river borrows on each side to supply the deficiency in its bed; and in such parts of the river we always find steep banks on both sides†. Each periodical flood brings an addition of matter to this growing island; increasing it in height as well as extension, until its top is perfectly on a level with the banks that include it: and at that period of its growth it has mould enough on it for the purposes of cultivation, which is owing to the mud left on it when the waters subside, and is indeed a part of the œconomy which nature observes in fertilizing the lands in general.

Whilst the river is forming new islands in one part, it is sweeping away old ones in other parts. In the progress of this destructive operation, we have opportunities of observing, by means of the sections of the falling bank, the regular distri-

* Accordingly, the laws respecting alluvion are ascertained with great precision.

† This evidently points out the means for preventing encroachments on a river bank in the straight parts of its course, viz. to remove the shallows in the middle of its channel.
bution of the several strata of sand and earths, lying above one another in the order in which they decrease in gravity. As they can only owe this disposition to the agency of the stream that deposited them, it would appear, that these substances are suspended at different heights in the stream, according to their respective gravities. We never find a stratum of earth under one of sand; for the muddy particles float nearest the surface. I have counted seven distinct strata in a section of one of these islands. Indeed, not only the islands, but most of the river banks wear the same appearance: for as the river is always changing its present bed, and verging towards the site of some former one now obliterated, this must necessarily be the case.

As a strong presumptive proof of the wandering of the Ganges from the one side of the Delta to the other, I must observe, that there is no appearance of virgin earth between the Tiperah Hills on the east, and the province of Burdwan on the west; nor on the north till we arrive at Dacca and Bauleah. In all the sections of the numerous creeks and rivers in the Delta, nothing appears but sand and black mould in regular strata, till we arrive at the clay that forms the lower part of their beds. There is not any substance so coarse as gravel either in the Delta or nearer the sea than 400 miles, where a rocky point, a part of the base of the neighbouring hills, projects into the river: but out of the vicinity of the great rivers the soil is either red, yellow, or of a deep brown.

* A glass of water taken out of the Ganges, when at its height, yields about one part in four of mud. No wonder then that the subsiding waters should quickly form a stratum of earth; or that the Delta should encroach upon the sea!

† At Oudanulla.
Ganges and Burrampooter Rivers.

I come now to the particulars of the annual swelling and overflowing of the Ganges.*

It appears to owe its increase as much to the rain water that falls in the mountains contiguous to its source, and to the sources of the great northern rivers that fall into it, as to that which falls in the plains of Hindoostan; for it rises fifteen feet and a half out of thirty-two (the sum total of its rising) by the latter end of June: and it is well known, that the rainy season does not begin in most of the flat countries till about that time. In the mountains it begins early in April; and by the latter end of that month, when the rain-water has reached Bengal, the rivers begin to rise, but by very slow degrees; for the increase is only about an inch per day for the first fortnight. It then gradually augments to two and three inches before any

* An opinion has long prevailed, that the swelling of the Ganges, previous to the commencement of the rainy season in the flat countries, is in a great measure owing to the melting of the snow in the mountains. I will not go so far as totally to disallow the fact; but can by no means suppose, that the quantity of snow water bears any proportion to the increase of the river.

† The vast collection of vapours, wafted from the sea by the southerly or south-west monsoon, are suddenly stopped by the lofty ridge of mountains that runs from east to west through Thibet. It is obvious, that the accumulation and condensation of these vapours, must first happen in the neighbourhood of the obstacle; and successively in places more remote, as fresh supplies arrive to fill the atmosphere. Hence the priority of commencement of the rainy season in places that lie nearest the mountains.

All the rivers that are situated within the limits of the monsoons, or shifting trade winds, are subject to overflowings at annually stated periods, like the Ganges: and these periods return during the season of the southerly wind, that being the only wind which brings vapours from the sea; and this being periodical, the falls of rain must necessarily be so too.

The northerly wind, which blows only over the land, is dry; for no rain (except casual showers) falls during the continuance of that monsoon.

quantity
quantity of rain falls in the flat countries; and when the rain becomes general, the increase on a medium is five inches per day. By the latter end of July all the lower parts of Bengal, contiguous to the Ganges and Burrampooter, are overflowed, and form an inundation of more than a hundred miles in width; nothing appearing but villages and trees, excepting very rarely the top of an elevated spot (the artificial mound of some deserted village) appearing like an island.

The inundations in Bengal differ from those in Egypt in this particular, that the Nile owes its floods entirely to the rain-water that falls in the mountains near its source; but the inundations in Bengal are as much occasioned by the rain that falls there, as by the waters of the Ganges; and as a proof of it, the lands in general are overflowed to a considerable height long before the bed of the river is filled. It must be remarked, that the ground adjacent to the river bank, to the extent of some miles, is considerably higher than the rest of the country*, and serves to separate the waters of the inundation from those of the river until it overflows. This high ground is in some seasons covered a foot or more; but the height of the inundation within, varies, of course, according to the irregularities of the ground, and is in some places twelve feet.

Even when the inundation becomes general, the river shews itself, as well by the grass and reeds on its banks, as by its rapid and muddy stream; for the water of the inundation acquires a blackish hue, by having been so long stagnant.

* This property of the bank is well accounted for by Count Buffon, who imputes it to the precipitation of mud made by the waters of the river, when it overflows. The inundation, says he, purifies itself as it flows over the plain; so that the precipitation must be greatest on the parts nearest to the margin of the river.
Ganges and Burrampooter Rivers.

amongst grass and other vegetables: nor does it ever lose this tinge, which is a proof of the predominancy of the rain water over that of the river; as the slow rate of motion of the inundation (which does not exceed half a mile per hour) is of the remarkable flatness of the country.

There are particular tracts of land, which, from the nature of their culture, and species of productions, require less moisture than others; and yet, by the lowness of their situation, would remain too long inundated, were they not guarded by dikes or dams, from so copious an inundation as would otherwise happen from the great elevation of the surface of the river above them. These dikes are kept up at, an enormous expense; and yet do not always succeed, for want of tenacity in the soil of which they are composed.

During the swollen state of the river, the tide totally loses its effect of counteracting the stream; and in a great measure that of ebbing and flowing, except very near the sea. It is not uncommon for a strong wind, that blows up the river for any continuance, to swell the waters two feet above the ordinary level at that season: and such accidents have occasioned the loss of whole crops of rice*. A very tragical event happened at Luckipour + in 1763, by a strong gale of wind conspiring with a high spring tide, at a season when the periodical flood was within a foot and half of its highest pitch. It is said that the waters rose six feet above the ordinary level. Certain it is, that

* The rice I speak of is of a particular kind; for the growth of its stalk keeps pace with the increase of the flood at ordinary times, but is destroyed by a too sudden rise of the water. The harvest is often reaped in boats. There is also a kind of grass which overtops the flood in the same manner, and at a small distance has the appearance of a field of the richest verdure.

† This place is situated about fifty miles from the sea.
the inhabitants of a considerable district, with their houses and cattle, were totally swept away; and, to aggravate their distress, it happened in a part of the country which scarce produces a single tree for a drowning man to escape to.

Embarkations of every kind traverse the inundation: those bound upwards, availing themselves of a direct course and still water, at a season when every stream rushes like a torrent. The wind too, which at this season blows regularly from the south-east *, favours their progress: inasmuch, that a voyage, which takes up nine or ten days by the course of the river when confined within its banks, is now effected in six. Husbandry and grazing are both suspended; and the peasant traverses in his boat, those fields which in another season he was wont to plow; happy that the elevated site of the river banks place the herbage they contain, within his reach, otherwise his cattle must perish.

The following is a table of the gradual increase of the Ganges and its branches, according to observations made at Jellinghy and Dacca.

<table>
<thead>
<tr>
<th>At Jellinghy</th>
<th>At Dacca</th>
</tr>
</thead>
<tbody>
<tr>
<td>In May it rose</td>
<td>6 0</td>
</tr>
<tr>
<td>June</td>
<td>9 6</td>
</tr>
<tr>
<td>July</td>
<td>12 6</td>
</tr>
<tr>
<td>In the first half of August</td>
<td>4 0</td>
</tr>
<tr>
<td>32 0</td>
<td>14 3</td>
</tr>
</tbody>
</table>

* Although in the gulf or bay of Bengal the monsoon blows from the S.S.W. and S.W. yet in the eastern and northern parts of Bengal it blows from the S.E. or E.S.E.

These
Ganges and Burrampooter Rivers.

These observations were made in a season, when the waters rose rather higher than usual; so that we may take 31 feet for the medium of the increase.

The inundation is nearly at a stand for some days preceding the middle of August, when it begins to run off; for although great quantities of rain fall in the flat countries, during August and September, yet, by a partial cessation of the rains in the mountains, there happens a deficiency in the supplies necessary to keep up the inundation.* The quantity of the daily decrease of the river is nearly in the following proportion: during the latter half of August, and all September, from three to four inches; from September to the end of November, it gradually lessens from three inches to an inch and a half; and from November to the latter end of April, it is only half an inch per day at a medium. These proportions must be understood to relate to such parts of the river as are removed from the influence of the tides; of which more will be said by and by. The decrease of the inundation does not always keep pace with that of the river, by reason of the height of the banks; but after the beginning of October, when the rain has nearly ceased, the remainder of the inundation goes off quickly by evaporation, leaving the lands highly manured, and in a state fit to receive the seed, after the simple operation of plowing.

There is a circumstance attending the increase of the Ganges, and which, I believe, is little known or attended to; because few people have made experiments on the heights to which the

* I have stated the middle of August for the period when the waters begin to run off; and in general it happens with more regularity than the vicissitudes of the seasons do. But there are exceptions to it; for in the year 1774 the rivers kept up for near a month after the usual time.

P 2
Mr. Rennell's Account of the periodical flood rises in different places. The circumstance I allude to, is, the difference of the quantity of the increase (as expressed in the foregoing table) in places more or less remote from the sea. It is a fact, confirmed by repeated experiments, that from about the place where the tide commences, to the sea, the height of the periodical increase diminishes gradually, until it totally disappears at the point of confluence. Indeed, this is perfectly concomitant to the known laws of fluids: the Ocean preserves the same level at all seasons (under similar circumstances of tide) and necessarily influences the level of all the waters that communicate with it, unless precipitated in the form of a cataract. Could we suppose, for a moment, that the increased column of water, of 31 feet perpendicular, was continued all the way to the sea, by some preternatural agency; whenever that agency was removed, the head of the column would diffuse itself over the Ocean, and the remaining parts would follow, from as far back as the influence of the Ocean extended; forming a slope, whose perpendicular height would be 31 feet. This is the precise state in which we find it. At the point of junction with the sea, the height is the same in both seasons at equal times of the tide. At Luckipour there is a difference of about six feet between the heights in the different seasons; at Dacca, and places adjacent, 14; and near Cushee, 31 feet. Here then is a regular slope; for the distances between the places bear a proportion to the respective heights. This slope must add to the rapidity of the stream; for, supposing the descent to have been originally four inches per mile, this will increase it to about five and an half. Cushee is about 240 miles from the sea, by the course of the river; and the surface of the river there, during the dry season, is about 80 feet
Ganges and Burrampooter Rivers.

feet above the level of the sea at high water*. Thus far does the Ocean manifest its dominion in both seasons: in the one by the ebbing and flowing of its tides; and in the other by depressing the periodical flood, till the surface of it coincides as nearly with its own, as the descent of the channel of the river will admit.†

Similar circumstances take place in the Jellinghy, Hoogly, and Burrampooter Rivers; and, I suppose, in all others that are subject either to periodical or occasional swellings.

Not only does the flood diminish near the sea, but the river banks diminish in the same proportion; so that in the dry season the height of the periodical flood may be known by that of the banks.

I am aware of an objection that may be made to the above solution; which is, that the lowness of the banks in places near the sea, is the true reason why the floods do not attain so considerable a height, as in places farther removed from it, and where the banks are high; for that the river, wanting a bank to confine it, diffuses itself over the surface of the country. In

* The tides in the River Amazons are perceptible at 600 miles above its mouth; but at an elevation of only 90 feet, according to M. de Condamine. It remains to be told what the state of the river was at the time of making the experiment; because the land-floods have the effect of shortening the limits of the tide's way.

† The Count de Buffon has slightly mentioned this circumstance attending the swelling of rivers; but imputes it to the increased velocity of the current, as the river approaches the sea: which, says he, carries off the inundation so quick, as to abate its height. Now, (with the utmost deference to so great an authority) I could never perceive, that the current, either in the Ganges, or any other river, was stronger near the sea than at a distance from it. Even if we admit an acceleration of the current during the ebb tide, the flux retards it in a considerable degree, as at least to counterbalance the effects produced by the temporary increase of velocity.
Mr. Rennell's Account of the

answer to this, I shall observe, that it is proved by experiment, that at any given time, the quantity of the increase in different places, bears a just proportion to the sum total of the increase in each place respectively: or, in other words, that when the river has risen three feet at Dacca, where the whole rising is about 14 feet; it will have rose upwards of six feet and a half at Custee, where it rises 31 feet in all.

The quantity of water discharged by the Ganges, in one second of time, during the dry season, is 80,000 cubic feet; but in the place where the experiment was made, the river, when full, has thrice the volume of water in it; and its motion is also accelerated in the proportion of 5 to 3: so that the quantity discharged in a second at that season is 405,000 cubic feet. If we take the medium the whole year through, it will be nearly 180,000 cubic feet in a second.

THE Burrampooter, which has its source from the opposite side of the same mountains that give rise to the Ganges, first takes its course eastward (or directly opposite to that of the Ganges) through the country of Thibet, where it is named Sanpoo or Zanciu, which bears the same interpretation as the Gonga of Hindoostan: namely, the River. The course of it through Thibet, as given by Father Du Halde, and formed into a map by Mr. D'Anville, though sufficiently exact for the purposes of general geography, is not particular enough to ascertain the precise length of its course. After winding with a rapid current through Thibet, it washes the border of the territory of Lassa (in which is the residence of the grand Lama) and then deviating from an east to a south-east course, it approaches within 220 miles of Yunan, the westernmost province of
of China. Here it appears, as if undetermined whether to attempt a passage to the sea by the Gulf of Siam, or by that of Bengal; but seemingly determining on the latter, it turns suddenly to the west through Assam, and enters Bengal on the north-east. I have not been able to learn the exact place where it changes its name; but as the people of Assam call it Burrampoot, it would appear, that it takes this name on its entering Assam. After its entry into Bengal, it makes a circuit round the western point of the Garrow Mountains; and then, altering its course to south, it meets the Ganges about 40 miles from the sea.

Father Du Halde expresses his doubts concerning the course that the Sanpoo takes after leaving Thibet, and only supposes generally that it falls into the gulf of Bengal. M. d'Anville, his geographer, with great reason supposed the Sanpoo and Ava River to be the same; and in this he was justified by the information which his materials afforded him: for the Burrampooter was represented to him, as one of the inferior streams that contributed its waters to the Ganges, and not as its equal or superior; and this was sufficient to direct his researches, after the mouth of the Sanpoo River, to some other quarter. The Ava River, as well from its bulk, as the bent of its course for some hundred miles above its mouth, appeared to him to be a continuation of the river in question: and it was accordingly described as such in his maps, the authority of which was justly esteemed as decisive; and, till the year 1765, the Burrampooter, as a capital river, was unknown in Europe.

On tracing this river in 1765, I was no less surprised, at finding it rather larger than the Ganges, than at its course previous to its entering Bengal. This I found to be from the east; although all the former accounts represented it as from the north:
Mr. Rennell's Account of the north: and this unexpected discovery soon led to enquiries, which furnished me with an account of its general course to within 100 miles of the place where Du Halde left the Sanpoo. I could no longer doubt, that the Burrampooter and Sanpoo were one and the same river: and to this was added the positive assurances of the Aflamers, "That their river came "from the north-west, through the Bootan mountains." And to place it beyond a doubt, that the Sanpoo River is not the same with the river of Ava, but that this last is the great Nou Kian of Yunan; I have in my possession a manuscript draught of the Ava River, to within 150 miles of the place where Du Halde leaves the Nou Kian, in its course towards Ava; together with very authentic information that this river (named Irabattee by the people of Ava) is navigable from the city of Ava into the province of Yunan in China*.

The Burrampooter, during a course of 400 miles through Bengal, bears so intimate a resemblance to the Ganges, except in one particular, that one description may serve for both. The exception I mean is, that, during the last 60 miles before its junction with the Ganges, it forms a stream which is regularly from four to five miles wide, and but for its freshness might pass for an arm of the sea. Common description fails in an attempt to convey an adequate idea of the grandeur of this magnificent object; for,

--- Scarce the muse
Dares stretch her wing o'er this enormous mass
Of rushing water; to whose dread expanse,
Continuous depth, and wondrous length of course,

* The courses of the Burrampooter and Ganges, as well as that of the Ava River, from Yunan to the sea, will shortly be described in a large sheet map of Hindoostan.
Ganges and Burrampooter Rivers.

Our floods are rills ———
Thus pouring on, it proudly seeks the deep,
Whose vanquish’d tide, recoiling from the shock,
Yields to this liquid weight ———

THOMSON’S SEASONS.

I have already endeavoured to account for the singular breadth of the Megna, by supposing that the Ganges once joined it where the Ifflamutty now does; and that their joint waters scooped out its present bed. The present junction of these two mighty rivers below Luckipour, produces a body of running fresh water, hardly to be equalled in the old hemisphere, and, perhaps, not exceeded in the new. It now forms a gulf interspersed with islands, some of which rival, in size and fertility, our Isle of Wight. The water at ordinary times is hardly brackish at the extremities of these islands; and, in the rainy season, the sea (or at least the surface of it) is perfectly fresh to the distance of many leagues out.

The Bore (which is known to be a sudden and abrupt influx of the tide into a river or narrow strait) prevails in the principal branches of the Ganges, and in the Megna; but the Hoogly River, and the passages between the islands and sands situated in the gulf, formed by the confluence of the Ganges and Megna, are more subject to it than the other rivers. This may be owing partly, to their having greater embouchures in proportion to their channels, than the others have, by which means a larger proportion of tide is forced through a passage comparatively smaller; and partly, to there being no capital openings near them, to draw off any considerable portion of the accumulating tide. In the Hoogly or Calcutta River, the Bore commences at Hoogly Point (the place where the river first contracts itself)

Vol. LXXI. Q and
and is perceptible above Hoogly Town; and so quick is its motion, that it hardly employs four hours in travelling from one to the other, although the distance is near 70 miles. At Calcutta, it sometimes occasions an instantaneous rise of five feet: and both here, and in every other part of its track, the boats, on its approach, immediately quit the shore, and make for safety to the middle of the river.

In the channels, between the islands in the mouth of the Megna, &c. the height of the Bore is said to exceed twelve feet; and is so terrific in its appearance, and dangerous in its consequences, that no boat will venture to pass at spring tide. After the tide is fairly past the islands, no vestige of a Bore is seen, which may be owing to the great width of the Megna, in comparison with the passages between the islands; but the effects of it are visible, enough by the sudden rising of the tides.
To explain the nature of the

force of the current

king against the Banks

ich striking out from

time, the first reach

Course of the River

Further explanation

Ganges itself, except in the a
X. Astronomical Observations on the Rotation of the Planets round their Axes, made with a View to determine whether the Earth's diurnal Motion is perfectly equable. In a Letter from Mr. William Herschel of Bath to William Watson, M. D. F. R. S.

Read January 11, 1781.

S I R,

Bath, October 18, 1780.

The various motions of the planet we inhabit; the annual revolution in its orbit; the diurnal rotation round its axis; the menstrual motion round the common center of gravity of the moon and earth; the precession of the equinoctial points; the diminution of the obliquity of the ecliptic; the nutation of the earth's axis: in short, every one of the motions that arise from the actions of the sun, moon, and planets, combined with the spheroidal figure of the earth, and the projectile and rotatory motions first impressed upon it, have all been considered by astronomers, and their real and apparent inequalities investigated. And to the great honour of modern astronomers it must be confessed, that no science has ever made such considerable strides towards perfection in so short a time as astronomy has done since the invention of the telescope.

There is one of the motions of the earth however which, it seems, has hitherto escaped the scrutiny of observers; I mean the diurnal rotation round its axis. The principal reason why
why this has not been looked into, is probably the difficulty
of finding a proper standard to measure it by; since it is itself
used as the standard by which we measure all the other motions.
We have, indeed, no cause to suspect any very material peri-
dical irregularity, either diurnal, menstrual, or annual; for
the great perfection of our present time-pieces would have dis-
covered any considerable deviation from that equability which
we have hitherto ascribed to the diurnal motion of the earth.
And yet, it is not perhaps altogether impossible but that
inequalities may exist in this motion which, in an age where
observations are carried to such a degree of refinement, may
be of some consequence.

To shew how far time-keepers, though ever so perfect, are
from being a proper, or at least a sufficient, standard to exa-
mine the diurnal motion of the earth by, I may ask, whether
it is probable, that any clock would have discovered to us the
aberration of the fixed stars? And yet that aberration produces
a change in longitude, and of consequence in right ascension,
which causes an annual irregularity in a star's coming to the
meridian, which a time-piece, were it a sufficient standard,
would soon have discovered, and which we might have attri-
buted to an inequality of the earth's diurnal motion, had we
not been acquainted with its real cause. And if we were to
find out any apparent irregularity, acceleration, or retardation,
should we not much rather suspect the clock than the diurnal
motion? I may therefore venture to say, that the aberration of
the fixed stars, though attended with the above mentioned con-
sequence, would for ever have remained a secret to us, if it
had not been found out by other methods than time-keepers.

Now, if time-pieces do fail us in this critical case, where
we stand in the greatest need of their assistance, it is almost in
vain to expect any help from another quarter; for what mechanical movement on earth, or motion of the heavens, is there that can measure out such equal portions of time as we require to compare the diurnal motion of the earth to? However, to proceed, since we have already great proofs that the diurnal motion of the earth is, if not perfectly equable, at least more so than any other motion we are acquainted with, it will not appear absurd to suppose the diurnal rotation of the other planets to be so likewise. This suggested to me the thoughts of estimating the diurnal motion of one planet very exactly by that of another, making each the standard of the other. In this manner we may obtain a comparative view, by which future astronomers, if they shall hereafter be inclined to pursue the subject, may be enabled to make some estimate of the general equability of the rotatory motions of the planets. For if in length of time they should perceive some small retardation in the diurnal motion of a planet occasioned by some resistence of a very subtle medium in which the heavenly bodies perhaps move; or, on the other hand, if there should be found an acceleration from some cause or other, they might then ascribe the alteration either to the diurnal motion of the earth, or to the gyration of the other planet, according as circumstances, or observed phænomena, should make one or the other of these opinions most probable.

Now, this method of comparing together different rotations of several planets, simple as it may appear, was not without some difficulties. In the first place it was evident, that the common account of their diurnal motions*, which makes that

of Jupiter 9 h. 56', of Mars 24 h. 40', how true soever it may be in a general way, was much too inaccurate for this critical purpose. The gyration of Venus was still less to be depended upon, being only noted to the hour without the minutes: it became, therefore, necessary to proceed to observations of a more determinate kind. From what I had already seen of the rotation of the planets, I concluded, that Mars on several accounts would be the most eligible planet for my purpose: for the spots on Jupiter change so often that it is not easy, if at all possible, to ascertain the identity of the same appearance, for any considerable length of time. Nor do the dark spots only change their place, which may be supposed to be large black congeries of vapours and clouds swimming in the atmosphere of Jupiter; but also the bright spots, though they may adhere firmly to the body of Jupiter, may undergo some apparent change of situation by being differently covered or uncovered on one side or the other, by alterations in the belts. It will be seen hereafter, that I have observed the revolution of a very bright spot, not suspected of any change of situation, to be first, by one set of observations, at the rate of 9 h. 51' 45'',6; and afterwards, by another set immediately following at the rate of 9 h. 50' 48''.

As the principal belts on Jupiter are equatorial, and as we have certain constant winds upon our planet, especially near the equator, that regularly, for certain periods, blow the same way *, it is easily supposed, that they may form equatorial belts by gathering together the vapours which swim in our atmosphere, and carrying them about in the same direction. This will, by analogy, account for all the irregularities of Jupiter's

* See Acta Eruditorum, 1687. Dr. Halley's Account of periodical Winds.
piter’s revolutions, deduced from spots on his disk that may have changed their situation; for if we suppose the rotation of Jupiter, according to Cassini, to be 9 h. 56’, then some spots that I have observed must have been carried through about 60° of Jupiter’s equator in 22 of his revolutions or days. This would certainly be a very great velocity in the clouds, which is, however, not unparalleled by what has happened in our own atmosphere.

But to return to my purpose: on the planet Mars we see spots of a different nature; their constant and determined shape, as well as remarkable colour, shew them to be permanent and fastened to the body of the planet. These will give the revolution of his equator to a great certainty, and by a great number of revolutions, to a very great exactness also. Supposing then, that, by a method I shall hereafter describe, we can determine whether a spot on the disk of Mars is, or is not, in the line which joins the center of the earth and the center of that planet, to half an hour’s time with certainty (I believe ten or twelve minutes will be found sufficient for that purpose), in this case we shall in 30 days have the revolution true to a minute; and, by continuing these observations for three months, we shall have it to 20”. When we are so far certain, we can easily arrive to a much greater degree of exactness; for as we now can no longer mistake a whole revolution, if we take the time of any particular spot’s being in the line which joins the centers of the planets during one opposition of Mars, and take the same again at or near the next opposition, we shall have an interval of about 780 days, which will give the diurnal motion of that planet true to about 2”. The next opposition will give it to one, and so forth; by which means, and by taking a proper number of such periods, we may determine the rotation of Mars.
Mars to as great an exactness as we shall think necessary for the purpose of our comparative view.

Had such observations as these been made two thousand, or perhaps only so many hundred years ago, we might now, by repeating them, most probably become acquainted with some curious minute changes of the solar system that have hitherto passed unnoticed.

There is a certain circumstance which would almost create a suspicion that there has been some retardation in the diurnal motion of the earth. The difference between the equatorial and polar diameters of the earth, by actual measurement, has been found to be about 36 English miles and 9 tenths; but, by a calculation wherein the present rotation is made use of, it will only amount to about 33 miles and 8 tenths: from which it should seem probable, that when the earth assumed the present form, the diurnal rotation was somewhat quicker than it is at present, by which means the centrifugal force bore a greater proportion to the force of gravity to which it is contrary, and thus occasioned a higher elevation of the equatorial parts. But I would not lay much stress upon this argument; for, in the calculation, it has been supposed, that the earth is nearly of an equal density at the surface and towards the center, which it seems is not agreeable to some late curious experiments and calculations that have been made under the conduct of the Astronomer Royal upon the attraction of a mountain*, the result of which ought now to be taken into consideration, and the calculation repeated. If all the data could be exactly depended upon, it would be practicable enough from the laws of

* See Mr. Hutton's Account of the Calculations made from the Survey and Measures taken at Schehallien, in order to ascertain the mean Density of the Earth. Phil. Trans. 1778.
gravity, and the present rotation and given form of the earth, to find the centrifugal force required to produce that form, and thence to shew what must have been its diurnal motion when it assumed the same. However, these are researches that in my present situation I neither have opportunity nor perhaps ability enough to investigate properly; and which, therefore, I hope some of our excellent mathematicians will think worth while to look into.

I shall now relate my observations on Jupiter and Mars. The telescopes I used are of my own construction; and are, a twenty-feet Newtonian reflector, a ten-feet reflector of the same form, and a seven-feet reflector already mentioned in my paper on the mountains of the moon. My time I gained by equal altitudes taken with a brass quadrant of two-feet radius, carrying a telescope which magnifies about 40 times; for the correction of altitudes taken of the sun I used de la Lande's tables. I kept my time by two very good pieces; one having a deal pendulum-rod, the other a compounded one of brass and iron, both having a proper contrivance not to stop when winding up. The rate of going of my clocks I determined by the transit of stars.

Observations on Jupiter in the year 1778.

February 24. Clock 1' 10'' too soon. About 9 o'clock I saw a bright belt on one part of the disk of Jupiter, see tab. V. fig. 1.

About 10 o'clock it was advanced as far as the center, fig. 2.

11 h. The white belt still more advanced, fig. 3.

11 h. 25'. It approached towards the edge of the disk; and at 12 h. was extended all over, as in fig. 4.

Vol. LXXI. R February
February 25. 8 h. The same bright belt I observed yesterday extends all over.

8 h. 45'. It is divided by a darkish spot, situated at some distance from the center, as in fig. 5.

9 h. 5'. The small dark division is advanced a little farther than the center, as in fig. 6.

9 h. 23'. The spot is visibly advanced a considerable deal farther.

March 2. 8 h. 2'. The darkish spot, with some alteration in its shape, is now in the middle of the disk, see fig. 7.

March 3. 10 h. 34'. The bright belt on the south of the equator is now in the middle; that is to say, if a line be drawn perpendicular to the equatorial belt, and through the center, the end of the equatorial belt now touches it, fig. 8.

13 h. 49'. The darkish spot, in which there has been some alteration since yesterday, seems now to be in the center, fig. 9.

March 14. The clock altered to true equated time; but the rate of going not changed, being well regulated.

7 h. 35'. The spot is now in the center, but does not seem quite to fill the white belt; nor is it so large and distinct as it was before, fig. 10.

April 7. 9 h. 31'. There are three dark spots in the equatorial belt nearly in the center, see fig. 11.

April 12. 7 h. 50'. The three dark spots are in the center. The southermmost of the three is nearly quite vanished; the other two are also much fainter. They are, however, distinct enough to be known, fig. 12.
Observations on Jupiter in 1779.

April 14. Clock 52" too late. 8 h. 48'. A remarkable bright spot in the equatorial belt towards the north is in the center, see fig. 18.

8 h. 58'. The spot is a little past the center.

April 19. Clock true mean time. 7 h. 10'. There is a bright spot just now in the center, which, from its shape, I take to be the same that was there April 14th.

7 h. 20'. The spot is visibly past the center.

April 23. Clock shews true time. 9 h. 38'. The same bright spot is in the center.

9 h. 43'. It is past the center. Memorandum, my time-piece may be depended upon to a few seconds.

It will not be amiss to observe, that the spots, as well as a great many other phenomena, were watched as they came on, passed over the center, and went off the disk of Jupiter; but I have only selected those observations that were necessary to my present purpose.

Comparing together the observations that were made in the year 1778, February 24th and March 3d, we obtain an interval of 7 days 34 minutes, which being divided by 17 revolutions made by Jupiter on his axis, we have the time of one synodical revolution equal to 9 h. 54' 56'' 4.'

The dark spot on February 25 was observed some time before, and also just after it was past the center; therefore I have supposed it to be in the center about 8 h. 58': and we have,
<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>25</td>
<td>8</td>
<td>58</td>
</tr>
<tr>
<td>March</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Divided by 12 rev.</td>
<td>4</td>
<td>23</td>
<td>4</td>
</tr>
</tbody>
</table>

1 revolution = 9 h. 55' 20".

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>25</td>
<td>8</td>
<td>58</td>
</tr>
<tr>
<td>March</td>
<td>3</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td>15 revol.</td>
<td>6</td>
<td>4</td>
<td>51</td>
</tr>
</tbody>
</table>

1 revolution = 9 h. 55' 24".

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>25</td>
<td>8</td>
<td>58</td>
</tr>
<tr>
<td>March</td>
<td>14</td>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>41 revol.</td>
<td>16</td>
<td>22</td>
<td>38</td>
</tr>
</tbody>
</table>

1 revolution = 9 h. 55' 4",6.

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1 revol.</td>
<td>1</td>
<td>5</td>
<td>47</td>
</tr>
</tbody>
</table>

1 revolution = 9 h. 55' 40".

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Hour</th>
<th>Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>29 revol.</td>
<td>11</td>
<td>23</td>
<td>34</td>
</tr>
</tbody>
</table>

1 revolution = 9 h. 54' 58",2.
on the Rotation of the Planets, &c.

D. H. M. S.

March 3 13 49 0
14 7 36 10

Divided by 26 rev. 10 17 47 10

1 revolution = 9 h. 54' 53'',4.

April 7 9 3\text{I} 12 7 50

12 revol. 4 22 29

1 revolution = 9 h. 51' 35''.

Again, comparing together the observations of 1779, which were made with the utmost attention to time, we have,

April 14 8 48 52
April 19 7 10 0

12 revol. 4 22 21 8

1 revolution = 9 h. 51' 45'',6.

April 19 7 10
April 23 9 38

10 revol. 4 2 28

1 revolution = 9 h. 50' 48''.

And taking both together;

April 14 8 48 52
April 23 9 38 0

22 revol. 9 0 49 8

1 revolution = 9 h. 51' 19'',4.

These
These several results are so exceedingly various, that it is evident Jupiter is not a proper planet for the critical purpose of a comparative view of the diurnal motions; nor can this great variety proceed from any inaccuracy in the observations: for, in my opinion, it is not well possible to make a mistake in the situation of a spot that shall amount to so much as five minutes of time. The observation of April 23, 1779, was made with a view to ascertain this point, when it was found that five minutes of time made a sensible difference in the situation of a spot when near the center.

If we reduce the synodical revolutions to sidereal ones, the result will be so little different from the above, that I have not thought it worth while to do it in this place. By a comparison of the different periods it appears, that a spot which is carried about in the atmosphere of Jupiter generally suffers an acceleration, or, which is the same thing, performs its revolutions by degrees in less time than it did at first; for the spot observed in 1778 moved at the following rates. From February 25. to March 2. in 9 h. 55' 20"; to March 3. nearly the same; to March 14. in 9 h. 55' 4"; from March 2. to March 3. in 9 h. 55' 40"; to March 14. in 9 h. 54' 58"; from March 3. to March 14. in 9 h. 54' 53". In 1779 a spot moved from April 14. to April 19. at the rate of 9 h. 51' 45"; to April 23. in 9 h. 51' 24"; and from April 19. to April 24. in 9 h. 50' 48"; all which is agreeable enough to the theory of equatorial winds, since it may probably take up sometime before a spot can acquire a sufficient velocity to go as fast as those winds may blow. And, by the by, if Jupiter's spots should be observed in different parts of his year, and be found in some to be accelerated, in others to be retarded, it would almost amount to a demonstration of his monsoons and their periodical changes; but if his axis
on the Rotation of the Planets, &c.

axis should not be inclined enough to his orbit, to occasion such a change, they may probably always blow in the same direction.

Observations on Mars in the year 1777.

Twenty-feet Newtonian reflector; power 300.

April 8. 7 h. 30'. I observed two spots upon Mars, with a bright belt or partition between them. The belt was not very well defined, see tab. VI. fig. 14.

9 h. 30'. The spots are advanced, and more spotted parts are visible, fig. 15.

10 h. The revolution of Mars on his axis is now very evident, fig. 16.

April 17. Ten-feet Newtonian reflector; power about 211. 7 h. 50'. Mars appeared as in fig. 17. At a and b there were two bright spots, so luminous that they seemed to project beyond the disk. At c and d there were two very dark spots, joined by a lesser black line in the middle, which however was crossed at e and f by a very faint whitish partition.

April 26. Ten-feet reflector; power 211.

9 h. 5'. The spots on the planet are very faint, and much about as in fig. 18.

April 27. Ten-feet reflector; power 324.

8 h. 40'. The evening very fine: my telescope in compleat order. The spots as in fig. 19.

Observations.
May 9th. Clock 15" too fast; by equal altitudes on the 14th of April, and by the transit of a star, is found to lose 1",45 per day.

11 h. 1' by the clock, I found the situation of the spots on Mars as in figure 20; there is a very remarkable dark spot not far from the center.

11 h. 30'. The figures are gone from the center.

May 11. Clock 12" too fast.

10 h. 18'. The same spot that was visible May 9. is on the disk, the darkest place being entirely south-east of the center, see fig. 21.

11 h. 43'. The darkest part is almost arrived at the center, fig. 22.

12 h. 17'. The dark spot is with its edge just near the center, as in fig. 23.

May 13. Seven-feet reflector; power 222. Clock 9" too fast.

11 h. 26'. Mars seems now to be in the same situation he was the 11th, at 10 h. 8'.

May 22. Clock 4" too slow.

12 h. 5'. The figure of May 11th is not on the disk; but some other fainter spots are visible. The air is full of vapours.

June 6. The clock set by ten equal altitudes taken to-day, and by the transit of θ Scorpii loses 1",9 per day. What I have perhaps improperly called a transit is the occultation of a star passing behind the perpendicular edge of a high building at about 40 yards distance, observed with a fixed telescope directed to the place where it vanishes.

10 h. 10'. The same figure is upon the disk of Mars which was there April 8, 1777, at 7 h. 30'.

June
June 15. Clock 17" too slow. 9 h. 45'. The same figure is upon Mars that was there May 9. at 11 h. 1'; but it is more advanced. I suppose it to be the same, and in the same situation, as April 17, 1777, at 7 h. 50'.

June 17. Clock 20" slow.

9 h. 12'. The dark spot on Mars is rather more advanced than it was May 11th, at 10 h. 18'.

10 h. The spot is visibly advanced: I suppose it will take near an hour to come to the center.

10 h. 15'. A very thick fog obscures the sky.

11 h. 15'. The same darkness.

June 19. Clock 22" too slow by the transit of θ Scorpii observed this evening.

8 h. 40'. The figure on the disk of Mars appears now to be as it was April 26, 1777, at 9 h. 5', see fig. 18.

11 h. 30'. The figure of May 11. which I have been hitherto watching, is not come to the position it was then at 11 h. 43', but cannot be far from it. I fear, as Mars approaches the horizon, I shall not be able to follow him till the figure comes to the center.

11 h. 47'. The state of the air near the horizon is very unfavourable. With much difficulty I can but just see that the figure is not quite so far advanced as it was May 11th, at 11 h. 43', but can certainly not be above two or three minutes from it.

11 h. 51'. The undulation of the air prevents all further observation.

Let us now examine the result of the above mentioned observations: comparing together the two following short intervals of the year 1779, we have,
Mr. Herschel's Astronomical Observations

D. H. M. S.
From May 9 11 0 45
to May 11 12 16 48

Divided by 2 revol. 2 1 16 3

Gives 1 revolution = 24 h. 38' 1'', 5''

A second small interval.
May 11 10 17 48
 13 11 25 51

2 revol. 2 1 8 3

1 revolution = 24 h. 34' 1'', 5''

Here we have two very short intervals that agree to 4'', which is more than we could have expected in such short periods of time.

Comparing together observations that were made at a greater distance, we find,

First monthly period,
May 11 10 17 48
June 17 9 9 20\{ allowing 3' because the obs. says the
spot was rather more advanced.\}

36 revol. 36 22 51 32:

1 revolution = 24 h. 38' 5'', 99

Second monthly period,
May 11 11 42 48
June 19 11 50 22\{ allowing 3' for the time the spot would have
taken to come to the place mentioned.\}

38 revol. 39 0 7 34:

1 revolution = 24 h. 38' 5'', 4'.
Third monthly period,

<table>
<thead>
<tr>
<th></th>
<th>D.</th>
<th>H.</th>
<th>M.</th>
<th>S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>13</td>
<td>11</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>June</td>
<td>17</td>
<td>9</td>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

34 revol. 34 21 43 29

1 revolution = 24 h. 38' 20.3''

This last is, perhaps, as likely to be near the truth as any, since the same spot was here observed for the third time, and therefore its motion become more familiar.

Here we have three longer periods that agree to fifteen seconds, which is quite sufficient for extending the interval of time to those observations that were made in the year 1777. But as these are the synodical revolutions, it will be necessary first to reduce them to sidereal rotations.

In figure 24. let us suppose the orbit of Mars, MABC, to be in the same plane with the orbit of the earth, EDFG; and the axis of Mars to be perpendicular to his orbit. Let m, e, m, e, be the situations of Mars and the earth on the 13th of May and 17th of June; then will the line EM, that connects the centers of Mars and the earth, point out the geocentric place of Mars on the 13th of May; and the line em, the geocentric place of the same planet on the 17th of June. Draw er and ms parallel to ER; then will er point out the geocentric place of Mars on the 13th of May; and the angle sme is equal to the angle mer. Now, by an ephemeris * the geocentric place of Mars, May 13, at 11 h. 26' was 7 f. 20 d. 59' 21'';

* The Nautical Almanac gives the geocentric place of Mars only to every sixth day; for which reason I used Whate's Ephemeris, where it is given for every day, though perhaps not with so much exactness as I could wish.
and on the 17th of June, at 9 h. 9', it was 7' 12 d. 27' 22'', by which we obtain the difference or angle $rem = ems = 8$ d. 3' 59''.

Now a spot on Mars, situated in the direction me, will have made a sydereal revolution when it returns to the same, or a parallel direction ms. From which we gather, that the spot on the 17th of June, after coming to the line me, where it finishes the synodical revolution, will have to go through an arch of 8 d. 31' 59'', in order to arrive into the direction of the line ms, where it finishes the sydereal rotation. The time it will take to go through this arch, at the sydereal rate of 24 h. 39' 20'' to 360 degrees, or 4'' 109. per minute of a degree, will be 35' 3'', 8; this being divided by the numbers of revolution 34, gives 1' 1'', 8; which, added to 24 h. 38' 20'', 3, gives us 24 h. 39' 22'', 1 for the sydereal revolution of Mars, as found by the third of the monthly periods. This quantity will help us to find a proper divisor for the three following long biennial periods.

It is to be observed, that Mars has been retrograde in the above example, for which reason the measure of the angle ems was to be added to the synodical revolution when we wanted to find the sydereal rotation; but if he had been direct, or if his place had been more advanced in the ecliptic than that to which we compared it, as at μ, then the line $\mu\sigma$ parallel to EM would be the direction to which the spot should return, in order to accomplish a sydereal revolution, and therefore the quantity of the angle $\sigma\mu\epsilon = \mu\epsilon\sigma$, or difference of the geocentric places ought to be subtracted from the synodical revolution to obtain the sydereal one.
First biennial period, 1777, April 8 7 30
1779, June 6 10 10

\[\frac{789}{2} 40 \]

The geocentric places of Mars at those times were,

<table>
<thead>
<tr>
<th>S.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6 31 26</td>
</tr>
<tr>
<td>7</td>
<td>13 48 30</td>
</tr>
</tbody>
</table>

\[\frac{1}{7} 17 4 \]

turned into time at \(4'', 109 \) per minute of a degree and subtracted, because Mars is more-advanced in the ecliptic, is

\[\frac{789}{2} 40 \]
\[- \frac{2}{33} 11,9 \]

Divided by 768 rev.

\[\frac{789}{2} 40.2 \]

1 revolution \(= 24 \) h. 39' 23'', 03.

Second biennial period, 1777, April 17 7 50 0
1779, June 15 9 45 17

\[\frac{789}{1} 55 17 \]

Geocentric places

<table>
<thead>
<tr>
<th>S.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3 31 27</td>
</tr>
<tr>
<td>7</td>
<td>12 40 23</td>
</tr>
</tbody>
</table>

\[\frac{1}{9} 8 56 \]

Turned into time 789 1 55 17
and subtracted \[- \frac{2}{40} 52 \]

768 revol.

\[\frac{788}{2} 23 14 25 \]

1 revolution \(= 24 \) h. 39' 18'', 94.
Third biennial period, 1777, April 26 9 5 0
1779, June 19 8 40 22

\[
\begin{array}{c}
D. \\
H. M. S. \\
\hline
783 23 35 22 \\
\end{array}
\]

Geocentric places
\[
\begin{array}{c}
S. D. \\
6 1 24 36 \\
7 12 31 48 \\
\hline
1 11 7 12 \\
\end{array}
\]

Turned into time
\[
\begin{array}{c}
783 23 35 22 \\
\text{and subtracted} \\
763 \text{ revol.} \\
\hline
783 20 50 6.4 \\
\end{array}
\]

1 revolution = 24 h. 39' 23", 04.

As these three periods are supported by observations of equal validity, I shall take a mean of them all for the nearest approximation to the true syndereal revolution of Mars on his axis, which therefore is 24 h. 39' 21", 67.

It remains now only to see how far we may depend upon this determination of Mars's diurnal rotation as coming near the truth; and looking over those causes which may possibly produce any errors, we find, first of all, that in the long biennial periods a mistake in the number of revolutions would produce a considerable deviation from truth. Secondly, in the observations of a spot which moves so slow, we are also liable to some considerable mistake in estimating the time when it comes to a certain place; and the more so, if that place is not the center. Lastly, the time itself is liable to inaccuracy.
As to the first, it appears from the three monthly periods observed in the year 1779, when the proper allowances for the geocentric places are made, that the sydereal revolution of Mars cannot well be less than 24 h. 39' 5'', nor more than 24 h. 39' 22''; but if we should divide any one of the three biennial periods by a supposed number of revolutions, only one more or one less than we have done, the difference would be so considerable, that nothing but a mistake in every one of the three monthly periods, or at least one whole hour, could justify such a supposition; and that such a mistake in the situation of a spot on Mars cannot have been made in those observations, I think, is evident enough from the exactness with which they were made, and from their agreement with each other.

The second cause of error, which is the uncertainty in assigning the exact time when a spot comes to the center, is of some force. But it seems to me highly probable, from the manner in which I have seen the spots on Mars pass over the disk of that planet, that there can hardly be so great an error as 10' in an observation of any remarkable spot's coming to the center. However, not being willing to trust more to the eye than I ought to do, I had recourse to the following experiment. I drew several circles of one inch radius, taking care to make no visible impression of a center; and placed in each a fine point at the several distances of .0424, .0636, .0848, in tenths of an inch from the real center; some to the right, others to the left. These measures are the lines to radius one, of 2° 26', 3° 39', and 4° 52', which are the arches a spot on Mars passes over in 10, 15, 20' minutes respectively. I exposed them to several persons unacquainted with my designs, and found, that not one of them made a single mistake in saying whether the point was, or was not, in the center of the circle.
circle, and which way it deviated from it. As the direction of the motion of a spot on Mars is known, I thought the persons who were to judge of the place of the points were intitled to be acquainted with the line in which they were placed, which for that reason was always to the right and left only. The points that answer to the eccentricity of 15 and 20′ are indeed so visibly out of the center, that I believe we may safely say, that any mistake, in estimating the time of a spot on Mars coming to the center, cannot well exceed a quarter of an hour at the outside.

As for the third and last occasion of error, the time itself, I believe my manner of obtaining and keeping it in the year 1779 will appear satisfactory, and may, I think, be depended upon to a few seconds; but the observations of the year 1777, indeed, are far from having the same advantage. I was not then provided with an altitude instrument, therefore set my clock by a good sun-dial, with the equation of time contained in the Nautical Almanac, and found it to agree generally to a minute or two with the time calculated for the eclipses of Jupiter’s first satellite, as I deduced it for Bath from the Nautical Almanac. However, it was certainly liable to an error of several minutes; therefore, allowing no less than 10′ for the clock in 1777, and 20′ for an error in estimating the situation of a spot in 1779, it will both amount to half an hour: then, if we take a mean of the three numbers, whereby we have divided the three biennial periods, we have 766; and half an hour, divided by 766; will therefore give us the quantity to which, it seems, can amount, all the uncertainty in the sydereal diurnal rotation of Mars, which is 2′ 34.

A nearer approximation to truth I hope to obtain at the next opposition, which will happen about the middle of July 1781. I have
on the Rotation of the Planets, &c.

I have ventured to calculate the times for that opposition, when the edge of the remarkable dark spot will be seen near the center, as it is in figure 23, or, which is the same thing, as it was the 11th of May 1779, at 12 h. 17'. The spot not being visible at the time of the opposition, I have taken the nearest period, before and after, in which it will pass over the disk. There is, however, a circumstance which may make the appearance of the spot not quite similar to the figure I have drawn, even though the rotations should perfectly answer as to the times; for the position of the axis of Mars being still in some measure unknown, I could make no allowance for a change, which a difference in the situation of no less than two signs may occasion, though in all probability it will not be very considerable.

Those who are provided with proper telescopes will have an opportunity to see how far the calculated times agree with the spot's appearance; and it is by this means I also hope to correct and improve the tables I have drawn up for this purpose, and further to approximate to a true theory of the gyration of this planet.

Not knowing the exact difference of meridians between Greenwich and this place, I have calculated the spot's appearance for the meridian of Bath. From an eclipse or two of Jupiter's satellites, of which, by the favour of the Rev. Mr. Hornsby, I have seen correspondent observations, I suppose the difference cannot be much less than 9' west of Greenwich; and at the same time I join an account of the solar eclipse of the 24th of June 1778, which may be depended upon as a very compleat observation, and may serve to ascertain the longitude of this place.

Vol. LXXI. T Eclipse
Eclipse of the sun observed at Bath.

June 24, 1778.

<table>
<thead>
<tr>
<th>H. M. S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 30 10.7</td>
</tr>
<tr>
<td>5 18 7.7</td>
</tr>
</tbody>
</table>

Calculations; or (as the principles on which they are founded are still established upon a few observations only, and require some time for mature confirmation) I would rather, if I might be allowed the expression, call them calculated conjectures of the times when the remarkable dark spot will be seen near the center of the disk of Mars.

For June, July, and August, of the year 1781.

<table>
<thead>
<tr>
<th>D.</th>
<th>H. M. S.</th>
<th>D.</th>
<th>H. M. S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 28</td>
<td>9 48 39</td>
<td>July 8</td>
<td>16 13 23</td>
</tr>
<tr>
<td>29</td>
<td>10 27 10</td>
<td></td>
<td>13 10 6</td>
</tr>
<tr>
<td>30</td>
<td>11 5 42</td>
<td></td>
<td>12 49 57</td>
</tr>
<tr>
<td>July</td>
<td>14 41 13</td>
<td></td>
<td>28 48</td>
</tr>
<tr>
<td>1</td>
<td>12 22 32</td>
<td></td>
<td>10 7 39</td>
</tr>
<tr>
<td>2</td>
<td>13 9 51</td>
<td></td>
<td>10 46 31</td>
</tr>
<tr>
<td>3</td>
<td>13 39 10</td>
<td></td>
<td>11 25 44</td>
</tr>
<tr>
<td>4</td>
<td>14 17 29</td>
<td></td>
<td>12 4 56</td>
</tr>
<tr>
<td>5</td>
<td>14 55 46</td>
<td></td>
<td>12 44 8</td>
</tr>
<tr>
<td>6</td>
<td>15 34 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I have the honour to be, &c.
XI. Some Account of the Termites, which are found in Africa and other hot Climates. In a Letter from Mr. Henry Smeathman, of Clement’s Inn, to Sir Joseph Banks, Bart.

P. R. S.

Read February 15, 1781.

SIR,

Clement’s Inn,
Jan. 23, 1781.

Of a great many curious parts of the creation I met with on my travels in that almost unknown district of Africa called Guinea, the termites, which by most travellers have been called white ants, seemed to me on many accounts most worthy of that exact and minute attention which I have bestowed upon them.

The amazingly great and sudden mischief they frequently do to the property of people in tropical climates, makes them well known and greatly feared by the inhabitants.

The size and figure of their buildings have attracted the notice of many travellers, and yet the world has not hitherto been furnished with a tolerable description of them, though their contrivance and execution scarce fall short of human ingenuity and prudence; but when we come to consider the wonderful oeconomy of these insects, with the good order of their subterraneous cities, they will appear foremost on the list of the wonders of the creation, as most closely imitating mankind in provident industry and regular government.

T z

You
Mr. Smeathman's Account of

You had barely time to see and to admire some of their buildings in New Holland, and have been pleased to say, you think an accurate account of them would meet a favourable reception from the Royal Society. That which I now have the honour to present to you, is accurate and faithful as far as it goes. I have kept as close to my subject as was in my power, without being obscure, or falling short of my intention; and though I have given only the heads of what I could draw from my memorandums on the subject, they will probably be found sufficiently descriptive and historical for the bounds of a letter.

The sagacity of these little insects is so infinitely beyond that of any other animals I have ever heard of, that it is possible the accounts I have here communicated would not appear credible to many, without such vouchers and such corroborating testimony as I am fortunately able to produce, and are now before you. There are also many living witnesses in England to most of the extraordinary relations that I have given, so that I hope to have full credit for such remarks as no one but myself has probably had time and opportunities enough to make, and which are not susceptible of demonstration, except in those places where the insects are found.

Such as they are, I beg leave to lay them, with all diffidence and humility, before you and that illustrious Body of which you are President; and if they should in a small degree meet with approbation, I shall be exceedingly satisfied.

These insects are known by various names. They belong to the terms of Linnaeus, and other systematical naturalists.

By the English, { In the windward parts of Africa they are called Bugga Bugs.

In the West Indies, Wood Lice, Wood Ants, or White Ants.

By
the Termites of Africa and other Hot Climates.

At Senegal, Vague-Vagues.

By the French, { In the West Indies, Poux de Bois, or Four-
mis Blanches.

By the Bolms, or Sherbro people, in Africa, Scantz.

By the Portugueze in the Brazils, Coupee or Cutters, from
their cutting things in pieces.

By this latter name and that of Piercers or Eaters, and simi-
lar terms, they are distinguished in various parts of the tropical
regions.

The following are the specific differences, given by Dr.
Solander, of such insects of this genus as I have observed and
collected.

1. Termes bellicosus corpore fusco, alis fuscescentibus: costâ
ferrugineâ, stigma matibus sub superis oculo propinquis, puncto
centrali prominulo.

2. Termes mordax nigricans, antennis pedibusque teallaris,
alis fuliginosis: areâ marginali dilatatâ: costâ nigricante,
stigma matibus inferis oculo approximatis, puncto centrali
impresso.

3. Termes atrox nigricans, segmentis abdominalibus margi-
gine pallidis, antennis pedibusque teallaris, alis fuligin-
ouis: costâ nigrâ, stigma matibus inferis, puncto centrali
impresso.

4. Termes destructor nigricans, abdominis lineâ laterali luteâ,
antennis teallaris, alis hyalinis: costâ lutescente, stigma-
matibus sub superis, puncto centrali obliterato.

5. Termes arborum corpore teallari, alis fuscescentibus:
costâ lutescente, capite nigricante, stigmaticibus inferis
oculo approximatis, puncto centrali impresso.

The Termites are represented by Linneus as the greatest
plagues of both Indies, and are indeed every way between the:

Tropics.
Tropics so deemed, from the vast damages they cause, and the losses which are experienced in consequence of their eating and perforating wooden buildings, utensils, and furniture, with all kinds of household-stuff and merchandize, which are totally destroyed by them, if not timely prevented; for nothing less hard than metal or stone can escape their most destructive jaws.

They have been taken notice of by various travellers in different parts of the torrid zone; and indeed where numerous, as is the case in all equinoctial countries and islands that are not fully cultivated, if a person has not been incited by curiosity to observe them, he must have been very fortunate who, after a short residence, has not been compelled to it for the safety of his property.

These insects have generally obtained the name of Ants, it may be presumed, from the similarity in their manner of living, which is, in large communities that erect very extraordinary nests, for the most part on the surface of the ground, from whence their excursions are made through subterraneous passages or covered galleries, which they build whenever necessity obliges, or plunder induces, them to march above ground, and at a great distance from their habitations carry on a business of depredation and destruction, scarce credible but to those who have seen it. But notwithstanding they live in communities, and are like the ants omnivorous; though like them at a certain period they are furnished with four wings, and emigrate or colonize at the same season; they are by no means the same kind of insects, nor does their form correspond with that of Ants in any one state of their existence, which, like most other insects, is changed several times.

The Termites resemble the Ants also in their provident and diligent labour, but surpass them as well as the Bees, Wasps, Beavers,
Beavers, and all other animals which I have ever heard of, in the arts of building, as much as the Europeans excel the least cultivated savages. It is more than probable they excel them as much in sagacity and the arts of government; it is certain they shew more substantial instances of their ingenuity and industry than any other animals; and in fact lay up vast magazines of provisions and other stores; a degree of prudence which has of late years been denied, perhaps without reason, to the Ants (1).

Such however are the extraordinary circumstances attending their economy and sagacity, that it is difficult to determine, whether they are more worthy of the attention of the curious and intelligent part of mankind on these accounts, or from the ruinous consequences of their depredations, which have deservedly procured them the name of Fatalis or Destructor.

As this is the case, it is a little surprising that an accurate natural history of these wonderful insects has not been attempted long since; especially as, according to Bosman (who wrote the beginning of this century) in his description of the Coast of Guinea, some curious circumstances relative to them must have been known. According to that gentleman, the King was supposed to be as large as a Cray-fish (2). This, though a bad comparison, is pretty near the truth in respect to the size of the female, who is the Common Mother of the Community;

(1) Though Ants have no occasion to lay up stores for winter in cold climates, they certainly must and do carry great quantities of provisions into their nests to feed the young brood; and most probably provide some before hand for fear of accidents, which might be fatal to the young ones, who, like all insects in the caterpillar state, are very voracious, and cannot bear disappointments of long duration.

(2) Bosman’s Guinea, p. 260.
and, according to the mode we have adopted from time immemorial in speaking of Ants and Bees, the queen.

These communities consist of one male and one female (who are generally the common parents of the whole, or greater part, of the rest), and of three orders of insects, apparently of very different species, but really the same, which together compose great commonwealths, or rather monarchies, if I may be allowed the term.

The great LINNÆUS, having seen or heard of but two of these orders, has clas'd the genus erroneously; for he has placed it among the Aptera, or insects without wings; whereas the chief order, that is to say, the insect in its perfect state, having four wings without any sting, it belongs to the Neuroptera; in which clas' it will constitute a new genus of many species (3).

The different species of this genus resemble each other in form, in their manner of living, and in their good and bad qualities: but differ as much as birds in the manner of building their habitations or nests, and in the choice of the materials of which they compose them.

There are some species which build upon the surface of the ground, or part above and part beneath, and one or two species, perhaps more, that build on the stems or branches of trees, sometimes aloft at a vast height.

(3) I have no doubt, from the account and figures given of the European Termes Pulsatorius, or Death Watch, by the illustrious BARON DE GERR, in his seventh volume of Mémoires pour servir à l'Histoire des Insectes, that in their perfect state they have wings, and swarm or emigrate, and live in a manner analogous to those of hot climates; for they seem to have quite the external form of the exotic Termes, that is to say, of the first and third order. DE GERR, Mémoires, tom.VII. p. 45. pl. IV. fig. 1, 2, 3, & 4.
The Termites of Africa and other hot Climates.

Of every species there are three orders: first, the working insects, which, for brevity, I shall generally call labourers; next the fighting ones, or soldiers, which do no kind of labour; and, last of all, the winged ones, or perfect insects, which are male and female, and capable of propagation. These might very appositely be called the nobility or gentry, for they neither labour, or toil, or fight, being quite incapable of either, and almost of self-defence. These only are capable of being elected kings or queens; and nature has so ordered it, that they emigrate within a few weeks after they are elevated to this state, and either establish new kingdoms, or perish within a day or two.

The Termes bellicosus being the largest species is most remarkable and best known on the Coast of Africa. It erects immense buildings of well-tempered clay or earth, which are contrived and finished with such art and ingenuity, that we are at a loss to say, whether they are most to be admired on that account, or for their enormous magnitude and solidity. It is from the two lower orders of this, or a similar species, that Linnaeus seems to have taken his description of the Termes Fatalis; and most of the accounts brought home from Africa or Asia of the white Ants are also taken from a species that are so much alike in external habit and size, and build so much in their manner, that one may almost venture to pronounce them mere variations of the same species.

The reason that the larger Termites have been most remarked is obvious; they not only build larger and more curious nests, but are also more numerous, and do infinitely more mischief to mankind. When these insects attack such things as we would not wish to have injured, we must consider them as most pernicious; but when they are employed in destroying decayed trees...
and substances which only incumber the surface of the earth, they may be justly supposed very useful, and for the reason that they are in one sense most pernicious, they are in the other most useful. In this respect they resemble very much the common Flies, which are regarded by mankind in general as noxious, and at best as useless beings in the creation; but this is certainly for want of consideration. There are not probably in all nature animals of more importance, and it would not be difficult to prove, that we should feel the want of one or two species of large quadrupeds, much less than of one or two species of these despicable-looking insects. Mankind in general are sensible that nothing is more disagreeable, or more pestiferous, than putrid substances; and it is apparent to all who have made observation, that those little insects contribute more to the quick dissolution and dispersion of putrescent matter than any other. They are so necessary in all hot climates, that even in the open fields a dead animal or small putrid substance cannot be laid upon the ground two minutes before it will be covered with Flies and their Maggots, which instantly entering quickly devour one part, and perforating the rest in various directions, expose the whole to be much sooner dissipated by the elements. Thus it is with the Termites; the rapid vegetation in hot climates, of which no idea can be formed by any thing to be seen in this; is equalled by as great a degree of destruction from natural as well as accidental causes.

It seems apparent, that when any thing whatever is arrived at its last degree of perfection, the Creator has decreed it shall.

(4) The Guinea grafs, which is so well known and so much esteemed by our planters in the West Indies, grows in Africa thirteen feet high upon an average, which height it attains in about five or six months; and the growth of many other plants is as quick.
be totally destroyed as soon as possible, that the face of nature may be speedily adorned with fresh productions in the bloom of spring or the pride of summer: so when trees, and even woods, are in part destroyed by tornadoes or fire, it is wonderful to observe, how many agents are employed in hastening the total dissolution of the rest (5); but in the hot climates there are none so expert, or who do their business so expeditiously and effectually, as these insects, who in a few weeks destroy and carry away the bodies of large trees, without leaving a particle behind, thus clearing the place for other vegetables, which soon fill up every vacancy; and in places, where two or three years before there has been a populous town, if the inhabitants, as is frequently the case, have chosen to abandon it, there shall be a very thick wood, and not the vestige of a post to be seen, unless the wood has been of a species which, from its hardness, is called iron wood.

My general account of the Termites is taken from observations made on the Termes bellicosus, to which I was induced by the greater facility and certainty with which they could be made. The nests of this species are so numerous all over the island of Banamas, and the adjacent continent of Africa, that it is scarce possible to stand upon any open place, such as a rice plantation, or other clear spot, where one of these buildings is not be seen within fifty paces, and frequently two or three are to be seen almost close to each other. In some parts near Senegal, as mentioned by Monsi. ADANSON, their number, magnitude, and closeness of situation, make them appear like the villages of the natives (6): and you have yourself seen them perhaps still more numerous, though not so large, in New Holland.

(5) See STILLINGFLEET’S TRAITS.

(6) "But of all the extraordinary things I observed, nothing struck me more than certain eminences, which, by their height and regularity, made me take
These buildings are usually termed hilla, by natives as well as strangers, from their outward appearance, which is that of little hills more or less conical, generally pretty much in the form of sugar loaves, and about ten or twelve feet in perpendicular height above the common surface of the ground. (5) (9), tab. VII. fig. 1.

These

them at a distance for an assemblage of negroes huts or a considerable village,
and yet they were only the nests of certain insects. They are round pyramids
from eight to ten feet high, upon nearly the same base, with a smooth surface
of rich clay, excessively hard and well built.” ADANSON’S Voyage to Senegal,

Note. What Mr. ADANSON says of the opening which gives ingress and regress is manifestly a mistake, arising from the natural conclusion that those insects had some way out and in to their nests without examining where it was. It will appear by this account, that they have many thousand ways out and in, but all subterraneous:

(7) JONSON, in his History of Gambia, says, “The Ant-hills are remarkable:
cast up in those parts by Pismires, some of them twenty foot in height, or
compasse to contain a dozen men, with the heat of the sun baked into that
hardness, that we used to hide ourselves in the ragged tops of them, when
we took up stands to shoot at deer or wild beasts.” PURCHAS’S Pilgrims, vol.
II. p. 1570.

(8) “The Ants make nests of the earth about twice the height of a man.”
BOSMAN’s Description of Guinea, p. 276—493.

(9) The labourers are not quite a quarter of an inch in length; however, for the sake of avoiding fractions, and of comparing those of mankind more easily, I estimate their length or height to much, and the human standard of length or height, also to avoid fractions, at six feet, which is likewise above the height of men. If then one labourer is = to one-fourth of an inch = to six feet, four labourers are = to an inch in height = 24 feet, which multiplied by 12 inches, gives the comparative height of a foot of their building = 288 feet of the building of men, which multiplied by 10 feet, the supposed average height of one of their nests is = 2880 of their feet, which is 240 feet more than half a mile, or near five times the height of the great pyramid; and, as it
These hills continue quite bare until they are six or eight feet high; but in time the dead barren clay, of which they are composed, becomes fertilized by the genial power of the elements in these prolific climates, and the addition of vegetable salts and other matters brought by the wind; and in the second or third year, the hillock, if not over-shaded by trees, becomes, like the rest of the earth, almost covered with grass and other plants; and in the dry season, when the herbage is burnt up by the rays of the sun, it is not much unlike a very large hay-cock.\(^{10}\)

Every one of these buildings consists of two distinct parts, the exterior and the interior.

The exterior is one large shell in the manner of a dome, large and strong enough to inclose and shelter the interior from the vicissitudes of the weather, and the inhabitants from the attacks of natural or accidental enemies. It is always, therefore, much stronger than the interior building, which is the habitable part divided with a wonderful kind of regularity and contrivance into an amazing number of apartments for the residence of the king and queen, and the nursing of their

is proportionably wide at the base, a great many times its solid contents. If to this comparison we join that of the time in which the different buildings are erected, and consider the Termites as raising theirs in the course of three or four years, the immensity of their works sets the boasted magnitude of the antient wonders of the world in a most diminutive point of view, and gives a specimen of industry and enterprize as much beyond the pride and ambition of men as St. Paul's Cathedral exceeds an Indian hut.

\(^{10}\) See a figure of one of those nests in Salmon's Universal Traveller, in the map of Gambia, where it is called a Pismire Hill: there is also a figure of one of the labouring insects; but as the hill is represented below all proportion, and the insect rather larger than life, it gives no idea of the building. I have not been able to find out from what author Salmon took this figure; and it is the only one I have met with.
Mr. Smethman's Account of

merous progeny; or for magazines, which are always found well filled with stores and provisions.

I shall forbear at this time entering into a very minute account of the inside of these wonderful buildings, as the bare recital might appear tedious; though I flatter myself, that when I have an opportunity of communicating it to the publick at large, the readers will follow me through an exact description of them with pleasure.

These hills make their first appearance above ground by a little turret or two in the shape of sugar loaves, which are run a foot high or more (11). Soon after, at some little distance, while the former are increasing in height and size, they raise others, and so go on increasing the number and widening them at the base, till their works below are covered with these turrets, which they always raise the highest and largest in the middle, and by filling up the intervals, between each turret, collect them as it were into one dome.

They are not very curious or exact about these turrets, except in making them very solid and strong, and when by the junction of them the dome is compleated, for which purpose the turrets answer as scaffolds, they take away the middle ones entirely, except the tops (which joined together make the crown of the cupola) and apply the clay to the building of the works within, or to erecting fresh turrets for the purpose of raising the hillock still higher; so that no doubt some part of the clay is used several times, like the boards and posts of a mason's scaffold.

(11) Some of these turrets are represented in the view of their hills, (tab. VII. fig. 3.) I have seen turrets on the sides of these hills four or five feet high (tab. VII. fig. 1. a. a. a.).

When
the Termites of Africa and other hot Climates.

When these hills are at about little more than half their height, it is always the practice of the wild bulls to stand as sentinels upon them, while the rest of the herd is ruminating below (tab. VII.). They are sufficiently strong for that purpose, and at their full height answer excellently as places to look out. I have been with four men on the top of one of these hillocks. Whenever word was brought us of a vessel in sight, we immediately ran to some Bugga Bug hill, as they are called, and clambered up to get a good view, for upon the common surface it was seldom possible to see over the grass or plants, which, in spite of monthly brushings, generally prevented all horizontal views at any distance.

The outward shell or dome is not only of use to protect and support the interior buildings from external violence and the heavy rains; but to collect and preserve a regular degree of genial warmth and moisture which seems very necessary for hatching the eggs and cherishing the young ones.

The royal chamber, which I call so on account of its being adapted for, and occupied by, the king and queen, appears to be in the opinion of this little people of the most consequence, being always situated as near the center of the interior building as possible, and generally about the height of the common surface of the ground, at a pace or two from the hillock. It is always nearly in the shape of half an egg or an obtuse oval within, and may be supposed to represent a long oven (tab. VIII. fig. 1. and 2.).

In the infant state of the colony, it is not above an inch or thereabout in length; but in time will be increased to six or eight inches or more in the clear, being always in proportion to the size of the queen, who, increasing in bulk as in age, at length requires a chamber of such dimensions.
This singular part would bear a long description, which I shall not trouble you with at present, and only observe, that its floor is perfectly horizontal; and in large hillocks, sometimes an inch thick and upward of solid clay. The roof also, which is one solid and well-turned oval arch, is generally of about the same solidity, but in some places it is not a quarter of an inch thick, this is on the sides where it joins the floor (tab. VIII. fig. 1. a. a.), and where the doors or entrances are made level therewith at pretty equal distances from each other (tab. VIII. fig. 2. and 4. b. b.)

These entrances will not admit any animal larger than the soldiers or labourers, so that the king, and the queen (who is, at full size, a thousand times the weight of a king) can never possibly go out.

The royal chamber, if in a large hillock, is surrounded by an innumerable quantity of others of different sizes, shapes, and dimensions; but all of them arched in one way or another, sometimes circular, and sometimes elliptical or oval.

These either open into each other or communicate by passages as wide, and being always empty are evidently made for the soldiers and attendants, of whom it will soon appear great numbers are necessary, and of course always in waiting.

These apartments are joined by the magazines and nurseries. The former are chambers of clay, and are always well filled with provisions, which to the naked eye seem to consist of the rasplings of wood and plants which the Termites destroy, but are found in the microscope to be principally the gums or inspissated juices of plants. These are thrown together in little masses, some of which are finer than others, and resemble the sugar about preserved fruits, others are like tears of gum, one quite
quite transparent, another like amber, a third brown, and a fourth quite opaque, as we see often in parcels of ordinary gums.

These magazines are intermixed with the nurseries, which are buildings totally different from the rest of the apartments: for these are composed entirely of wooden materials, seemingly joined together with gums. I call them the nurseries because they are invariably occupied by the eggs, and young ones, which appear at first in the shape of labourers, but white as snow. These buildings are exceeding compact; and divided into many very small irregular-shaped chambers, not one of which is to be found of half an inch in width (tab. VIII. fig. 5.). They are placed all round the royal apartments, and as near as possible to them.

When the nest is in the infant state, the nurseries are close to the royal chamber; but as in process of time the queen enlarges, it is necessary to enlarge the chamber for her accommodation; and as she then lays a greater number of eggs, and requires a greater number of attendants, so it is necessary to enlarge and increase the number of the adjacent apartments; for which purpose the small nurseries which are first built are taken to pieces, rebuilt a little farther off a size bigger, and the number of them increased at the same time.

Thus they continually enlarge their apartments, pull down, repair, or rebuild, according to their wants, with a degree of sagacity, regularity, and foresight, not even imitated by any other kind of animals or insects that I have yet heard of.

There is one remarkable circumstance attending the nurseries, which I must not at this time omit. They are always found slightly overgrown with mould (tab. VIII. fig. 6), and plentifully sprinkled with small white globules about the size of a small pin’s head. These at first I took to be the eggs; but,
on bringing them to the microscope, they evidently appeared to be a species of mushroom, in shape like our eatable mushroom in the young state in which it is pickled (tab. VIII. fig. 7.). They appear, when whole, white like snow a little thawed and then frozen again, and when bruised seem composed of an infinite number of pellucid particles, approaching to oval forms and difficult to separate; the mouldiness seems likewise to be the same kind of substance (12).

The nurseries are inclosed in chambers of clay, like those which contain the provisions, but much larger. In the early state of the nest they are not bigger than an hazel-nut., but in great hills are often as large as a child's head of a year old.

The disposition of the interior parts of these hills is pretty much alike, except when some insurmountable obstacle prevents; for instance, when the king and queen have been first lodged near the foot of a rock or of a tree, they are certainly built out of the usual form, otherwise pretty nearly according to the following plan.

The royal chamber is situated at about a level with the surface of the ground; at an equal distance from all the sides of the building, and directly under the apex of the hill (tab. VII. fig. 2. A. A.).

(12) Mr. König, who has examined these kind of nests in the East Indies, in an Essay upon the Termites, read before the Society of Naturalists of Berlin, conjectures, that these mushrooms are the food of the young insects. This supposition implies, that the old ones have a method of providing for and promoting their growth; a circumstance which, however strange to those unacquainted with the vigour of these insects, I will venture to say, from many other extraordinary facts I have seen of them, is not very improbable.

N. B. Mr. König has not discovered the magazines of provisions in the nests which he opened, as far as I am informed; but I must observe here, that what I have learned of this gentleman's account was from an extempore translation of the heads of it.
the Termites of Africa and other hot Climates.

It is on all sides, both above and below, surrounded by what I should call the royal apartments, which have only labourers and soldiers in them, and can be intended for no other purpose than for these to wait in, either to guard or serve their common father and mother, on whose safety depends the happiness, and, according to the negroes, even the existence of the whole community.

These apartments compose an intricate labyrinth, which extends a foot or more in diameter from the royal chamber on every side. Here the nurseries and magazines of provisions begin, and, being separated by small empty chambers and galleries, which go round them or communicate from one to the other, are continued on all sides to the outward shell, and reach up within it two-thirds or three-fourths of its height, leaving an open area in the middle under the dome, which very much resembles the nave of an old cathedral: this is surrounded by three or four very large Gothic-shaped arches, which are sometimes two or three feet high next the front of the area, but diminish very rapidly as they recede from thence like the arches of aisles in perspectives, and are soon lost among the innumerable chambers and nurseries behind them.

All these chambers, and the passages leading to and from them, being arched, they help to support one another; and while the interior large arches prevent them falling into the center, and keep the area open, the exterior building supports them on the outside.

There are, comparatively speaking, few openings into the great area, and they for the most part seem intended only to admit that genial warmth into the nurseries which the dome collects.
The interior building or assemblage of nurseries, chambers, etc. has a flattish top or roof without any perforation, which would keep the apartments below dry, in case through accident the dome should receive any injury and let in water; and it is never exactly flat and uniform, because they are always adding to it by building more chambers and nurseries: so that the divisions or columns between the future arched apartments resemble the pinnacles upon the fronts of some old buildings, and demand particular notice as affording one proof that for the most part the insects project their arches, and do not make them, as I imagined for a long time, by excavation (tab. VII. fig. 2. b.). The area has also a flattish floor, which lays over the royal chamber, but sometimes a good height above it, having nurseries and magazines between (tab. VII. fig. 2. c.). It is likewise water-proof, and contrived, as far as I could guess, to let the water off, if it should get in, and run over by some short way into the subterraneous passages which run under the lowest apartments in the hill in various directions, and are of an astonishing size, being wider than the bore of a great cannon. I have a memorandum of one I measured, perfectly cylindrical, and thirteen inches in diameter (tab. VII. fig. 2. d. d.).

These subterraneous passages or galleries are lined very thick with the same kind of clay of which the hill is composed, and ascend the inside of the outward shell in a spiral manner, and winding round the whole building up to the top intersect each other at different heights, opening either immediately into the dome in various places, and into the interior building, the new turrets, etc. or communicating thereto by other galleries of different bores or diameters, either circular or oval.

From every part of these large galleries are various small pipes or galleries leading to different parts of the building.
The Termites of Africa and other hot Climates.

Under ground there are a great many, which lead downward by sloping descents three and four feet perpendicular among the gravel, from whence the labouring Termites pull the finer parts, which, being worked up in their mouths to the consistence of mortar, becomes that solid clay or stone of which their hills and all their buildings, except their nurseries, are composed.

Other galleries again ascend and lead out horizontally on every side, and are carried under ground near to the surface a vast distance: for if you destroy all the nests within one hundred yards of your house, the inhabitants of those which are left unmolested farther off will nevertheless carry on their subterraneous galleries, and invade the goods and merchandizes contained in it by sap and mine; and do great mischief, if you are not very circumspect.

But to return to the cities from whence these extraordinary expeditions and operations originate, it seems there is a degree of necessity for the galleries under the hills being thus large, being the great thoroughfares for all the labourers and soldiers going forth or returning upon any business whatever, whether fetching clay, wood, water, or provisions; and they are certainly well calculated for the purposes to which they are applied, by the spiral slope which is given them: for if they were perpendicular the labourers would not be able to carry on their building with so much facility, as they ascend a perpendicular with great difficulty, and the soldiers can scarce do it at all. It is on this account that sometimes a road like a ledge is made on the perpendicular side of any part of the building within their hill, which is flat on the upper surface, and half an inch wide, and ascends gradually like a stair-case, or like those roads which are cut on the sides of hills and mountains, that would otherwise
wise be inaccessible: by which, and similar contrivances, they travel with great facility to every interior part.

This too is probably the cause of their building a kind of bridge of one vast arch, which answers the purpose of a flight of stairs from the floor of the area to some opening on the side of one of the columns which support the great arches, which must shorten the distance exceedingly to those labourers who have the eggs to carry from the royal chamber to some of the upper nurseries, which in some hills would be four or five feet in the straightest line, and much more if carried through all the winding passages which lead through the inner chambers and apartments.

I have a memorandum of one of these bridges, half an inch broad, a quarter of an inch thick, and ten inches long, making the side of an elliptic arch of proportionable size; so that it is wonderful it did not fall over or break by its own weight before they got it joined to the side of the column above. It was strengthened by a small arch at the bottom, and had a hollow or groove all the length of the upper surface, either made purposely for the inhabitants to travel over with more safety, or else, which is not improbable, worn so by frequent treading (tab. VII. fig. 2. e. e.).

Thus I have described, as briefly as the subject would admit, and I trust without exaggeration, those wonderful buildings whose size and external form have often been mentioned by travellers, but whose interior and more curious parts are so little known, that I may venture to consider my account of them as new, which is the only merit it has: for they are constructed upon so different a plan from anything else upon the earth, and so complicated, that I cannot find words equal to the
the talk, and must therefore refer to the different figures, which, however extraordinary, scarce do justice to the subjects.

The nests before described are so remarkable on account of their size, that travellers have seldom, where they were to be seen, taken notice of any other; and have generally, when speaking of white Ants, described them as inhabitants of those hills. Those, however, which are built by the smaller species of those insects, are very numerous, and some of them exceedingly worth our attention; one sort in particular, which from their form I have named turret nests. These are a great deal less than the foregoing, and indeed much less in proportion to the size of the builders; but their external form is more curious, and their solidity considered they are prodigious buildings for so small an animal (13).

These buildings are upright cylinders composed of a well-tempered black earth or clay, about three quarters of a yard high, and covered with a roof of the same material in the shape of a cone, whose base extends over and hangs down three or four inches wider than the perpendicular sides of the cylinder, so that most of them resemble in shape the body of a round wind-mill; but some of the roofs have so little elevation in the middle, that they are pretty much in the shape of the top of a full-grown mushroom (tab. IX. fig. 1.)

After one of these turrets is finished, it is not altered or enlarged; but when no longer capable of containing the community, the foundation of another is laid within a few inches of it. Sometimes, though but rarely, the second is begun before the first is finished, and a third before they have completed the

(13) If their height is estimated and computed by the size of the builders, and compared with ours upon the like scale; each of them is four or five times the height of the monument, and a great many times its solid contents.
second: thus they will run up five or six of these turrets at the foot of a tree in the thick woods, and make a most singular group of buildings (tab. IX.).

The turrets are so strongly built, that in case of violence they will much sooner overset from the foundation, and tear up the gravel and solid earth, than break in the middle; and in that case the insects will frequently begin another turret and build it, as it were, through that which is fallen; for they will connect the cylinder below with the ground, and run up a new turret from its upper side, so that it will seem to rest upon the horizontal cylinder only (tab. IX. fig. 5.).

I have not observed any thing else about these nests that is remarkable, except the quality of the black brown clay, which is as dark coloured as rich vegetable mould, but burns to an exceeding fine and clear red brick. Within, the whole building is pretty equally divided into innumerable cells of irregular shapes; sometimes they are quadrangular or cubic, and sometimes pentagonal; but often the angles are so ill defined, that each half of a cell will be shaped like the inside of that shell which is called the Sea-ear.

Each cell has two or more entrances, and as there are no pipes or galleries, no variety of apartments, no well-turned arches, wooden nurseries, &c. &c. they do not by any means excite our admiration so much as the hill nests, which are indeed collections of wonders.

There are two sizes of these turret nests, built by two different species of Termites. The larger species, the *Termes atrax*, in its perfect state measures one inch and three-tenths from the extremities of the wings on the one side to the extremities on the other (tab. X. fig. 14.). The lesser species, *Termes mordax*, measures...
measures only eight-tenths of an inch, from tip to tip (tab. X. fig. 10.

The next kind of nests, built by another species of this genus, the *Termes arborum*, have very little resemblance to the former in shape or substance. These are generally spherical or oval, and built in trees. Sometimes they are seated between the arms and the stems of trees, and very frequently may be seen surrounding the branch of a tree at the height of seventy or eighty feet; and (though but rarely of so large a size) as big as a very great sugar cafk. They are composed of small particles of wood and the various gums and juices of trees, combined with, perhaps, those of the animals, and worked by those little industrious creatures into a paste, and so moulded into innumerable little cells of very different and irregular forms, which afford no amusing variety and nothing curious, but the immense quantity of inhabitants, young and old, with which they are at all times crowded; on which account they are sought for in order to feed young fowls, and especially for the rearing of Turkies. These nests are very compact, and so strongly attached to the boughs on which they are fixed, that there is no detaching them but by cutting them in pieces, or sawing off the branch; and they will sustain the force of a tornado as long as the tree on which they are fixed.

(14) The colour of these nests, like that of the roofed turrets, is black, from which, and their irregular surface and orbicular shape, they have been called *Negro Heads* by our first writers on the Carribbee Islands, and by the French, *Tetes des Negres.* See Hunter's *Evelyn's Silva*, p. 17.

I have never been able to discover what author Mr. *Evelyn* alludes to in this mention of the Negro Heads.

Mr. Smethman's Account of

This species has the external habit, size, and almost the colour, of the Termes atrox (tab. X. fig. 21.).

There are some nests built in those sandy plains which we call, after the Spaniards, Savannahs, that resemble the hill nests first described. They are composed of a black mud, which is brought from a few inches below the white sand, and are built in the form of an imperfect cone, or bell-shaped, having their tops rounded. These nests are generally about four or five feet high. As I saw these only in passing through various Savannahs upon other pursuits, I can say very little of their interior parts. They seemed to be inhabited by nearly as large insects, differing very little except in colour, which is lighter than that of the Termites bellicosiss.

Having given some idea of the nests, I shall beg your patient reading of a more particular account of the insects themselves, which will be exceeding necessary to a tolerable acquaintance with their economy and management, their manner of building, fighting, and marching, and to a more particular account of their uses in the creation, and of the vast mischief they cause to mankind.

(17) "The nests of Ants are about four feet wide at the base, and two high, of an hemispherical form. Though made in loose sand, they are so hard as not to be broken without great efforts, and a laden cart could not break through. — In October and November they add a new story. — The Cochons de Terre (the Left Ant-eater of Mr. Pennant) make holes in these nests eight inches in diameter and six deep; and having destroyed the inhabitants, the nest is abandoned, but sometimes the Ants repair it." This last paragraph seems rather founded on conjecture. Voyage au Cap. par M. L'Abbé de la Gaille, p. 305—356.

Oviedo also says Ants make hillocks as high as a man.

Among
the Termites of Africa and other hot Climates. 163

Among these you will find, I must confess, some very extraordinary relations, and many that do not admit a possibility of demonstration; such is the description of the form of an army of the *Termites viarum* marching, and the account of the regularity used by the *Termites bellicosus* in repairing a breach in their hills. But the very singular facts, of which you have the proofs before you, are sufficient I should conceive to procure me belief for the others. Should any person doubt, I would wish them to consider, that a student of nature and nature's laws, in any matter relating thereto, has no temptation to transgress the bounds of truth. I am very sensible, that the works of the creation, and the order thereof, are established in the highest wisdom; that it is as absurd to attempt to exaggerate as to detract from them; and can only serve to expose the ignorance of him who attempts it. Besides, what I have here advanced must be confirmed or contradicted in two or three years, since it will doubtless be examined into by all the curious who visit tropical regions.

I have observed before, that there are of every species of *Termites* three orders; of these orders the working insects or labourers are always the most numerous; in the *Termites bellicosus* there seems to be at the least one hundred labourers to one of the fighting insects or soldiers. They are in this state about one-fourth of an inch long, and twenty-five of them weigh about a grain; so that they are not so large as some of our ants (tab. X. fig. 6.). From their external habit and fondness for wood, they have been very expressively called *Wood Lice* by some people, and the whole genus has been known by that name, particularly among the French. They resemble them, it is true, very much at a distance, but they run as fast or faster than any other.
other insects of their size, and are incessantly bustling about their affairs (18).

The second order, or soldiers, have a very different form from the labourers, and have been by some authors supposed to be the males, and the former neuters; but they are, in fact, the same insects as the foregoing, only they have undergone a change of form, and approached one degree nearer to the perfect state. They are now much larger, being half an inch long, and equal in bulk to fifteen of the labourers (tab. X. fig. 8).

There is now likewise a most remarkable circumstance in the form of the head and mouth; for in the former state the mouth is evidently calculated for gnawing and holding bodies; but in this state, the jaws being shaped just like two very sharp awls a little jagged (tab. X. fig. 9.), they are incapable of any thing but piercing or wounding, for which purposes they are very effectual, being as hard as a crab's claw, and placed in a strong horny head, which is of a nut-brown colour, and larger than all the rest of the body together, which seems to labour under great difficulty in carrying it: on which account, perhaps the animal is incapable of climbing up perpendicular surfaces.

The third order, or the insect in its perfect state, varies its form still more than ever. The head, thorax, and abdomen, differ almost entirely from the same parts in the labourers and soldiers; and, besides this, the animal is now furnished with four fine large brownish, transparent, wings, with which it is at the time of emigration to wing its way in search of a new settle-

(18) ROCHFORT, in the History of the Carribee Islands, calls them Wood Lice, and mentions the destruction they make, &c. p. 149.
ment (19). In short, it differs so much from its form and appearance in the other two states, that it has never been supposed to be the same animal, but by those who have seen it in the same nest; and some of these have distrusted the evidence of their senses. It was so long before I met with them in the nests myself, that I doubted the information which was given me by the natives, that they belonged to the same family (tab. X. fig. 1.) Indeed we may open twenty nests without finding one-winged one, for those are to be found only just before the commencement of the rainy season, when they undergo the last change, which is preparative to their colonization. Add to this, they sometimes abandon an outward part of their building, the community being diminished by some accident to me unknown. Sometimes too different species of the real Ant (Formica) possess themselves by force of adjudgement, and so are frequently dislodged from the same nest, and taken for the same kind of insects. This I know is often the case with the nests of the smaller species, which are frequently totally abandoned by the Termites, and completely inhabited by different species of Ants, Cockroaches, Scolopendrae, Scorpions, and other vermin, fond of obscure retreats, that occupy different parts of their roomy buildings; which clearly accounts for your having met with the real Ants in those nests in New Holland.

(19) "There is a sort that frequently flies; having red wings.—This flying sort flies up the largest hills, and is wonderfully nimble and industrious."

KOLBEIN'S Cape of Good Hope, 8vo, vol. II. p. 173.

DAPPER calls the Wood Ants Acotalan, and says it becomes as big as one's thumb, and then takes wing. Description de l'Afrique, folio, p. 459.
In the winged state they have also much altered their size as well as form. Their bodies now measure between six and seven tenths of an inch in length, and their wings above two inches and a half from tip to tip, and they are equal in bulk to about thirty labourers, or two soldiers. They are now also furnished with two large eyes placed on each side of the head, and very conspicuous; if they have any before, they are not easily to be distinguished. Probably in the two first states, their eyes, if they have any, may be small like those of moles; for as they live like these animals always underground, they have as little occasion for these organs, and it is not to be wondered at that we do not discover them; but the case is much altered when they arrive at the winged state in which they are to roam, though but for a few hours, through the wide air, and explore new and distant regions. In this form the animal comes abroad during or soon after the first tornado, which at the latter end of the dry season proclaims the approach of the ensuing rains, and seldom waits for a second or third shower, if the first, as is generally the case, happens in the night, and brings much wet after it (10).

The quantities that are to be found the next morning all over the surface of the earth, but particularly on the waters, is astonishing; for their wings are only calculated to carry them

(10) "At night I visited Mr. HARRISON on board the floop; during the time we had a dreadful tornado, in which a sort of large flies with long wings came on board in such prodigious numbers, that flying into the flames of the candles, the table was soon covered with those that burnt their wings; and others, which were not burnt, as they walked along the table shed their wings, and then were nothing but so many perfect large maggots." June 10, 1732. Moor's Travels, p. 118.
a few hours, and after the rising of the sun not one in a thousand is to be found with four wings, unless the morning continues rainy, when here and there a solitary being is seen winging its way from one place to another, as if solicitous only to avoid its numerous enemies, particularly various species of Ants which are hunting on every spray, on every leaf, and in every possible place, for this unhappy race, of which probably not a pair in many millions get into a place of safety, fulfill the first law of nature, and lay the foundation of a new community.

Not only all kinds of ants, birds, and carnivorous reptiles, as well as insects, are upon the hunt for them, but the inhabitants of many countries, and particularly of that part of Africa where I was, eat them (21) (22) (23) (24) (25).

On

(21) Mr. König, in an Essay upon these Insects, read before the Society of Naturalists of Berlin, says, That, in some parts of the East Indies, the queens are given alive to old men for strengthening the back, and that the natives have a method of catching the winged insects, which he calls females, before the time of emigration. They make two holes in the nest; the one to windward, and the other to leeward. At the leeward opening they place the mouth of a pot, previously rubbed within with an aromatic herb called Bergera, which is more valued there than the laurel in Europe. On the windward side they make a fire of flinting materials, which not only drives these insects into the pots, but frequently the hooded snakes also, on which account they are obliged to be cautious in removing them. By this method they catch great quantities, of which they make with flour a variety of pastry, which they can afford to sell very cheap to the poorer ranks of people. Mr. König adds, that in seasons when this kind of food is very plentiful, the too great use of it brings on an epidemic colic and dysentery, which kills in two or three hours.
Mr. SMEATHMAN's Account of

On the following morning, however, as I have observed, they are to be seen running upon the ground in chase of each other;

I have not found the Africans so ingenious in procuring or dressing them. They are content with a very small part of those which, at the time of swarming, or rather of emigration, fall into the neighbouring waters, which they skim off with calabashes, bring large kettles full of them to their habitations, and parch them in iron pots over a gentle fire, stirring them about as is usually done in roasting coffee. In that state, without sauce or any other addition, they serve them as delicious food; and they put them by hands-full into their mouths, as we do comfits. I have eaten them dressed this way several times, and think them both delicate, nourishing, and wholesome; they are something sweeter, but not so fat and claying as the caterpillar or maggot of the Palm-tree Snout-beetle, Curculio Palmarum, which is served up at all the luxurious tables of West Indian epicures, particularly of the French, as the greatest dainty of the Western world.

According to the Baron de Geer, Mr. Sparrman says, that the Hottentots eat these insects, and even grow fat upon them; but does not say what methods they take to procure or dress them. de Geer, Memoires des Insectes, tom. VII. p. 49.

(12) PISO, de LAET, MARCGRAVE, and other writers, mention their being an article of diet in different parts of South America.

(13) MARCR. Hist. Nat. 56.

(14) "Denique formicae hic visibuntur grandissimae, quas indigenæ vulgo comens dunt; et in foris venales habent." De LAET. Americae Utriusque Descriptio, p. 333.

"Formicis vescabantur, usque studiose ad victum educabant. Ibid. p. 379."

(15) Sir Hans Sloane says, the silk-cotton-tree worm is esteemed by the Indians and negroes beyond marrow. This worm is no more than a large maggot, being the Caterpillar of a large Capricorn Beetle, or Goat Chafer: the Larva of a pretty large Cerambix (the Lamia Tribulus of Fabricius) which is also brought from Africa, where I have eaten those worms roasted. This insect is most probably to be found in all countries where the silk-cotton-tree (Bombax) is indigenous. Sloane's Jamaica, vol. II. p. 193.
The Termites of Africa and other hot Climates.

other; sometimes with one or two wings still hanging to their bodies, which are not only useless, but seem rather cumbersome.

The greater part have no wings, but they run exceeding fast, the males after the females; I have sometimes remarked two males after one female, contending with great eagerness who should win the prize, regardless of the innumerable dangers that surrounded them.

They are now become from one of the most active, industrious, and rapacious, from one of the most fierce and implacable little animals in the world, the most innocent, helpless, and cowardly; never making the least resistance to the smallest Ant. The Ants are to be seen on every side in infinite numbers, of various species and sizes, dragging these annual victims of the laws of nature to their different nests. It is wonderful that a pair should ever escape so many dangers, and get into a place of security. Some, however, are so fortunate; and being found by some of the labouring insects that are continually running about the surface of the ground under their covered galleries, which I shall shortly describe, are elected kings and queens of new states; all those who are not so elected and preserved certainly perish, and most probably in the course of the following day. The manner in which these labourers protect the happy pair from their innumerable enemies, not only on the day of the

I have discoursed with several gentlemen upon the taste of the white Ants; and on comparing notes we have always agreed, that they are most delicious and delicate eating. One gentleman compared them to sugared marrow, another to sugared cream and a paste of sweet almonds.

(16) Ligon observed them, but does not know what they are. *Ligon's Barbadoes*, p. 63.
Mr. Smeathman's Account of

massacre of almost all their race, but for a long time after, will I hope justify me in the use of the term ELECTION. The little industrious creatures immediately enclose them in a small chamber of clay suitable to their size, into which at first they leave but one small entrance, large enough for themselves and the soldiers to go in and out, but much too little for either of the royal pair to make use of; and when necessity obliges them to make more entrances, they are never larger; so that, of course, the voluntary subjects charge themselves with the task of providing for the offspring of their sovereigns as well as to work and to fight for them until they shall have raised a progeny capable at least of dividing the task with them.

It is not until this time, probably, that they consummate their marriage, as I never saw a pair of them joined. The business of propagation, however, soon commences, and the labourers having constructed a small wooden nursery, as before described, carry the eggs and lodge them there as fast as they can obtain them from the queen.

About this time a most extraordinary change begins to take place in the queen, to which I know nothing similar, except in the Pulex penetrans of Linnaeus, the Jigger of the West Indies, and in the different species of Coccus, cochineal. The abdomen of this female begins gradually to extend and enlarge to such an enormous size, that an old queen will have it increased so as to be fifteen hundred or two thousand times the bulk of the rest of her body, and twenty or thirty thousand times the bulk of a labourer, as I have found by carefully weighing and computing the different states (tab. X. fig. 3.). The skin between the segments of the abdomen extends in every direction; and at last the segments are removed to half an inch.
inch distance from each other, though at first the length of the whole abdomen is not half an inch. They preserve their dark brown colour, and the upper part of the abdomen is marked with a regular series of brown bars from the thorax to the posterior part of the abdomen, while the intervals between them are covered with a thin, delicate, transparent skin, and appear of a fine cream colour, a little shaded by the dark colour of the intestines and watery fluid seen here and there beneath. I conjecture the animal is upward of two years old when the abdomen is increased to three inches in length: I have sometimes found them of near twice that size. The abdomen is now of an irregular oblong shape, being contracted by the muscles of every segment, and is become one vast matrix full of eggs, which make long circumvolutions through an innumerable quantity of very minute vessels that circulate round the inside in a serpentine manner, which would exercise the ingenuity of a skilful anatomist to dissect and delineate. This singular matrix is not more remarkable for its amazing extension and size than for its peristaltic motion, which resembles the undulating of waves, and continues incessantly without any apparent effort of the animal; so that one part or other alternately is rising and sinking in perpetual succession, and the matrix seems never at rest (27), but is always protruding eggs to the amount (as I have frequently counted in old queens) of sixty in a minute (28), or eighty thousand and upward in one day of twenty-four hours (29).

(27) "We may observe in a queen, distended with egg, a partition along the back, and a continued motion from one extreme to the other, much like that we find in silk-worms." Account of English Ants by Gould, p. 22.

(28) I cannot positively assert, that the old queens yield eggs so plentifully at all times,
These eggs are instantly taken from her body by her attendants (of whom there always are, in the royal chamber and the galleries adjacent, a sufficient number in waiting) and carried to the nurseries, which in a great nest may some of them be four or five feet distant in a straight line, and consequently much farther by their winding galleries. Here, after they are hatched, the young are attended and provided with every thing necessary until they are able to shift for themselves, and take their share of the labours of the community. The foregoing, I flatter myself, is an accurate description and account of the *Fermes bellicosus* or species that builds the large nests in its different states.

Those which build either the roofed turrets or the nests in the trees, seem in most instances to have a strong resemblance to them, both in their form and oconomy, going through the same changes from the egg to the winged state. The *queens* also increase to a great size when compared with the labourers; but very short of those *queens* before described. The largest are from about an inch to an inch and a half long; and not much thicker than a common quill. There is the same kind of peristaltic motion in the abdomen, but in a much smaller degrees, but the protruding them being the consequence of the peristaltic motion; it would seem involuntary on their parts, and the number, or nearly so, always indispensible: the astonishing multitudes of inhabitants found in their nests also countenance this opinion strongly.

(49) Since the reading of this paper, Mr. John Hunter, so celebrated for his great skill and experience in comparative anatomy, has dissected two young *queens*. He finds the abdomen contains two ovaria, in each of which are many hundred ova ducts, and in each of these ova ducts a vast many eggs; so that there seems no doubt of the fact, as the matrix of a full-grown queen must be calculated for the production and yielding of a prodigious number of eggs. He has also dissected the kings; the result of these dissections, with some further particulars, will be related in another paper.
the Termites of Africa and other hot Climates.

gre; and, as the animal is incapable of moving from her place, the eggs no doubt are carried to the different cells by the labourers, and reared with a care similar to that which is practised in the larger nests.

It is remarkable of all these different species, that the working and the fighting insects never expose themselves to the open air; but either travel under ground, or within such trees and substances as they destroy, except, indeed, when they cannot proceed by their latent passages, and find it convenient or necessary to search for plunder above ground. In that case they make pipes of that material with which they build their nests. The larger fort use the red clay; the turret builders use the black clay; and those which build in the trees employ the same ligneous substances of which their nests are composed. *(30) (31) (32) *

With:

*(30) "Small birds, fowls, Lizards, and other reptiles, search for them as the most delicious morsels; therefore they never go abroad but under their covered ways." DE TERTRE, quarto, vol. II. p. 345.

*(31) "The earth herabouts was all filled with a species of a white Ant, call'd Vag Vague, different from that which I have elsewhere described. This, instead of raising pyramids, continues buried under ground, and never makes itself known but by small cylindrical galleries of the thickness of a goose quill, which it erects against the several bodies it designs to attack. These galleries are formed of earth with infinite delicacy of workmanship. The Vag Vagues make use of them as of covert-ways, to work without being seen; and whatever they fasten themselves to, whether it be leather, cloth, linen, books, or wood, it is surely gnawed and confounded. I should have thought myself pretty well off, had they only attacked the reeds of my hut; but they pierced through a trunk which stood on trestles a foot above the ground, and gnawed most of my books." ADANSON'S Voyage to Guinea, 179—337.

N. B. Mr. ADANSON is certainly mistaken when he says, "They never make themselves known but by their covered ways, and is the only one whom I have

*(32)"
With these materials they completely line most of the roads leading from their nests into the various parts of the country, and travel out and home with the utmost security in all kinds of weather. If they meet a rock or any other obstruction, they will make their way upon the surface; and for that purpose erect a covered way or arch, still of the same materials, continuing it with many windings and ramifications through large groves; having, where it is possible, subterranean pipes running parallel with them, into which they sink and save themselves, if their galleries above ground are destroyed by any violence, or the tread of men or animals alarms them. When one chances by accident to enter any solitary grove, where the ground is pretty well covered with their arched galleries, they give the alarm by loud hissings, which we hear distinctly at every step we make; soon after which we may examine their galleries in vain for the insects, but find little holes, just large enough for them, by which they have made their escape into their subterraneous roads. These galleries are large enough for them to pass and repass so as to prevent any stoppages (though there are always numerous passengers) and shelter them equally from light and

"met with who has been attacked while living by the white Ants." I have some doubt, that, although the approaches of the Termes were carried up to his bed, the bites he received were from real Ants, of which there are some scarce visible which are very numerous and produce great pain; whereas the bite of the Termes lets out much blood, and shews not the least symptom of venom. See du Tertre's Antilles, vol. II. p. 344. and Descript. de l'Afrique, par Labeuf, tom. III. p. 298.

(32) See sloane, ligon, linnaeus (Termes Fatalis), forskal (Termes Arde), and the various voyages to Africa and both Indies.
the Termites of Africa and other hot Climates. 175

air, as well as from their enemies, of which the ants, being the most numerous, are the most formidable.

The Termites, except their heads, are exceeding soft, and covered with a very thin and delicate skin; being blind, they are no match on open ground for the ants, who can see, and are all of them covered with a strong horned shell not easily pierced, and are of dispositions bold, active, and rapacious. Whenever the Termites are dislodged from their covered ways, the various species of the former, who probably are as numerous above ground as the latter are in their subterraneous passages, instantly seize and drag them away to their nests, to feed the young brood (33) (34) (35). The Termites are therefore exceeding solicitous.

(33) Sir Hans Sloane was certainly mistaken in his account of the Wood Ants; it is utterly improbable that they should go into the nests of the red Ants and kill them. It is most probable, the error has arisen from Sir Hans’s having confounded the two genera of insects the Formica and Termes together, which made him never speak of them with precision. The reverse of his account is most likely, which is, that the Formica will follow their plunder into the nests of the Termites and destroy them; for the latter always keep within their nests or covered ways, avoiding all communications with other insects and animals, and never meddling with them but when dead; whereas the Formicae ramble about everywhere, and enter every cranny and hole that is large enough, and attack not only insects and reptiles but even large animals. See Sloane’s Voyage to Jamaica, vol. II. p. 221, 222. tab. 238. Hist. de l’Académie Royale des Sciences, 1701, p. 16. Fourmis de Visite.

(34) Ligon mentions another sort of Ants, and describes the galleries of the Termites. Ligon’s Barbadoes, p. 64, 65.

(35) Merian says, the Ants make nests above eight feet high, by which I apprehend he means the nests of the Termites; but in speaking of the manners of the insects he certainly means some species of the Formica. Those which are described as stripping the trees are a species called, in Tobago, Para-fol’-Ants, because they cut out of the leaves of certain trees and plants pieces almost circular, and
forsake to the preserving their covered ways in good repair; and if you demolish one of them, for a few inches in length, it is wonderful how soon they rebuild it. At first in their hurry they get into the open part an inch or two, but stop so suddenly that it is very apparent they are surprized: for though some run straight on, and get under the arch as speedily as possible in the further part, most of them run as fast back, and very few will venture through that part of the track which is left uncovered. In a few minutes you will perceive them rebuilding the arch, and by the next morning they will have restored their gallery for three or four yards in length, if so much has been ruined; and upon opening it again will be found as numerous as ever, under it, passing both ways. If you continue to destroy it several times, they will at length seem to give up the point, and build another in a different direction; but, if the old one led to some favourite plunder, in a few days will rebuild it again; and, unless you destroy their nest, never totally abandon their gallery.

The *Termes arborum*, those which build in trees, frequently establish their nests within the roofs and other parts of houses, to which they do considerable damage, if not timely extirpated.

The large species are, however, not only much more destructive, but more difficult to be guarded against, since they make their approaches chiefly under ground, descending below the foundations of houses and stores at several feet from the surface, and rising again either in the floors, or entering at the

and are to be seen all the year round travelling from the plants along their road to the nest, with each one of these circular pieces of leaves in their jaws, which, from their shape and colour, give a very good idea of people walking with parasols (umbrellas). *Merian, Insectes de Surinam*, p. 18.
the Termites of Africa and other hot Climates.

Bottoms of the posts, of which the sides of the buildings are composed, bore quite through them, following the course of the fibres to the top, or making lateral perforations and cavities here and there as they proceed.

While some are employed in gutting the posts, others ascend from them, entering a rafter or some other part of the roof. If they once find the thatch, which seems to be a favourite food, they soon bring up wet clay, and build their pipes or galleries through the roof in various directions, as long as it will support them; sometimes eating the palm-tree leaves and branches of which it is composed, and, perhaps (for variety seems very pleasing to them) the rattan or other running plant which is used as a cord to tye the various parts of the roof together, and that to the posts which support it: thus, with the assistance of the rats, who during the rainy season are apt to shelter themselves there, and to burrow through it, they very soon ruin the house by weakening the fastenings and exposing it to the wet. In the mean time the posts will be perforated in every direction as full of holes as that timber in the bottoms of ships which has been bored by the worms; the fibrous and knotty parts, which are the hardest, being left to the last (36).

They

(36) The sea worms, so pernicious to our shipping, appear to have the same office allotted them in the waters which the Termites have on the land. They will appear, on a very little consideration, to be most important beings in the great chain of creation, and pleasing demonstrations of that infinitely wise and gracious Power which formed, and still preserves, the whole in such wonderful order and beauty: for if it was not for the rapacity of these and such animals, tropical rivers, and indeed the ocean itself, would be choked with the bodies of trees which are annually carried down by the rapid torrents, as many of them would last for ages, and probably be productive of evils, of which, happily,
They sometimes, in carrying on this business, find, I will not pretend to say how, that the post has some weight to support, and then if it is a convenient track to the roof, or is itself a kind of wood agreeable to them, they bring their mortar, and fill all or most of the cavities, leaving the necessary roads through it, and as fast as they take away the wood replace the vacancy with that material; which being worked together by them closer and more compactly than human strength or art could ram it, when the house is pulled to pieces, in order to examine if any of the posts are fit to be used again, those of the softer kinds are often found reduced almost to a shell, and all or a greater part transformed from wood to clay as solid and as hard as many kinds of free-stone used for building in England. It is much the same when the Termes bellicosus get into a chest or trunk containing cloaths and other things; if the weight we cannot in the present harmonious state of things form any idea*; whereas now being consumed by these animals, they are more easily broken in pieces by the waves; and the fragments which are not devoured become specifically lighter, and are consequently more readily and more effectually thrown on shore, where the sun, wind, insects, and various other instruments, speedily promote their entire dissolution, and restore the constituent particles to that

"Mighty hand,
"Which, ever busy, wheels the silent spheres;
"Works in the secret deep; shoots, steaming, thence
"The fair profusion that o'erspreads the spring;
"Flings from the sun direct the flaming day;
"Feeds every creature; hurls the tempest forth;
"And, as on earth this grateful change revolves,
"With transport touches all the springs of life."

THOMSON.

* That wood will endure in water an amazing number of ages, is apparent from the oak staves which were driven into the bed of the river Thames on the invasion of this island by Julius Cæsar, one of which is to be seen in Sir Ashton Lever's Museum, and likewise from those bodies of trees which are daily found in the bogs and morasses of Great Britain and Ireland, which after a duration, the former of eighteen hundred, the latter of upwards of two thousand years, are found in a perfect state of preservation.

above
above is great, or they are afraid of Ants or other enemies, and have time, they carry their pipes through, and replace a great part with clay, running their galleries in various directions. The tree Termites, indeed, when they get within a box, often make a nest there, and being once in possession destroy it at their leisure. They did so to the pyramidal box which contained my compound microscope. It was of mahogany, and I had left it in the store of Governor Campbell of Tobago, for a few months, while I made the tour of the Leeward Islands. On my return I found these insects had done much mischief in the store, and, among other things, had taken possession of the microscope, and eaten every thing about it except the glass or metal, and the board on which the pedestal is fixed, with the drawers under it, and the things inclosed. The cells were built all round the pedestal and the tube, and attached to it on every side. All the glasses which were covered with the wooden substance of their nests retained a cloud of a gummy nature upon them that was not easily got off, and the lacquer or burnish with which the brass work was covered was totally spoiled. Another party had taken a liking to the staves of a Madeira cask, and had let out almost a pipe of fine old wine. If the large species of Africa (the Termites bellicosus) had been so long in the uninterrupted possession of such a store, they would not have left twenty pounds weight of wood remaining of the whole building, and all that it contained (37).

(37) Captain Phillip of the navy, who was some time at the Brazils in the service of Portugal, gives me the following relation. "An engineer returned from surveying the country, left his trunk on a table: the next morning, not only all his cloaths were destroyed by white Ants or Cutters, but his papers also; and the latter in such a manner, that there was not a bit left of an inch square."
These insects are not less expeditious in destroying the shelves, wainscoting, and other fixtures of a house, than the house itself. They are for ever piercing and boring in all directions, and sometimes go out of the broadside of one post into that of another joining to it; but they prefer and always destroy the softer substances the first, and are particularly fond of pine and fir-boards, which they excavate and carry away with wonderful dispatch and astonishing cunning: for, except a shelf has something standing upon it, as a book, or any thing else which may tempt them, they will not perforate the surface, but artfully preserve it quite whole, and eat away all the inside, except a few fibres which barely keep the two sides connected together, so that a piece of an inch-board which appears solid to the eye will not weigh much more than two sheets of pasteboard of equal dimensions, after these animals have been a little while in possession of it. (38) (39) (40) (41). In short, the Termites are so

"The black lead pencils were likewise so completely destroyed, that the smallest piece, even of the black lead could not be found. The cloaths were not entirely cut to pieces and carried away, but appeared as if moth-eaten, there being scarce a piece as large as a shilling that was free from small holes; and it was further remarkable, that some silver coin, which was in the trunk, had a number of black specks on it, caused by something so corrosive that they could not easily be rubbed off even with sand." Queen's-square, Wednesday, Jan. 17, 1787.

(38) "The white Ants are transparent as glass, and bite so forcibly, that in the space of one night alone they can eat their way through a thick wooden chest of goods, and make it as full of holes, as if it had been shot through with hail-shot." Bosman's Guises, p. 276, 7. 493.

(39) Moore's Travels, p. 221.

(40) Voyage de Labat aux Isles, tom. II. p. 331.

(41) "The wood Ants are the most pernicious of all others, being so very destructive to timber of most sorts, that, if not prevented, they will in a few years"
the Termites of Africa and other hot Climates.

so insidious in their attacks, that we cannot be too much on our guard against them: they will sometimes begin and raise their works, especially in new houses, through the floor. If you destroy the work so begun, and make a fire upon the spot, the next night they will attempt to rise through another part; and, if they happen to emerge under a chest or trunk early in the night, will pierce the bottom, and destroy or spoil every thing in it before the morning. On these accounts we are careful to set all our chests and boxes upon stones or bricks, so as to leave the bottoms of such furniture some inches above the ground; which not only prevents these insects finding them out so readily, but preserves the bottoms from a corrosive damp which would strike from the earth through, and rot every thing therein: a vast deal of vermin also would harbour under, such as Cock-roaches, Centipedes, Millepedes, Scorpions, Ants, and various other noisome insects.

When the Termites attack trees and branches in the open air, they sometimes vary their manner of doing it. If a stake in a hedge has not taken root and vegetated, it becomes their business to destroy it. If it has a good sound bark round it, they

"years time destroy the whole roof of an house, especially if it be of soft timber. — They have likewise caused great losses to shop-keepers, by boring through whole bales of linnen as well as woolen cloths. Hughes's Barbadoes, p. 93.

(42) The floors are generally made of the stone or clay taken from the hills raised by these insects, which, being moistened with water, and mixed by treading, is beaten level, smooth, and compact, with their feet and a kind of hand-bat or beetle.

(43) "One night, in a few hours, they pierced one foot of the table, and (having in that manner ascended) carried their arch across it, and then down through the middle of the other foot into the floor, as good luck would have it, without doing any damage to the papers left there." Kempfer Hist. Japan, vol. II. p. 127.

will
Mr. Smeathman's Account of

will enter at the bottom, and eat all but the bark, which will remain, and exhibit the appearance of a solid stick (which some vagrant colony of Ants or other insects often shelter in till the winds disperse it); but if they cannot trust the bark, they cover the whole stick with their mortar, and it then looks as if it had been dipped into thick mud that had been dried on. Under this covering they work, leaving no more of the stick and bark than is barely sufficient to support it, and frequently not the smallest particle, so that upon a very small tap with your walking stick, the whole stake, though apparently as thick as your arm, and five or six feet long, loses its form, and disappearing like a shadow falls in small fragments at your feet. They generally enter the body of a large tree which has fallen through age or been thrown down by violence, on the side next the ground, and eat away at their leisure within the bark, without giving themselves the trouble either to cover it on the outside, or to replace the wood which they have removed from within, being somehow sensible that there is no necessity for it. These excavated trees have deceived me two or three times in running: for, attempting to step two or three feet high, I might as well have attempted to step upon a cloud, and have come down with such unexpected violence, that, besides shaking my teeth and bones almost to dislocation, I have been precipitated, head foremost, among the neighbouring trees and bushes. Sometimes, though seldom, the animals are known to attack living trees; but not, I apprehend, before symptoms of mortification have appeared at the roots, since it is evident, as is before observed, that these insects are intended in the order of nature to hasten the dissolution of such trees and vegetables as have arrived at their greatest maturity and per-
the Termites of Africa and other hot Climates.

Section, and which would, by a tedious decay, serve only to encumber the face of the earth. This purpose they answer so effectually, that nothing perishable escapes them, and it is almost impossible to leave anything penetrable upon the ground a long time in safety; for the odds are, that, put it where you will abroad, they will find it out before the following morning, and its destruction follows very soon of course. In consequence of this disposition, the woods never remain long encumbered with the fallen trunks of trees or their branches; and thus it is, as I have before observed, the total destruction of deserted towns is so effectually completed, that in two or three years a thick wood fills the space; and, unless iron-wood posts have been made use of, not the least vestige of an house is to be discovered.

The first object of admiration which strikes one upon opening their hills is the behaviour of the soldiers. If you make a breach in a slight part of the building, and do it quickly with a strong hoe or pick-axe, in the space of a few seconds a soldier will run out, and walk about the breach, as if to see whether the enemy is gone, or to examine what is the cause of the attack. He will sometimes go in again, as if to give the alarm: but most frequently, in a short time, is followed by two or three others, who run as fast as they can, straggling after one another, and are soon followed by a large body who rush out as fast as the breach will permit them, and so they proceed, the number increasing, as long as any one continues battering their building (44). It is not easy to describe the rage and fury

(44) "They throw up little hills of seven or eight feet high, so very full of holes that they rather seem like honey-combs than burrows. These Ant hills are of a very small circumference in proportion to their height, being sharp at top, so that to judge by the looks of them one would think the wind could blow them down."
fury they shewed. In their hurry they frequently miss their hold, and tumble down the sides of the hill, but recover themselves as quickly as possible; and, being blind, bite everything they run against, and thus make a crackling noise, while some of them beat repeatedly with their forceps upon the building, and make a small vibrating noise, something shriller and quicker than the ticking of a watch: I could distinguish this noise at three or four feet distance, and it continued for a minute at a time, with short intervals. While the attack proceeds they are in the most violent bustle and agitation. If they get hold of any one, they will in an instant let out blood enough to weigh against their whole body; and if it is the leg they wound, you will see the stain upon the stocking extend an inch in width. They make their hooked jaws meet at the first stroke, and never quit their hold, but suffer themselves to be pulled away leg by leg, and piece after piece, without the least attempt to escape. On the other hand, keep out of their way, and give them no interruption, and they will in less than half an hour retire into the nest, as if they supposed the wonderful monster that damaged their castle to be gone beyond their reach. Before they are all got in you will see the labourers in motion, and hastening in various directions toward the breach: every one with a burthen of mortar in his mouth ready tempered. This they fling upon the breach as fast as they come up, and do it with so much dispatch and facility, that although there are thousands, and I may say millions, of them, they never stop or

"down. I one day attempted to knock off the top of one of them with my cane, but the stroke had no other effect than to bring some thousands of the animals out of doors, to see what was the matter: upon which I took to my heels and ran away as fast as I could." Smith's Voyage to Guinea,
embarrass one another; and you are most agreeably deceived when, after an apparent scene of hurry and confusion, a regular wall arises, gradually filling up the chasm. While they are thus employed, almost all the soldiers are retired quite out of sight, except here and there one, who saunters about among six hundred or a thousand of the labourers, but never touches the mortar either to lift or carry it; one, in particular, places himself close to the wall they are building. This soldier will turn himself leisurely on all sides, and every now and then, at intervals of a minute or two, lift up his head, and with his forceps beat upon the building, and make the vibrating noise before mentioned; on which immediately a loud hiss, which appears to come from all the labourers, issues from within side the dome and all the subterraneous caverns and passages: that it does come from the labourers is very evident, for you will see them all hasten at every such signal, redouble their pace, and work as fast again.

As the most interesting experiments become dull by repetition or continuance, for the uniformity with which this business is carried on, though so very wonderful, at last satiates the mind. A renewal of the attack, however, instantly changes the scene, and gratifies our curiosity still more. At every stroke we hear a loud hiss; and on the rush the labourers run into the many pipes and galleries with which the building is perforated, which they do so quickly that they seem to vanish, for in a few seconds all are gone, and the soldiers rush out as numerous and as vindictive as before. On finding no enemy they return again leisurely into

(45) By the soldiers being so ready to run out upon the repetition of the attack, it appears, that they but just withdraw out of sight, to leave room for the labourers to proceed without interruption in repairing the breach, and in this Vol. LXXI.
Mr. Smeathman's Account of
into the hill, and very soon after the labourers appear loaded as at first, as active and as sedulous, with soldiers here and there among them, who act just in the same manner, one or other of them giving the signal to hasten the business. Thus the pleasure of seeing them come out to fight or to work alternately may be obtained as often as curiosity excites or time permits: and it will certainly be found, that the one order never attempts to fight, or the other to work, let the emergency be ever so great.

We meet vast obstacles in examining the interior parts of these tumuli. In the first place, the works, for instance, the apartments which surround the royal chamber and the nurseries, and indeed the whole internal fabric, are moist, and consequently the clay is very brittle: they have also so close a connexion, that they can only be seen as it were by piece-meal; for having a kind of geometrical dependance or abutment against each other, the breaking of one arch pulls down two or three. To these obstacles must be added the obstinacy of the soldiers, who fight to the very last, disputing every inch of ground so well as often to drive away the negroes who are without shoes, and make white people bleed plentifully through their stockings. Neither can we let a building stand so as to get a view of the interior parts without interruption, for while the soldiers are defending the

instance they shew more good sense than the bulk of mankind, for, in case of a conflagration in a city, the number of people who assemble to stare is much greater than of those who come to assist, and the former always interrupt and hinder the latter in their efforts. The sudden retreat of the labourers, in case of an alarm, is also a wonderful instance of good order and discipline, seldom seen in populous cities, where we frequently find helpless people, women, and children, without any ill intention, intermixing in violent tumults and dangerous riots.

out-works,
out-works, the labourers keep barricadoing all the way against us, stopping up the different galleries and passages which lead to the various apartments, particularly the royal chamber, all the entrances to which they fill up so artfully as not to let it be distinguishable while it remains moist; and externally it has no other appearance than that of a shapeless lump of clay. It is, however, easily found from its situation with respect to the other parts of the building, and by the crowds of labourers and soldiers which surround it, who shew their loyalty and fidelity by dying under its walls. The royal chamber in a large nest is capacious enough to hold many hundreds of the attendants, besides the royal pair, and you always find it as full of them as it can hold. These faithful subjects never abandon their charge even in the last distress; for whenever I took out the royal chamber, and, as I often did, preserved it for some time in a large glass bowl, all the attendants continued running in one direction round the king and queen with the utmost solicitude, some of them stopping on every circuit at the head of the latter, as if to give her something. When they came to the extremity of the abdomen, they took the eggs from her, and carried them away, and piled them carefully together in some part of the chamber, or in the bowl under, or behind any pieces of broken clay which lay most convenient for the purpose.

(46) In tab. VIII. fig. 2. and 4. the entrances of the royal chamber, now exhibited, are represented open. They were all shut by the labourers before I had got to it, and were opened since I arrived in England. Two or three of them, however, are not quite open in the chamber itself, and that next the breach at A, and marked with a cross, is still left shut, as a specimen of the manner in which they do it. I have also more royal chambers and various specimens of the interior buildings, with several galleries and passages, shut up while we were attacking the nest.
Some of these little unhappy creatures would ramble from the chamber, as if to explore the cause of such a horrid ruin and catastrophe to their immense building, as it must appear to them; and, after fruitless endeavours to get over the side of the bowl, return and mix with the crowd that continue running round their common parents to the last (tab. VIII. fig. 4. b.). Others, placing themselves along her side, get hold of the queen's vast matrix with their jaws, and pull with all their strength so as visibly to lift up the part which they fix at; but, as I never saw any effect from these attempts, I never could determine whether this pulling was with an intention to remove her body, or to stimulate her to move herself, or for any other purpose; but, after many ineffectual tugs, they would desist and join in the crowd running round, or assist some of those who are cutting off clay from the external parts of the chamber or some of the fragments and moistening it with the juices of their bodies, to begin to work a thin arched shell over the body of the queen, as if to exclude the air, or to hide her from the observation of some enemy. These, if not interrupted, before the next morning, completely cover her, leaving room enough within for great numbers to run about her.

I do not mention the king in this case, because he is very small in proportion to the queen, not being bigger than thirty of the labourers, so that he generally conceals himself under one side of the abdomen, except when he goes up to the queen's head, which he does now and then, but not so frequently as the rest.

If in your attack on the hill you stop short of the royal chamber, and cut down about half of the building, and leave open some thousands of galleries and chambers, they will all be shut up with thin sheets of clay before the next morning. If even the whole is pulled down, and the different buildings are thrown
in a confused heap of ruins, provided the king and queen are not destroyed or taken away, every interstice between the ruins, at which either cold or wet can possibly enter, will be so covered as to exclude both, and, if the animals are left undisturbed, in about a year they will raise the building to near its pristine size and grandeur.

The marching Termites are not less curious in their order, as far as I have had an opportunity of observing them, than those described before. This species seems much scarcer and larger than the *Termes balticus*. I could get no information relative to them from the black people, from which I conjecture they are little known to them; my seeing them was very accidental. One day, having made an excursion with my gun up the river Camerankoes, on my return through the thick forest, whilst I was sauntering very silently in hopes of finding some sport, on a sudden I heard a loud hiss, which, on account of the many serpents in those countries, is a most alarming sound. The next step caused a repetition of the noise, which I soon recognized, and was rather surprised seeing no covered ways or hills. The noise, however, led me a few paces from the path, where, to my great astonishment and pleasure, I saw an army of Termites coming out of a hole in the ground, which could not be above four or five inches wide. They came out in vast numbers, moving forward as fast seemingly as it was possible for them to march. In less than a yard from this place they divided into two streams or columns, composed chiefly of the first order, which I call labourers, twelve or fifteen abreast, and crowded as close after one another as sheep in a drove, going straight forward without deviating to the right or left. Among these, here and there, one of the soldiers was to be seen, trudging along with them, in the same manner, neither stopping
or turning; and as he carried his enormous large head with apparent difficulty, he put me in mind of a very large ox amidst a flock of sheep. While these were bustling along, a great many soldiers were to be seen spread about on both sides of the two lines of march, some a foot or two distant, standing still or strolling about as if upon the look out lest some enemy should suddenly come upon the labourers. But the most extraordinary part of this march was the conduct of some others of the soldiers, who having mounted the plants which grow thinly here and there in the thick shade, had placed themselves upon the points of the leaves, which were elevated ten or fifteen inches above the ground, and hung over the army marching below. Every now and then one or other of them beat with his forceps upon the leaf, and made the same sort of ticking noise which I had so frequently observed to be made by the soldiers who acts the part of a surveyor or super-intendant when the labourers are at work repairing a breach made in one of the common hills of the *Termes bellicos*. This signal among the marching white Ants produced a similar effect; for, whenever it was made, the whole army returned a hiss, and obeyed the signal by increasing their pace with the utmost hurry. The soldiers who had mounted aloft, and gave these signals, sat quite still during the intervals (except making now and then a slight turn of the head) and seemed as solicitous to keep their posts as regular sentinels. The two columns of the army joined into one about twelve or fifteen paces from their separation, having in no part been above three yards asunder, and then descended into the earth by two or three holes. They continued marching by me for above an hour that I stood admiring them, and seemed neither to increase or diminish their numbers, the soldiers only excepted, who quitted
the Termites of Africa and other hot Climates.

quitted the line of march, and placed themselves at different distances on each side of the two columns; for they appeared much more numerous before I quitted the spot. Not expecting to see any change in their march, and being pinched for time, the tide being nearly up, and our departure fixed at high water, I quitted the scene with some regret, as the observation of a day or two might have afforded me the opportunity of exploring the reason and necessity of their marching with such expedition, as well as of discovering their chief settlement, which is probably built in the same manner as the large hills before described. If so, it may be larger and more curious, as these insects were at least one-third larger than the other species, and consequently their buildings must be more wonderful if possible: thus much is certain, there must be some fixed place for their king and queen, and the young ones. Of these species I have not seen the perfect insect.

The economy of nature is wonderfully displayed in a comparative observation on the different species who are calculated to live under ground until they have wings, and this species which marches in great bodies in open day. The former, in marines and soldiers, have no eyes that I could ever discover; but when they arrive at the winged or perfect state in which they are to appear abroad, though only for a few hours, and that chiefly in the night, they are furnished with two conspicuous and fine eyes: so the *Termes viarum*, or marching Bugga Bugs, being intended to walk in the open air and light, are even in the first state furnished with eyes proportionably as fine as those which are given to the winged or perfect insects of the other species.

I am
Mr. Smeathman's Account, &c.

I am afraid of encroaching upon your time, which leads me to drop the subject for the present; but, as my materials are not exhausted, if these sheets meet with your approbation, it will encourage me to give some further particulars, with observations and reflections, at a future period.

I have the honour to be, &c.
Explanations of the plates to Mr. Smeathman's Account of the Termites of Africa, &c.

Tab. VII. fig. 1. The hill-nefs raised by the Termites bellicosus, described page 148.

aaa. Turrets by which their hills are raised and enlarged, p. 150.

Fig. 2. A section of fig. 1, as it would appear on being cut down through the middle from the top a foot lower than the surface of the ground, p. 154.

AA. An horizontal line from A on the left, and a perpendicular line from A at the bottom, will intersect each other at the royal chamber, p. 154.

The darker shades near it are the empty apartments and passages which it seems are left so for the attendants on the king and queen, who, when old, may require near one hundred thousand to wait on them every day. The parts which are the least shaded and dotted are the nurseries, surrounded, like the royal chamber, by empty passages on all sides for the more easy access to them with the eggs from the queen, the provision for the young, &c. N. B. The magazines of provisins are situated without any seeming order among the vacant passages which surround the nurseries.

b. The top of the interior building, which often seems, from the arches carrying upward, to be adorned on the sides with pinnacles, p. 156.

c. The floor of the area or nave, p. 156.

DDD. The large galleries which ascend from under all the buildings spirally to the top, p. 156.

EE. The bridges, p. 158.

Fig. 3. The first appearance of an hill-nef by two turrets, p. 150.

Fig. 4. A tree, with the nefs of the Termites arborum, and their covered ways, p. 161.

FFFF. Covered ways of the Termites arborum, p. 173.

Fig. 5. A section of the nef of the Termites arborum.

Fig. 6. A nef of the Termites bellicosus, with Europeans on it, seemingly observing a vessel at sea, p. 151.

Fig. 7. A bull standing centinel upon one of these nefs, while the rest of the herd is ruminating below, p. 151.

ggg. The African palm-trees, from the nuts of which is made the Oleum Palmae.

Tab. VIII. fig. 1. A transverse section of a royal chamber, p. 151.

aa. The thin sides in which the entrances are made, p. 152.

Fig. 2. A longitudinal section of a royal chamber, p. 151.

A. The entrances, p. 187.

A. The door shut up, as left by the labourers, p. 187.

Fig. 3. A royal chamber foreshortened.

Fig. 4. The same royal chamber represented as just opened, and discovering (b) the queen, and her attendants running round her, p. 188.

bb. A line drawn from b to b will run along the range of doors or entrances, p. 187.

aaa. A line run from A to AA will cross the door, which remains closed as it was found. The rest are represented as they appear since the morta,
with which they were stopped up, has been in part or wholly picked out with a small instrument, p. 187.

Fig. 5. A nursery, p. 153.

Fig. 6. A little nursery, with the eggs, the young ones, the mushrooms, mouldines, &c. as just taken from the hill, p. 153.

Fig. 7. The mushrooms magnified by a strong lens, p. 154.

Tab. IX. fig. 1. and 2. The turret seats, with roofs of the Termes mordax and a Termes atrox as finished, p. 159.

Fig. 3. A turret, with the roof begun.

Fig. 4. A turret, raised only about half its height.

Fig. 5. A turret, building upon one which had been thrown down, p. 160.

Fig. 6. 6. A turret, broken in two.

Tab. X. fig. 1. A Termes bellicosus, p. 141, numb. 1. and p. 165.

Fig. 2. A king. N.B. A king never alters his form after he loses his wings, neither does he apparently increase in bulk.

Fig. 3. A queen, p. 170.

Fig. 4. The head of a perfect insect magnified.

Fig. 5. A face, with stemmata magnified, p. 141, numb. 1.

Fig. 6. A labourer, p. 163.

Fig. 7. A labourer magnified.

Fig. 8. A soldier, p. 164.

Fig. 9. A soldier's forceps and part of his head magnified, p. 164.

Fig. 10. The Termes mordax, p. 141, numb. 2. and p. 161.

Fig. 11. The face with the stemmata magnified, p. 141, numb. 2.

Fig. 12. A labourer.

Fig. 13. A soldier.

Fig. 14. The Termes atrox, p. 141, numb. 3. and p. 160.

Fig. 15. The face and stemmata magnified, p. 141, numb. 3.

Fig. 16. A labourer.

Fig. 17. A soldier.

Fig. 18. Idem.

Fig. 19. The Termes destructor, p. 141, numb. 4.

Fig. 20. The face and stemmata magnified, p. 141, numb. 4.

Fig. 21. The Termes arborum, p. 141, numb. 5. and p. 162.

Fig. 22. The face and stemmata magnified, p. 141, numb. 5.

Fig. 23. A labourer.

Fig. 24. A soldier.

Fig. 25. A Queen, p. 172.

N.B. In the figures 5, 11, 15, 20, and 21. the two white spots between the edges are the stemmata.
XII. An Account of several Earthquakes felt in Wales. By Thomas Pennant, Esq. F. R. S. in a Letter to Sir Joseph Banks, P. R. S.

Read January 25, 1781.

DEAR SIR,

Downing,
Dec. 12, 1781.

IT is very singular, that in three days after my return home I should be reminded of my promise by a repetition of the very phenomenon on which I had engaged to write to you: for on Saturday last, between four and five in the evening, we were alarmed with two shocks of an earthquake; a slight one, immediately followed by another very violent. It seemed to come from the north-east, and was preceded by the usual noise; at present I cannot trace it farther than Holywell.

The earthquake preceding this was on the 29th of August last, about a quarter before nine in the morning. I was forewarned of it by a rumbling noise not unlike the coming of a great waggon into my court-yard. Two shocks immediately followed, which were strong enough to terrify us. They came from the north-west; were felt in Anglesea, at Caernarvon, Llanrwst, in the isle of Clwyd south of Denbigh, at this house, and in Holywell; but I could not discover that their force extended any farther.

The next in this retrograde way of enumerating these phenomena was on the 8th of September 1775, about a quarter before
before ten at night, the noise was such as preceded the former; and the shock so violent as to shake the bottles and glasses on the table round which myself and some company were sitting. This seemed to come from the east. I see in the Gentleman's Magazine of that year, that this shock extended to Shropshire, and quite to Bath, and to Swansea in South Wales.

The earliest earthquake I remember here was on the 10th of April 1750. It has the honour of being recorded in the Philosophical Transactions; therefore I shall not trouble you with the repetition of what I have said.

Permit me to observe, that I live near a mineral country, in a situation between lead mines and coal mines; in a sort of neutral tract, about a mile distant from the first, and half a mile from the last. On the strictest inquiry I cannot discover that the miners or colliers were ever sensible of the shocks under ground: nor have they ever perceived, when the shocks in question have happened, any falls of the loose and shattery strata, in which the last especially work; yet, at the same time, the earthquakes have had violence sufficient to terrify the inhabitants of the surface. Neither were these local; for, excepting the first, all may be traced to very remote parts. The weather was remarkably still at the time of every earthquake I have felt.

I remain, with true regard, &c.
XIII. Extract of a Letter from the Right Honourable Philip, Earl Stanhope, F. R. S. to Mr. James Clow, Professor of Philosophy in the University of Glasgow. Dated Chevening, February 16, 1777.

Read June 10, 1780.

I have lately made some curious observations concerning the roots of algebraic equations, part of which have occurred to Messieurs Daniel Bernoulli, Euler, de la Grange, Lambert, and others; but some of them, I believe, are quite new. I will give you an instance of a quadratic equation, as the simplest.

Let the quadratic equation \(11xx - 15x + 5 = 0\), be proposed. I say then, that if two recurring series be formed from the fractions \(\frac{1+2x}{1-x-2z}, \frac{2+3x}{1-x-2z}\), which have a common denominator, and each series of co-efficients, continued both ways (that is, as well before, as after the first term) the fractions formed by dividing each term of the first series by the corresponding term of the second series, viz.

\[
\begin{array}{cccccccc}
-11 & +7 & -4 & +3 & -1 & -3 & 2 & 1 \\
-14 & +9 & -5 & +4 & -1 & -4 & 3 & 2
\end{array}
\]

will converge in the simplest manner possible; those before the bar, in a retrograde order to the greater root \(\frac{15+\sqrt{5}}{22}\); and those after the bar, in a direct order to the smallest root \(\frac{15-\sqrt{5}}{22}\); where it is to be
be observed, that the greater root is affirmative, notwithstanding the sign - being prefixed to some of the terms, because in each fraction the numerator and the denominator are affected by the same sign, whether + or -.

The chief improvement I have made consists in approximating to two roots at once, by one and the same series, continued backwards as well as forwards. I have not time to enlarge upon this subject at present; but the little I have said will be a specimen of the method to be used in higher equations.
XIV. Extract of Two Meteorological Journals of the Weather observed at Nain in 57° North Latitude, and at Okak in 57° 20'. North Latitude, both on the Coast of Labrador. Communicated by Mr. De la Trobe.

Read March 8, 1781.

THERMOMETER AT OKAK.

<table>
<thead>
<tr>
<th>1779</th>
<th>Highest</th>
<th>Lowest</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>78.0</td>
<td>37.0</td>
<td>52.0</td>
</tr>
<tr>
<td>September</td>
<td>74.0</td>
<td>32.0</td>
<td>45.0</td>
</tr>
<tr>
<td>October</td>
<td>45.0</td>
<td>11.0</td>
<td>32.3</td>
</tr>
<tr>
<td>November</td>
<td>36.0</td>
<td>15.0</td>
<td>27.3</td>
</tr>
<tr>
<td>December</td>
<td>31.0</td>
<td>12.0</td>
<td>12.7</td>
</tr>
<tr>
<td>1780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>35.0</td>
<td>13.0</td>
<td>15.3</td>
</tr>
<tr>
<td>February</td>
<td>33.0</td>
<td>17.0</td>
<td>13.1</td>
</tr>
<tr>
<td>March</td>
<td>45.0</td>
<td>14.0</td>
<td>10.0</td>
</tr>
<tr>
<td>April</td>
<td>57.0</td>
<td>9.0</td>
<td>29.5</td>
</tr>
<tr>
<td>May</td>
<td>55.0</td>
<td>23.0</td>
<td>39.0</td>
</tr>
<tr>
<td>June</td>
<td>68.0</td>
<td>33.0</td>
<td>43.6</td>
</tr>
<tr>
<td>July</td>
<td>84.0</td>
<td>38.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Year</td>
<td>Thermometer at Nain</td>
<td>Barometer at Nain</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highest</td>
<td>Lowest</td>
<td>Mean.</td>
</tr>
<tr>
<td>1778</td>
<td>68.0</td>
<td>35.0</td>
<td>45.3</td>
</tr>
<tr>
<td>October</td>
<td>60.0</td>
<td>15.0</td>
<td>35.1</td>
</tr>
<tr>
<td>November</td>
<td>37.0</td>
<td>5.0</td>
<td>25.4</td>
</tr>
<tr>
<td>December</td>
<td>28.0</td>
<td>30.0</td>
<td>1.9</td>
</tr>
<tr>
<td>1779</td>
<td>13.0</td>
<td>29.0</td>
<td>14.3</td>
</tr>
<tr>
<td>January</td>
<td>13.0</td>
<td>36.0</td>
<td>13.2</td>
</tr>
<tr>
<td>February</td>
<td>29.0</td>
<td>20.0</td>
<td>5.0</td>
</tr>
<tr>
<td>March</td>
<td>51.0</td>
<td>5.0</td>
<td>27.7</td>
</tr>
<tr>
<td>April</td>
<td>63.0</td>
<td>22.0</td>
<td>34.9</td>
</tr>
<tr>
<td>May</td>
<td>71.0</td>
<td>32.0</td>
<td>42.2</td>
</tr>
<tr>
<td>June</td>
<td>74.0</td>
<td>36.0</td>
<td>48.2</td>
</tr>
<tr>
<td>July</td>
<td>78.0</td>
<td>38.0</td>
<td>52.0</td>
</tr>
<tr>
<td>August</td>
<td>74.0</td>
<td>35.0</td>
<td>45.4</td>
</tr>
<tr>
<td>September</td>
<td>47.0</td>
<td>14.0</td>
<td>33.6</td>
</tr>
<tr>
<td>October</td>
<td>39.0</td>
<td>9.0</td>
<td>27.3</td>
</tr>
<tr>
<td>November</td>
<td>32.0</td>
<td>13.0</td>
<td>11.1</td>
</tr>
<tr>
<td>December</td>
<td>35.0</td>
<td>16.0</td>
<td>13.4</td>
</tr>
<tr>
<td>January</td>
<td>32.0</td>
<td>23.0</td>
<td>9.7</td>
</tr>
<tr>
<td>February</td>
<td>39.0</td>
<td>18.0</td>
<td>10.0</td>
</tr>
<tr>
<td>March</td>
<td>45.0</td>
<td>4.0</td>
<td>28.2</td>
</tr>
<tr>
<td>April</td>
<td>53.0</td>
<td>23.0</td>
<td>37.6</td>
</tr>
<tr>
<td>May</td>
<td>61.0</td>
<td>32.0</td>
<td>43.1</td>
</tr>
<tr>
<td>June</td>
<td>84.0</td>
<td>39.0</td>
<td>52.2</td>
</tr>
<tr>
<td>July</td>
<td>70.0</td>
<td>37.0</td>
<td>50.4</td>
</tr>
</tbody>
</table>
METEOROLOGICAL JOURNAL

KEPT AT THE HOUSE OF

THE ROYAL SOCIETY

BY ORDER OF THE

PRESIDENT AND COUNCIL.
METEOROLOGICAL JOURNAL

for January 1780.

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 1 8 o</td>
<td>27.0</td>
<td>33.0</td>
<td>30.24</td>
<td></td>
<td>NE</td>
<td>Foggy and frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>31.0</td>
<td>34.0</td>
<td>30.17</td>
<td></td>
<td>SE</td>
<td>Foggy.</td>
</tr>
<tr>
<td>2 o</td>
<td>32.0</td>
<td>33.0</td>
<td>30.35</td>
<td></td>
<td>SE</td>
<td>Foggy.</td>
</tr>
<tr>
<td>2 o</td>
<td>36.0</td>
<td>35.0</td>
<td>30.16</td>
<td></td>
<td>SE</td>
<td>Foggy.</td>
</tr>
<tr>
<td>3 o</td>
<td>41.0</td>
<td>37.0</td>
<td>30.09</td>
<td></td>
<td>SE</td>
<td>Foggy.</td>
</tr>
<tr>
<td>2 o</td>
<td>43.5</td>
<td>38.5</td>
<td>30.08</td>
<td></td>
<td>SE</td>
<td>Foggy and cloudy.</td>
</tr>
<tr>
<td>4 o</td>
<td>35.0</td>
<td>38.0</td>
<td>30.26</td>
<td></td>
<td>N by W</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 o</td>
<td>39.0</td>
<td>39.5</td>
<td>30.34</td>
<td></td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td>5 o</td>
<td>31.0</td>
<td>36.0</td>
<td>30.30</td>
<td></td>
<td>WNW</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 o</td>
<td>36.0</td>
<td>37.5</td>
<td>30.28</td>
<td></td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>6 o</td>
<td>33.5</td>
<td>35.0</td>
<td>30.00</td>
<td></td>
<td>W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 o</td>
<td>37.5</td>
<td>36.5</td>
<td>29.98</td>
<td></td>
<td>SW</td>
<td>Foggy and rain.</td>
</tr>
<tr>
<td>7 o</td>
<td>36.0</td>
<td>36.5</td>
<td>30.14</td>
<td></td>
<td>ENE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 o</td>
<td>36.5</td>
<td>38.5</td>
<td>30.20</td>
<td></td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td>8 o</td>
<td>26.0</td>
<td>33.0</td>
<td>30.15</td>
<td></td>
<td>NE</td>
<td>Fair and frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>30.5</td>
<td>35.5</td>
<td>30.04</td>
<td></td>
<td>NE</td>
<td>Frosty.</td>
</tr>
<tr>
<td>9 o</td>
<td>22.5</td>
<td>30.0</td>
<td>29.95</td>
<td></td>
<td>NE</td>
<td>Frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>29.5</td>
<td>31.0</td>
<td>29.88</td>
<td></td>
<td>E</td>
<td>Fine.</td>
</tr>
<tr>
<td>10 o</td>
<td>29.0</td>
<td>30.0</td>
<td>29.67</td>
<td></td>
<td>N by E</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 o</td>
<td>33.0</td>
<td>31.5</td>
<td>29.59</td>
<td></td>
<td>NE</td>
<td>Cloudy and snow.</td>
</tr>
<tr>
<td>11 o</td>
<td>25.0</td>
<td>29.5</td>
<td>29.58</td>
<td></td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 o</td>
<td>32.0</td>
<td>31.5</td>
<td>29.65</td>
<td></td>
<td>NNW</td>
<td>Foggy and snow.</td>
</tr>
<tr>
<td>12 o</td>
<td>24.5</td>
<td>29.5</td>
<td>29.61</td>
<td></td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 o</td>
<td>29.0</td>
<td>30.0</td>
<td>29.67</td>
<td></td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>13 o</td>
<td>20.0</td>
<td>27.0</td>
<td>29.94</td>
<td></td>
<td>N by E</td>
<td>Fair and frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>27.0</td>
<td>28.0</td>
<td>29.89</td>
<td></td>
<td>NE</td>
<td>Fair and frosty.</td>
</tr>
<tr>
<td>14 o</td>
<td>20.0</td>
<td>25.0</td>
<td>29.81</td>
<td></td>
<td>NE</td>
<td>Fair and frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>30.0</td>
<td>28.0</td>
<td>29.89</td>
<td></td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td>15 o</td>
<td>21.5</td>
<td>24.5</td>
<td>29.45</td>
<td></td>
<td>NE</td>
<td>Fair and frosty.</td>
</tr>
<tr>
<td>2 o</td>
<td>33.0</td>
<td>27.5</td>
<td>29.27</td>
<td></td>
<td>NE</td>
<td>Foggy.</td>
</tr>
<tr>
<td>16 o</td>
<td>40.0</td>
<td>32.0</td>
<td>28.70</td>
<td>0.185</td>
<td>SW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>2 o</td>
<td>47.0</td>
<td>36.5</td>
<td>28.59</td>
<td></td>
<td>SW</td>
<td>Fine.</td>
</tr>
</tbody>
</table>
Meteorological Journal

for January 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. M.</td>
<td>Inches.</td>
<td>Inch.</td>
<td>Points</td>
<td>Str.</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8 o 40.0</td>
<td>37.0</td>
<td>28.73</td>
<td>0.035</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>18</td>
<td>8 o 40.5</td>
<td>38.0</td>
<td>28.74</td>
<td>0.042</td>
<td>W by N</td>
<td>Fine.</td>
</tr>
<tr>
<td>19</td>
<td>8 o 41.0</td>
<td>39.5</td>
<td>28.92</td>
<td>0.214</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>20</td>
<td>8 o 37.0</td>
<td>37.5</td>
<td>29.28</td>
<td>0.150</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>21</td>
<td>8 o 35.5</td>
<td>39.0</td>
<td>29.37</td>
<td></td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>22</td>
<td>8 o 33.0</td>
<td>37.0</td>
<td>29.37</td>
<td></td>
<td>N by E</td>
<td>Rainy.</td>
</tr>
<tr>
<td>23</td>
<td>8 o 39.5</td>
<td>38.5</td>
<td>29.77</td>
<td>0.066</td>
<td>N by E</td>
<td>Rainy.</td>
</tr>
<tr>
<td>24</td>
<td>8 o 25.0</td>
<td>33.0</td>
<td>30.00</td>
<td></td>
<td>N by W</td>
<td>Rainy.</td>
</tr>
<tr>
<td>25</td>
<td>8 o 24.0</td>
<td>31.0</td>
<td>30.00</td>
<td></td>
<td>N by E</td>
<td>Rainy.</td>
</tr>
<tr>
<td>26</td>
<td>8 o 28.0</td>
<td>32.5</td>
<td>30.05</td>
<td></td>
<td>NW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>27</td>
<td>8 o 26.5</td>
<td>31.0</td>
<td>30.01</td>
<td></td>
<td>NE</td>
<td>Rainy.</td>
</tr>
<tr>
<td>28</td>
<td>8 o 29.0</td>
<td>30.0</td>
<td>30.12</td>
<td></td>
<td>E by E</td>
<td>Rainy.</td>
</tr>
<tr>
<td>29</td>
<td>8 o 35.5</td>
<td>33.5</td>
<td>30.06</td>
<td></td>
<td>N by E</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>30</td>
<td>8 o 34.5</td>
<td>32.5</td>
<td>29.95</td>
<td></td>
<td>N by E</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>31</td>
<td>8 o 28.0</td>
<td>32.0</td>
<td>29.90</td>
<td></td>
<td>N</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o 31.0</td>
<td>32.5</td>
<td>29.92</td>
<td></td>
<td>E by N</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vol. LXXI.

D d

Mete-
Meteorological Journal

for February 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H.M.</td>
<td>Inches</td>
<td>Inches</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18 0</td>
<td>30.5</td>
<td>32.0</td>
<td>29.65</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>32.0</td>
<td>33.0</td>
<td></td>
<td>29.62</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2</td>
<td>28 0</td>
<td>28.5</td>
<td>31.0</td>
<td>29.48</td>
<td>NE</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>33.5</td>
<td>34.5</td>
<td></td>
<td>29.47</td>
<td>NE</td>
<td>Fair.</td>
</tr>
<tr>
<td>3</td>
<td>31 0</td>
<td>31.5</td>
<td>32.5</td>
<td>29.57</td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>36.5</td>
<td>34.5</td>
<td></td>
<td>29.69</td>
<td>NW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>4</td>
<td>29 0</td>
<td>29.0</td>
<td>33.0</td>
<td>29.74</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>38.5</td>
<td>35.5</td>
<td></td>
<td>29.68</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>5</td>
<td>30 0</td>
<td>30.5</td>
<td>33.0</td>
<td>29.43</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>35.0</td>
<td>35.0</td>
<td></td>
<td>29.41</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>6</td>
<td>33 0</td>
<td>33.0</td>
<td>34.0</td>
<td>29.08</td>
<td>WSW</td>
<td>Rainy and foggy.</td>
</tr>
<tr>
<td></td>
<td>36.5</td>
<td>35.0</td>
<td></td>
<td>29.11</td>
<td>WSW</td>
<td>Rainy and foggy.</td>
</tr>
<tr>
<td>7</td>
<td>34 0</td>
<td>34.0</td>
<td>36.0</td>
<td>29.48</td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>38.5</td>
<td>38.0</td>
<td></td>
<td>29.68</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>8</td>
<td>32 0</td>
<td>32.5</td>
<td>36.0</td>
<td>29.89</td>
<td>SE</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>41.0</td>
<td>48.0</td>
<td></td>
<td>29.92</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>9</td>
<td>43 0</td>
<td>39.0</td>
<td>50.0</td>
<td>30.00</td>
<td>S by W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>50.5</td>
<td>42.0</td>
<td></td>
<td>30.08</td>
<td>S by E</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>10</td>
<td>45 0</td>
<td>44.5</td>
<td>44.5</td>
<td>30.22</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>51.5</td>
<td>46.5</td>
<td></td>
<td>30.24</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>11</td>
<td>40 0</td>
<td>40.0</td>
<td>45.5</td>
<td>30.41</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>44.0</td>
<td>45.5</td>
<td></td>
<td>30.45</td>
<td>ENE</td>
<td>Fine.</td>
</tr>
<tr>
<td>12</td>
<td>36 0</td>
<td>36.5</td>
<td>42.0</td>
<td>30.47</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>41.0</td>
<td>43.0</td>
<td></td>
<td>30.47</td>
<td>ENE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>13</td>
<td>37 0</td>
<td>37.0</td>
<td>40.5</td>
<td>30.48</td>
<td>NE</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>41.5</td>
<td>42.0</td>
<td></td>
<td>30.52</td>
<td>NE</td>
<td>Fair.</td>
</tr>
<tr>
<td>14</td>
<td>34 0</td>
<td>34.0</td>
<td>39.5</td>
<td>30.50</td>
<td>N by W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>43.0</td>
<td>41.5</td>
<td></td>
<td>30.46</td>
<td>N by W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>15</td>
<td>35 0</td>
<td>35.5</td>
<td>39.5</td>
<td>30.40</td>
<td>N by W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>40.0</td>
<td>40.0</td>
<td></td>
<td>30.39</td>
<td>N by W</td>
<td>Fair.</td>
</tr>
<tr>
<td>16</td>
<td>37 0</td>
<td>37.0</td>
<td>39.0</td>
<td>30.08</td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>42.0</td>
<td></td>
<td>30.00</td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td>Time</td>
<td>Therm. without</td>
<td>Therm. within</td>
<td>Barom.</td>
<td>Rain.</td>
<td>Winds.</td>
<td>Weather</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>H. M.</td>
<td>Inches</td>
<td>Inch</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 17</td>
<td>8 o</td>
<td>32,0</td>
<td>38,0</td>
<td>30,19</td>
<td>S by E</td>
<td>Foggy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>38,5</td>
<td>39,0</td>
<td>30,25</td>
<td>SE</td>
<td>Foggy and cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>35,0</td>
<td>38,5</td>
<td>30,06</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>41,0</td>
<td>41,0</td>
<td>29,92</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>19</td>
<td>8 o</td>
<td>36,0</td>
<td>40,5</td>
<td>30,41</td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>43,0</td>
<td>42,0</td>
<td>29,49</td>
<td>W</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>27,5</td>
<td>37,0</td>
<td>29,56</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>20</td>
<td>8 o</td>
<td>34,0</td>
<td>37,0</td>
<td>29,57</td>
<td>NNW</td>
<td>Snow.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>27,5</td>
<td>33,0</td>
<td>29,72</td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>36,0</td>
<td>35,5</td>
<td>29,78</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>21</td>
<td>8 o</td>
<td>28,0</td>
<td>32,5</td>
<td>29,86</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>30,0</td>
<td>37,5</td>
<td>29,94</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>28,0</td>
<td>32,5</td>
<td>30,18</td>
<td>NNW</td>
<td>Fine.</td>
</tr>
<tr>
<td>23</td>
<td>8 o</td>
<td>38,0</td>
<td>35,0</td>
<td>30,24</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>34,0</td>
<td>34,0</td>
<td>30,23</td>
<td>SSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>41,0</td>
<td>36,0</td>
<td>30,27</td>
<td>SW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>24</td>
<td>8 o</td>
<td>41,0</td>
<td>38,5</td>
<td>30,06</td>
<td>SSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>47,0</td>
<td>49,0</td>
<td>29,88</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>25</td>
<td>8 o</td>
<td>26,0</td>
<td>35,0</td>
<td>29,83</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>32,5</td>
<td>35,5</td>
<td>30,08</td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td>26</td>
<td>8 o</td>
<td>34,0</td>
<td>34,5</td>
<td>29,99</td>
<td>SW</td>
<td>Snowy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>42,0</td>
<td>36,5</td>
<td>29,82</td>
<td>SSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>27</td>
<td>8 o</td>
<td>42,0</td>
<td>40,0</td>
<td>29,92</td>
<td>WSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>53,5</td>
<td>44,5</td>
<td>29,95</td>
<td>WSW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>46,0</td>
<td>46,0</td>
<td>29,91</td>
<td>W by S</td>
<td>Fair.</td>
</tr>
<tr>
<td>28</td>
<td>8 o</td>
<td>50,0</td>
<td>41,0</td>
<td>30,03</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>29</td>
<td>2 o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METEOROLOGICAL JOURNAL

for March 1780.

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Points</th>
<th>Str.</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M.</td>
<td>Inches</td>
<td>Inch.</td>
<td></td>
<td></td>
<td></td>
<td>Points</td>
<td>Str.</td>
<td></td>
</tr>
<tr>
<td>Mar. 1</td>
<td>7 0</td>
<td>34.5</td>
<td>43.0</td>
<td>30.10</td>
<td>W by S</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>47.0</td>
<td>46.0</td>
<td>30.09</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>45.0</td>
<td>45.5</td>
<td>29.78</td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>41.0</td>
<td>29.59</td>
<td>SE</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 0</td>
<td>39.0</td>
<td>45.0</td>
<td>29.74</td>
<td>WNW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>48.5</td>
<td>48.5</td>
<td>29.65</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>37.5</td>
<td>43.0</td>
<td>29.91</td>
<td>SW</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 0</td>
<td>47.0</td>
<td>45.0</td>
<td>30.17</td>
<td>W by N</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>55.0</td>
<td>48.5</td>
<td>30.25</td>
<td>WSW</td>
<td>2</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>45.0</td>
<td>47.5</td>
<td>30.37</td>
<td>WSW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>56.0</td>
<td>52.0</td>
<td>30.42</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 0</td>
<td>47.5</td>
<td>51.0</td>
<td>30.36</td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>57.0</td>
<td>53.0</td>
<td>30.39</td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 0</td>
<td>48.0</td>
<td>51.0</td>
<td>30.37</td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>54.0</td>
<td>55.5</td>
<td>30.35</td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>44.5</td>
<td>59.0</td>
<td>30.13</td>
<td>SSW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>51.5</td>
<td>30.01</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7 0</td>
<td>37.0</td>
<td>46.0</td>
<td>W by S</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>48.5</td>
<td>30.45</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7 0</td>
<td>33.0</td>
<td>43.0</td>
<td>SE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>47.0</td>
<td>30.32</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7 0</td>
<td>44.0</td>
<td>45.0</td>
<td>S by W</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>52.0</td>
<td>48.5</td>
<td>29.79</td>
<td>SSW</td>
<td>1</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7 0</td>
<td>35.0</td>
<td>44.0</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>51.0</td>
<td>47.5</td>
<td>30.15</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7 0</td>
<td>44.0</td>
<td>47.0</td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>54.5</td>
<td>48.5</td>
<td>29.82</td>
<td>SSW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7 0</td>
<td>45.0</td>
<td>49.0</td>
<td>W by N</td>
<td>2</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>48.5</td>
<td>50.0</td>
<td>29.58</td>
<td>WNW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7 0</td>
<td>42.0</td>
<td>46.0</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>51.0</td>
<td>50.0</td>
<td>29.67</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Therm. without</td>
<td>Therm. within</td>
<td>Barom.</td>
<td>Rain.</td>
<td>Winds.</td>
<td>Points</td>
<td>Str.</td>
<td>Weather</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----------------------</td>
</tr>
<tr>
<td>H. M.</td>
<td>Inches</td>
<td>Inch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 17</td>
<td>38,0</td>
<td>36,0</td>
<td>29,99</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>20</td>
<td>56,0</td>
<td>29,42</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>50,0</td>
<td>51,0</td>
<td>29,67</td>
<td></td>
<td>NW</td>
<td>2</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>40,0</td>
<td>58,0</td>
<td>29,35</td>
<td>0,360</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>54,0</td>
<td>50,5</td>
<td>29,47</td>
<td>0,160</td>
<td>NE</td>
<td>1</td>
<td>Cloudy and rain.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>47,0</td>
<td>49,5</td>
<td>29,46</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>50,0</td>
<td>51,0</td>
<td>29,87</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>50,0</td>
<td>50,0</td>
<td>29,78</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>44,0</td>
<td>50,0</td>
<td>29,83</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>52,0</td>
<td>51,0</td>
<td>29,92</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>37,0</td>
<td>45,0</td>
<td>30,11</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>56,0</td>
<td>46,0</td>
<td>30,27</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>35,5</td>
<td>43,5</td>
<td>30,11</td>
<td></td>
<td>E by S</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>43,0</td>
<td>45,5</td>
<td>29,82</td>
<td>0,112</td>
<td>SSE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>56,0</td>
<td>49,0</td>
<td>29,97</td>
<td></td>
<td>SE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>46,0</td>
<td>47,0</td>
<td>29,94</td>
<td></td>
<td>S by E</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>51,5</td>
<td>56,5</td>
<td>29,94</td>
<td></td>
<td>SSE</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>52,5</td>
<td>51,5</td>
<td>29,90</td>
<td></td>
<td>SSE</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>62,5</td>
<td>55,5</td>
<td>29,85</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>51,0</td>
<td>54,0</td>
<td>29,62</td>
<td></td>
<td>E by N</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>56,0</td>
<td>56,5</td>
<td>29,61</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>47,0</td>
<td>51,5</td>
<td>29,84</td>
<td>0,077</td>
<td>S by W</td>
<td>2</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>55,0</td>
<td>54,5</td>
<td>29,82</td>
<td></td>
<td>S by W</td>
<td>2</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>51,5</td>
<td>53,5</td>
<td>29,71</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>55,0</td>
<td>55,5</td>
<td>29,69</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>45,0</td>
<td>52,0</td>
<td>29,63</td>
<td>0,054</td>
<td>SSW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>50,0</td>
<td>53,5</td>
<td>29,63</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Rainy.</td>
<td></td>
</tr>
</tbody>
</table>

Meteorological Journal

for March 1780.
Meteorological Journal for April 1780

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom</th>
<th>Rain.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M</td>
<td>Inches</td>
<td>Inch.</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apr. 1
- 7 o 40.0 48.5 29.88 0.324 N by E 1 Fair.
- 2 o 49.0 50.0 29.87 0.014 SSE 1 Fine.
- 2 o 49.0 49.5 29.51 SE 1 Cloudy.
- 2 o 49.0 49.5 29.21 SSE 1 Rainy.
- 2 o 44.0 46.5 28.81 WSW 1 Cloudy.
- 2 o 44.0 47.5 28.88 NNEW 1 Rainy.
- 4 o 34.0 42.0 29.36 0.010 NNW 1 Fine.
- 2 o 44.5 43.5 29.45 NW 2 Fine.
- 2 o 43.5 40.5 29.48 0.016 SW 1 Fine.
- 2 o 35.5 40.5 29.50 NNW 1 Snow.
- 5 o 34.0 39.0 29.68 0.177 N by W 1 Fine.
- 2 o 45.0 43.5 29.83 NW 2 Fine.
- 2 o 33.0 38.0 29.81 0.010 NE 1 Fair.
- 2 o 40.5 42.5 29.72 SE 1 Fine.
- 6 o 34.0 39.0 29.71 NNE 1 Fine.
- 2 o 40.5 42.5 29.80 N by W 1 Fair.
- 2 o 47.5 41.5 30.08 NNE 2 Fine.
- 2 o 47.5 41.5 30.12 ENE 2 Fine.
- 7 o 35.5 38.0 30.17 SE 1 Fair.
- 2 o 47.0 41.5 30.10 E by N 1 Fair.
- 8 o 34.0 39.0 29.77 0.050 S by E 1 Rainy.
- 2 o 46.0 40.0 29.79 SE 1 Rainy.
- 9 o 40.0 39.0 30.08 NNE 2 Fine.
- 2 o 47.5 41.5 30.12 ENE 1 Fine.
- 10 o 35.5 38.0 30.17 SE 1 Fair.
- 2 o 47.0 41.5 30.10 E by N 1 Fair.
- 11 o 41.0 41.0 29.57 0.250 W by N 1 Cloudy.
- 2 o 46.0 49.0 29.50 NW 2 Fine.
- 12 o 42.0 43.5 29.50 0.156 W by N 1 Cloudy.
- 2 o 51.0 47.0 29.46 NNE 2 Fine.
- 13 o 38.0 43.0 29.57 NNE 2 Rain.
- 2 o 37.0 44.5 29.69 NNE 2 Rain.
- 14 o 41.0 42.0 29.72 NW 2 Fair.
- 2 o 40.5 44.5 29.75 NW 2 Fair.
- 15 o 43.5 43.5 29.75 WSW 1 Cloudy.
- 2 o 51.5 46.0 29.74 W by N 1 Cloudy.
- 16 o 47.0 45.0 29.62 0.035 NW 2 Fine.
- 2 o 55.0 49.0 29.67 WNW 2 Fine.
Meteorological Journal for April 1780

<table>
<thead>
<tr>
<th>Time (H. M.)</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Points</th>
<th>Str.</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>43.0</td>
<td>46.5</td>
<td>29.38</td>
<td>0.080</td>
<td>WNW</td>
<td>3</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>2 o</td>
<td>49.0</td>
<td>50.0</td>
<td>29.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>18</td>
<td>41.5</td>
<td>46.5</td>
<td>29.50</td>
<td>0.050</td>
<td>WNW</td>
<td>3</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>7 o</td>
<td>48.5</td>
<td>47.5</td>
<td>29.46</td>
<td></td>
<td>SW</td>
<td>2</td>
<td></td>
<td>Showery.</td>
</tr>
<tr>
<td>2 o</td>
<td>43.0</td>
<td>44.0</td>
<td>29.72</td>
<td>0.050</td>
<td>WSW</td>
<td>2</td>
<td></td>
<td>Showery.</td>
</tr>
<tr>
<td>19</td>
<td>53.0</td>
<td>48.0</td>
<td>29.76</td>
<td></td>
<td>N by E</td>
<td>2</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>2 o</td>
<td>42.0</td>
<td>44.5</td>
<td>29.94</td>
<td>0.030</td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>20</td>
<td>47.5</td>
<td>48.5</td>
<td>29.91</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td>7 o</td>
<td>53.0</td>
<td>50.0</td>
<td>29.83</td>
<td></td>
<td>SSE</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td>2 o</td>
<td>47.0</td>
<td>50.0</td>
<td>29.70</td>
<td>0.109</td>
<td>SSW</td>
<td>2</td>
<td></td>
<td>Showery.</td>
</tr>
<tr>
<td>21</td>
<td>53.0</td>
<td>53.5</td>
<td>29.71</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>7 o</td>
<td>47.5</td>
<td>50.0</td>
<td>29.52</td>
<td>0.031</td>
<td>S by W</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>2 o</td>
<td>59.5</td>
<td>54.0</td>
<td>29.47</td>
<td></td>
<td>SSW</td>
<td>2</td>
<td></td>
<td>Showery.</td>
</tr>
<tr>
<td>22</td>
<td>46.5</td>
<td>51.0</td>
<td>29.46</td>
<td>0.047</td>
<td>WSW</td>
<td>2</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>7 o</td>
<td>54.0</td>
<td>53.5</td>
<td>29.43</td>
<td></td>
<td>SSE</td>
<td>2</td>
<td></td>
<td>Showery.</td>
</tr>
<tr>
<td>2 o</td>
<td>45.0</td>
<td>59.5</td>
<td>29.51</td>
<td>0.053</td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>23</td>
<td>59.5</td>
<td>54.0</td>
<td>29.40</td>
<td>0.391</td>
<td>S by E</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>7 o</td>
<td>45.0</td>
<td>49.0</td>
<td>29.49</td>
<td></td>
<td>NW</td>
<td>2</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>2 o</td>
<td>58.0</td>
<td>53.5</td>
<td>29.74</td>
<td></td>
<td>NW</td>
<td>2</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>24</td>
<td>50.0</td>
<td>59.5</td>
<td>29.50</td>
<td>0.210</td>
<td>SSW</td>
<td>1</td>
<td></td>
<td>Rainy.</td>
</tr>
<tr>
<td>8 o</td>
<td>59.0</td>
<td>54.0</td>
<td>29.44</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td></td>
<td>Rainy.</td>
</tr>
<tr>
<td>25</td>
<td>54.5</td>
<td>55.0</td>
<td>29.83</td>
<td>0.183</td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>7 o</td>
<td>60.5</td>
<td>59.5</td>
<td>29.85</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Rainy.</td>
</tr>
<tr>
<td>26</td>
<td>53.0</td>
<td>50.0</td>
<td>29.66</td>
<td>0.066</td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>7 o</td>
<td>65.5</td>
<td>60.5</td>
<td>29.66</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>27</td>
<td>55.0</td>
<td>58.0</td>
<td>29.71</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>8 o</td>
<td>61.0</td>
<td>65.0</td>
<td>29.73</td>
<td></td>
<td>S by W</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
</tbody>
</table>

Mete-

Digitized by Google
Meteorological Journal
for May 1780.

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Points</th>
<th>Str.</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M.</td>
<td>Inches</td>
<td>Inch.</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 1</td>
<td>7 o</td>
<td>53.0</td>
<td>58.0</td>
<td>29.76</td>
<td>0.067</td>
<td>SSW</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>65.0</td>
<td>62.0</td>
<td>29.79</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>2</td>
<td>7 o</td>
<td>52.0</td>
<td>56.0</td>
<td>29.85</td>
<td>0.243</td>
<td>N by W</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>59.5</td>
<td>59.0</td>
<td>30.04</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>3</td>
<td>7 o</td>
<td>45.5</td>
<td>51.0</td>
<td>30.26</td>
<td></td>
<td>E by S</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>57.0</td>
<td>55.0</td>
<td>30.26</td>
<td></td>
<td>SE</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>4</td>
<td>7 o</td>
<td>48.0</td>
<td>52.5</td>
<td>30.18</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>64.0</td>
<td>56.5</td>
<td>30.16</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>5</td>
<td>7 o</td>
<td>53.0</td>
<td>55.0</td>
<td>29.92</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>59.5</td>
<td>58.0</td>
<td>29.88</td>
<td></td>
<td>WSW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td>6</td>
<td>7 o</td>
<td>52.5</td>
<td>55.0</td>
<td>29.88</td>
<td></td>
<td>W by N</td>
<td>2</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>60.0</td>
<td>58.5</td>
<td>29.90</td>
<td></td>
<td>W by S</td>
<td>1</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>7</td>
<td>7 o</td>
<td>53.0</td>
<td>55.0</td>
<td>29.94</td>
<td></td>
<td>SV</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>63.5</td>
<td>59.5</td>
<td>29.94</td>
<td></td>
<td>WSW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td>8</td>
<td>7 o</td>
<td>52.0</td>
<td>57.0</td>
<td>29.72</td>
<td>0.032</td>
<td>SW</td>
<td>1</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>55.0</td>
<td>57.5</td>
<td>29.58</td>
<td></td>
<td>S by W</td>
<td>2</td>
<td>Rainy.</td>
</tr>
<tr>
<td>9</td>
<td>7 o</td>
<td>54.0</td>
<td>55.0</td>
<td>29.67</td>
<td>0.091</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>57.0</td>
<td>58.5</td>
<td>29.64</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Rainy.</td>
</tr>
<tr>
<td>10</td>
<td>7 o</td>
<td>53.0</td>
<td>54.5</td>
<td>29.38</td>
<td>0.200</td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>59.0</td>
<td>58.5</td>
<td>29.51</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>11</td>
<td>7 o</td>
<td>53.0</td>
<td>57.5</td>
<td>29.72</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>58.0</td>
<td>59.0</td>
<td>29.88</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Rainy.</td>
</tr>
<tr>
<td>12</td>
<td>7 o</td>
<td>50.0</td>
<td>57.0</td>
<td>29.98</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>64.0</td>
<td>60.0</td>
<td>29.98</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>13</td>
<td>7 o</td>
<td>53.0</td>
<td>55.0</td>
<td>29.75</td>
<td>0.104</td>
<td>SW</td>
<td>1</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>63.0</td>
<td>60.5</td>
<td>29.73</td>
<td></td>
<td>SW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td>14</td>
<td>7 o</td>
<td>51.5</td>
<td>57.0</td>
<td>29.78</td>
<td></td>
<td>W by S</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>57.0</td>
<td>58.5</td>
<td>29.71</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>15</td>
<td>7 o</td>
<td>50.0</td>
<td>55.0</td>
<td>29.82</td>
<td>0.015</td>
<td>NW</td>
<td>2</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>33.0</td>
<td>68.5</td>
<td>29.94</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td>16</td>
<td>7 o</td>
<td>54.5</td>
<td>56.5</td>
<td>30.12</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>68.0</td>
<td>61.0</td>
<td>30.18</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
</tr>
</tbody>
</table>
Meteorological Journal for May 1780

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M.</td>
<td>Inches</td>
<td>Inch.</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>May 17</td>
<td>7 o</td>
<td>58.5</td>
<td>61.0</td>
<td>30.14</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>68.0</td>
<td>63.5</td>
<td>30.15</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>18</td>
<td>7 o</td>
<td>54.5</td>
<td>60.0</td>
<td>30.15</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>67.0</td>
<td>62.5</td>
<td>30.17</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>19</td>
<td>7 o</td>
<td>57.5</td>
<td>61.5</td>
<td>29.92</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>66.0</td>
<td>62.0</td>
<td>29.90</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>20</td>
<td>7 o</td>
<td>46.5</td>
<td>61.0</td>
<td>30.25</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>61.0</td>
<td>58.5</td>
<td>30.26</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>21</td>
<td>7 o</td>
<td>57.0</td>
<td>53.5</td>
<td>29.49</td>
<td>SE</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>67.0</td>
<td>61.0</td>
<td>30.01</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>22</td>
<td>7 o</td>
<td>56.0</td>
<td>58.0</td>
<td>29.61</td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>65.0</td>
<td>61.0</td>
<td>29.60</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>23</td>
<td>7 o</td>
<td>55.5</td>
<td>58.5</td>
<td>29.67</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>63.0</td>
<td>65.0</td>
<td>29.72</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>24</td>
<td>7 o</td>
<td>53.0</td>
<td>58.5</td>
<td>29.73</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>63.5</td>
<td>60.5</td>
<td>30.23</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>25</td>
<td>7 o</td>
<td>57.0</td>
<td>59.5</td>
<td>30.21</td>
<td>SW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>66.5</td>
<td>61.5</td>
<td>30.12</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>26</td>
<td>7 o</td>
<td>58.0</td>
<td>61.5</td>
<td>30.14</td>
<td>SW</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>70.0</td>
<td>65.0</td>
<td>30.14</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>27</td>
<td>7 o</td>
<td>60.5</td>
<td>64.0</td>
<td>30.28</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>73.5</td>
<td>70.0</td>
<td>30.22</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>28</td>
<td>7 o</td>
<td>68.0</td>
<td>66.5</td>
<td>30.17</td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>78.5</td>
<td>72.5</td>
<td>30.18</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>29</td>
<td>7 o</td>
<td>68.0</td>
<td>71.0</td>
<td>30.06</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>84.5</td>
<td>74.5</td>
<td>30.00</td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>30</td>
<td>7 o</td>
<td>65.0</td>
<td>67.0</td>
<td>29.98</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>71.5</td>
<td>71.0</td>
<td>30.01</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>31</td>
<td>7 o</td>
<td>56.0</td>
<td>59.0</td>
<td>30.06</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>66.0</td>
<td>66.0</td>
<td>30.14</td>
<td>NE</td>
<td>Fine.</td>
</tr>
</tbody>
</table>

Vol. LXXI. E e M e t e-
Meteorological Journal

for June 1780.

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom. Inches</th>
<th>Rain. Inch.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 June</td>
<td>7 o 60,0</td>
<td>61,0</td>
<td>30,05</td>
<td>E by N</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 70,5</td>
<td>65,0</td>
<td>29,98</td>
<td>ENE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 66,5</td>
<td>67,0</td>
<td>29,93</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 85,0</td>
<td>73,5</td>
<td>29,93</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7 o 65,0</td>
<td>68,0</td>
<td>29,88</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 71,0</td>
<td>72,0</td>
<td>29,95</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7 o 59,0</td>
<td>66,0</td>
<td>30,07</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 64,0</td>
<td>66,0</td>
<td>30,07</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7 o 48,5</td>
<td>57,0</td>
<td>29,99</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 55,5</td>
<td>59,0</td>
<td>29,99</td>
<td>NW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7 o 49,0</td>
<td>55,0</td>
<td>29,99</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 61,0</td>
<td>58,0</td>
<td>29,99</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 o 52,0</td>
<td>53,0</td>
<td>30,01</td>
<td>NE</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 60,0</td>
<td>58,0</td>
<td>30,02</td>
<td>NW</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7 o 48,0</td>
<td>56,0</td>
<td>29,99</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 59,0</td>
<td>57,0</td>
<td>30,09</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7 o 60,0</td>
<td>56,5</td>
<td>29,94</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 62,5</td>
<td>60,0</td>
<td>29,94</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7 o 61,0</td>
<td>59,0</td>
<td>29,80</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 66,0</td>
<td>63,0</td>
<td>29,83</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7 o 62,0</td>
<td>62,5</td>
<td>29,94</td>
<td>W by N</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 70,0</td>
<td>65,0</td>
<td>29,90</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7 o 59,0</td>
<td>63,0</td>
<td>30,04</td>
<td>ENE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 65,0</td>
<td>65,0</td>
<td>30,09</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7 o 59,0</td>
<td>62,0</td>
<td>30,03</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 72,0</td>
<td>69,5</td>
<td>29,98</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7 o 55,5</td>
<td>61,5</td>
<td>29,81</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 66,0</td>
<td>64,0</td>
<td>29,83</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7 o 55,5</td>
<td>60,5</td>
<td>29,85</td>
<td>NW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 63,0</td>
<td>64,0</td>
<td>29,92</td>
<td>NW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7 o 56,0</td>
<td>59,0</td>
<td>32,01</td>
<td>WSW</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 63,0</td>
<td>62,0</td>
<td>30,04</td>
<td>SW</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>June 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.5</td>
<td>69.5</td>
<td>29.91</td>
<td>0.030</td>
<td>SW</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>67.0</td>
<td>63.0</td>
<td>29.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>56.5</td>
<td>65.5</td>
<td>29.81</td>
<td>0.240</td>
<td>SW</td>
<td>Rainy</td>
</tr>
<tr>
<td>2</td>
<td>65.5</td>
<td>64.0</td>
<td>29.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60.0</td>
<td>62.5</td>
<td>29.79</td>
<td>0.152</td>
<td>SSW</td>
<td>Cloudy</td>
</tr>
<tr>
<td>2</td>
<td>72.0</td>
<td>67.0</td>
<td>29.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60.0</td>
<td>61.0</td>
<td>29.95</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>69.0</td>
<td>29.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>57.5</td>
<td>62.0</td>
<td>30.07</td>
<td>0.022</td>
<td>W by N</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>68.0</td>
<td>64.5</td>
<td>30.11</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.5</td>
<td>62.5</td>
<td>30.11</td>
<td></td>
<td>SSW</td>
<td>Cloudy</td>
</tr>
<tr>
<td>2</td>
<td>61.0</td>
<td>64.0</td>
<td>30.07</td>
<td></td>
<td>SW</td>
<td>Rainy</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.0</td>
<td>61.0</td>
<td>30.04</td>
<td>0.320</td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>70.0</td>
<td>69.0</td>
<td>30.18</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60.0</td>
<td>63.5</td>
<td>30.10</td>
<td></td>
<td>SSW</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>67.5</td>
<td>68.5</td>
<td>30.07</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.0</td>
<td>65.0</td>
<td>30.08</td>
<td></td>
<td>W by S</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>67.0</td>
<td>65.0</td>
<td>30.12</td>
<td></td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>57.5</td>
<td>62.0</td>
<td>30.24</td>
<td></td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>66.0</td>
<td>63.0</td>
<td>30.31</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.0</td>
<td>62.0</td>
<td>30.37</td>
<td></td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>64.5</td>
<td>30.37</td>
<td></td>
<td>SW</td>
<td>Fine</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>62.0</td>
<td>64.0</td>
<td>30.32</td>
<td></td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>74.0</td>
<td>68.0</td>
<td>30.28</td>
<td></td>
<td>NW</td>
<td>Fine</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>66.0</td>
<td>67.5</td>
<td>30.25</td>
<td></td>
<td>SE</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>78.0</td>
<td>70.0</td>
<td>30.19</td>
<td></td>
<td>E</td>
<td>Fine</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67.0</td>
<td>69.0</td>
<td>29.99</td>
<td></td>
<td>SE</td>
<td>Fine</td>
</tr>
<tr>
<td>2</td>
<td>84.5</td>
<td>76.0</td>
<td>29.94</td>
<td></td>
<td>ESE</td>
<td>Fine</td>
</tr>
</tbody>
</table>
Meteorological Journal

For July 1780.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1</td>
<td>7 0</td>
<td>64.5</td>
<td>70.0</td>
<td>29.96</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>73.0</td>
<td>72.5</td>
<td>29.95</td>
<td></td>
<td>S by E</td>
<td>1</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>63.0</td>
<td>68.0</td>
<td>29.89</td>
<td>0.143</td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>Rainy</td>
</tr>
<tr>
<td></td>
<td>3 0</td>
<td>61.5</td>
<td>68.5</td>
<td>29.99</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>69.0</td>
<td>70.0</td>
<td>30.05</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>4 0</td>
<td>60.0</td>
<td>66.5</td>
<td>30.02</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>70.5</td>
<td>68.5</td>
<td>30.05</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>5 0</td>
<td>61.0</td>
<td>67.0</td>
<td>30.18</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>69.0</td>
<td>66.0</td>
<td>30.09</td>
<td></td>
<td>SW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>6 0</td>
<td>61.5</td>
<td>64.0</td>
<td>30.09</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>71.0</td>
<td>69.0</td>
<td>30.08</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>7 0</td>
<td>58.5</td>
<td>61.0</td>
<td>30.06</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>65.0</td>
<td>64.5</td>
<td>30.04</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>8 0</td>
<td>60.5</td>
<td>62.5</td>
<td>29.97</td>
<td></td>
<td>W by N</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68.5</td>
<td>65.5</td>
<td>29.99</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>9 0</td>
<td>61.0</td>
<td>62.0</td>
<td>30.06</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68.0</td>
<td>66.0</td>
<td>30.08</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>10 0</td>
<td>57.0</td>
<td>64.0</td>
<td>30.14</td>
<td>0.017</td>
<td>NE</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>67.0</td>
<td>66.5</td>
<td>30.19</td>
<td></td>
<td>NNE</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>11 0</td>
<td>54.0</td>
<td>62.0</td>
<td>30.17</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>70.5</td>
<td>68.5</td>
<td>30.14</td>
<td></td>
<td>N by E</td>
<td>1</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>12 0</td>
<td>61.0</td>
<td>65.0</td>
<td>29.97</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>74.0</td>
<td>70.0</td>
<td>29.94</td>
<td></td>
<td>NNW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>13 0</td>
<td>60.0</td>
<td>65.5</td>
<td>29.98</td>
<td>0.116</td>
<td>NNW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68.0</td>
<td>68.0</td>
<td>30.07</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>14 0</td>
<td>60.0</td>
<td>62.5</td>
<td>30.16</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>70.5</td>
<td>68.5</td>
<td>30.19</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>15 0</td>
<td>60.5</td>
<td>66.5</td>
<td>30.00</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>72.0</td>
<td>69.5</td>
<td>29.92</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>16 0</td>
<td>66.0</td>
<td>69.5</td>
<td>29.99</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>79.5</td>
<td>72.0</td>
<td>29.98</td>
<td></td>
<td>NW</td>
<td>1</td>
<td>1</td>
<td>Fine</td>
</tr>
</tbody>
</table>
Meteorological Journal

for July 1780.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. M.</td>
<td>Inches.</td>
<td>Inch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>July 17</td>
<td>7 0</td>
<td>68.5</td>
<td>73.0</td>
<td>29.88</td>
<td></td>
<td>SE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>82.0</td>
<td>78.5</td>
<td>29.87</td>
<td></td>
<td>SE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>18</td>
<td>7 0</td>
<td>70.0</td>
<td>75.0</td>
<td>29.74</td>
<td>0.028</td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>72.0</td>
<td>76.5</td>
<td>29.83</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td>19</td>
<td>7 0</td>
<td>62.0</td>
<td>71.0</td>
<td>30.00</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68.5</td>
<td>69.5</td>
<td>30.06</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>20</td>
<td>7 0</td>
<td>58.5</td>
<td>67.0</td>
<td>30.13</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>72.5</td>
<td>69.5</td>
<td>30.08</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>21</td>
<td>7 0</td>
<td>60.0</td>
<td>67.0</td>
<td>29.87</td>
<td>0.038</td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>67.5</td>
<td>68.5</td>
<td>29.76</td>
<td></td>
<td>WSW</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>22</td>
<td>7 0</td>
<td>61.0</td>
<td>67.0</td>
<td>29.59</td>
<td>0.926</td>
<td>S by W</td>
<td>1</td>
<td></td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66.0</td>
<td>68.5</td>
<td>29.66</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td>23</td>
<td>7 0</td>
<td>59.5</td>
<td>66.0</td>
<td>29.99</td>
<td>0.319</td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66.0</td>
<td>67.0</td>
<td>30.01</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td>24</td>
<td>7 0</td>
<td>58.5</td>
<td>65.0</td>
<td>30.18</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>79.0</td>
<td>69.5</td>
<td>30.17</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>25</td>
<td>7 0</td>
<td>65.0</td>
<td>69.5</td>
<td>30.16</td>
<td>0.024</td>
<td>NNE</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>80.0</td>
<td>72.0</td>
<td>30.19</td>
<td></td>
<td>NNE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>26</td>
<td>7 0</td>
<td>62.5</td>
<td>63.5</td>
<td>30.24</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>78.0</td>
<td>75.0</td>
<td>30.23</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>27</td>
<td>7 0</td>
<td>64.0</td>
<td>70.5</td>
<td>30.14</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>71.0</td>
<td>71.0</td>
<td>30.21</td>
<td></td>
<td>NW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>28</td>
<td>7 0</td>
<td>59.0</td>
<td>60.0</td>
<td>30.34</td>
<td></td>
<td>SSW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>71.5</td>
<td>68.5</td>
<td>30.34</td>
<td></td>
<td>SW</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>29</td>
<td>7 0</td>
<td>60.0</td>
<td>66.0</td>
<td>30.25</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>71.0</td>
<td>68.0</td>
<td>30.19</td>
<td></td>
<td>E by S</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>30</td>
<td>7 0</td>
<td>61.5</td>
<td>63.0</td>
<td>30.11</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>75.0</td>
<td>70.0</td>
<td>30.11</td>
<td></td>
<td>ESE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>31</td>
<td>7 0</td>
<td>60.5</td>
<td>66.5</td>
<td>30.19</td>
<td></td>
<td>ENE</td>
<td>1</td>
<td></td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>70.5</td>
<td>68.5</td>
<td>30.19</td>
<td></td>
<td>NE</td>
<td>1</td>
<td></td>
<td>Fine.</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 1</td>
<td>59.0</td>
<td>65.0</td>
<td>30.20</td>
<td>NE</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>78.0</td>
<td>74.0</td>
<td>30.19</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>62.0</td>
<td>68.0</td>
<td>30.11</td>
<td>SW</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>78.0</td>
<td>71.0</td>
<td>30.18</td>
<td>SW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>61.5</td>
<td>68.5</td>
<td>30.09</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>63.0</td>
<td>73.5</td>
<td>30.13</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>68.0</td>
<td>69.0</td>
<td>30.10</td>
<td>ENE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>60.5</td>
<td>60.5</td>
<td>30.14</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>76.5</td>
<td>74.0</td>
<td>30.11</td>
<td>NNE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>60.5</td>
<td>67.0</td>
<td>30.07</td>
<td>N by W</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>78.5</td>
<td>73.0</td>
<td>30.07</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>62.0</td>
<td>69.0</td>
<td>30.12</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>80.0</td>
<td>71.0</td>
<td>30.16</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>69.5</td>
<td>67.0</td>
<td>30.09</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>77.0</td>
<td>75.0</td>
<td>30.07</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>62.5</td>
<td>66.0</td>
<td>30.02</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>82.0</td>
<td>75.0</td>
<td>30.04</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>76.5</td>
<td>72.0</td>
<td>30.02</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>81.5</td>
<td>76.5</td>
<td>30.02</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>60.5</td>
<td>73.0</td>
<td>30.02</td>
<td>N by S</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>79.0</td>
<td>76.0</td>
<td>29.98</td>
<td>ENE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>65.0</td>
<td>72.0</td>
<td>29.91</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>76.5</td>
<td>75.0</td>
<td>29.93</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>62.5</td>
<td>65.0</td>
<td>29.89</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>76.5</td>
<td>75.0</td>
<td>29.93</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>60.0</td>
<td>62.5</td>
<td>29.93</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>62.0</td>
<td>69.0</td>
<td>29.93</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>61.5</td>
<td>60.5</td>
<td>29.88</td>
<td>S by E</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>68.0</td>
<td>69.0</td>
<td>29.88</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 o</td>
<td>65.0</td>
<td>68.0</td>
<td>29.91</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 o</td>
<td>75.0</td>
<td>72.0</td>
<td>30.03</td>
<td>NE</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meteorological Journal

for August 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 0</td>
<td>65.5</td>
<td>67.5</td>
<td>30.02</td>
<td>SE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2 0</td>
<td>75.0</td>
<td>72.0</td>
<td>29.86</td>
<td>NE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>18 7</td>
<td>60.5</td>
<td>68.0</td>
<td>29.98</td>
<td>ENE</td>
<td>1</td>
<td>Rainy</td>
</tr>
<tr>
<td>2 0</td>
<td>71.0</td>
<td>71.0</td>
<td>29.85</td>
<td>ENE</td>
<td>1</td>
<td>Rainy</td>
</tr>
<tr>
<td>19 7</td>
<td>64.0</td>
<td>66.5</td>
<td>29.92</td>
<td>NNE</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td>2 0</td>
<td>74.0</td>
<td>72.5</td>
<td>29.99</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>20 7</td>
<td>63.5</td>
<td>66.0</td>
<td>30.12</td>
<td>ESE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>74.5</td>
<td>71.5</td>
<td>30.13</td>
<td>SSE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>21 7</td>
<td>67.0</td>
<td>68.0</td>
<td>30.09</td>
<td>S by E</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>76.0</td>
<td>75.0</td>
<td>30.09</td>
<td>SE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>22 7</td>
<td>64.5</td>
<td>68.5</td>
<td>29.99</td>
<td>WSW</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2 0</td>
<td>70.0</td>
<td>69.0</td>
<td>30.03</td>
<td>SW</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>23 7</td>
<td>59.0</td>
<td>67.0</td>
<td>30.07</td>
<td>NW</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2 0</td>
<td>72.0</td>
<td>70.0</td>
<td>30.14</td>
<td>SW</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>24 7</td>
<td>58.5</td>
<td>63.0</td>
<td>30.18</td>
<td>ENE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2 0</td>
<td>74.0</td>
<td>72.5</td>
<td>30.19</td>
<td>NW</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>25 7</td>
<td>59.5</td>
<td>62.0</td>
<td>30.13</td>
<td>NNE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>75.0</td>
<td>73.0</td>
<td>30.15</td>
<td>NW</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>26 7</td>
<td>60.5</td>
<td>64.0</td>
<td>30.16</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>76.5</td>
<td>75.0</td>
<td>30.16</td>
<td>ENE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>27 7</td>
<td>61.0</td>
<td>63.0</td>
<td>30.15</td>
<td>E by N</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>73.5</td>
<td>69.5</td>
<td>30.08</td>
<td>E by N</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>28 7</td>
<td>60.0</td>
<td>65.0</td>
<td>30.10</td>
<td>NE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2 0</td>
<td>68.5</td>
<td>68.0</td>
<td>30.11</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>29 7</td>
<td>61.0</td>
<td>65.5</td>
<td>30.19</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>72.0</td>
<td>71.0</td>
<td>30.14</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>30 7</td>
<td>61.0</td>
<td>67.0</td>
<td>30.10</td>
<td>NE</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td>2 0</td>
<td>76.5</td>
<td>74.0</td>
<td>30.09</td>
<td>NE</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>31 7</td>
<td>69.0</td>
<td>69.5</td>
<td>30.05</td>
<td>SW</td>
<td>1</td>
<td>Fine</td>
</tr>
<tr>
<td>2 0</td>
<td>83.5</td>
<td>76.5</td>
<td>30.05</td>
<td>S by W</td>
<td>1</td>
<td>Fine</td>
</tr>
</tbody>
</table>
Meteorological Journal

For September 1780.

<table>
<thead>
<tr>
<th>Time</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M.</td>
<td>inches</td>
<td>inches</td>
<td>Points</td>
<td>Str.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7 o 67.5</td>
<td>73.5</td>
<td>30.01</td>
<td>SSW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 o 84.0</td>
<td>79.0</td>
<td>29.89</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 66.0</td>
<td>73.0</td>
<td>29.95</td>
<td>W by S</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 77.0</td>
<td>76.0</td>
<td>29.94</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7 o 63.0</td>
<td>71.0</td>
<td>30.01</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 79.0</td>
<td>71.0</td>
<td>30.05</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7 o 56.0</td>
<td>63.5</td>
<td>30.01</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 70.0</td>
<td>68.0</td>
<td>30.17</td>
<td>SW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7 o 53.5</td>
<td>62.5</td>
<td>30.20</td>
<td>E by S</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 71.5</td>
<td>69.0</td>
<td>30.18</td>
<td>SE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7 o 56.0</td>
<td>63.0</td>
<td>30.02</td>
<td>SE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 71.5</td>
<td>69.0</td>
<td>29.95</td>
<td>SE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 o 57.5</td>
<td>62.0</td>
<td>29.75</td>
<td>ENE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 76.0</td>
<td>69.0</td>
<td>29.73</td>
<td>SE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7 o 65.0</td>
<td>68.0</td>
<td>29.59</td>
<td>S by W</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 72.0</td>
<td>70.5</td>
<td>29.07</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7 o 58.0</td>
<td>67.5</td>
<td>29.74</td>
<td>S by E</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 64.0</td>
<td>68.0</td>
<td>29.81</td>
<td>NNE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7 o 54.0</td>
<td>64.5</td>
<td>29.83</td>
<td>S by E</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 70.0</td>
<td>67.0</td>
<td>29.74</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7 o 59.0</td>
<td>65.0</td>
<td>29.71</td>
<td>S by W</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 67.0</td>
<td>67.0</td>
<td>29.82</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7 o 54.0</td>
<td>63.0</td>
<td>29.96</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 67.5</td>
<td>66.5</td>
<td>29.99</td>
<td>S by W</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7 o 61.5</td>
<td>62.0</td>
<td>30.03</td>
<td>S by W</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 69.0</td>
<td>65.5</td>
<td>29.99</td>
<td>SSW</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7 o 57.0</td>
<td>64.0</td>
<td>29.85</td>
<td>SE</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 66.0</td>
<td>66.5</td>
<td>29.86</td>
<td>S by E</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7 o 57.0</td>
<td>63.5</td>
<td>29.92</td>
<td>S by E</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 62.0</td>
<td>73.5</td>
<td>29.98</td>
<td>SE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7 o 62.5</td>
<td>65.0</td>
<td>29.76</td>
<td>SE</td>
<td>Showery.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 o 59.0</td>
<td>67.5</td>
<td>29.76</td>
<td>SE</td>
<td>Showery.</td>
<td></td>
</tr>
</tbody>
</table>
Meteorological Journal

for September 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 17</td>
<td>7 0</td>
<td>60,5</td>
<td>65,0</td>
<td>29,49</td>
<td>0,225</td>
<td>SE</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68,0</td>
<td>67,0</td>
<td>29,49</td>
<td>SE</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>18</td>
<td>7 0</td>
<td>58,0</td>
<td>63,5</td>
<td>29,49</td>
<td>0,572</td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>68,0</td>
<td>67,0</td>
<td>29,58</td>
<td>SW</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>19</td>
<td>7 0</td>
<td>53,0</td>
<td>60,0</td>
<td>29,64</td>
<td>SSE</td>
<td>SSE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>65,0</td>
<td>65,0</td>
<td>29,68</td>
<td>SE</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>20</td>
<td>7 0</td>
<td>52,5</td>
<td>60,5</td>
<td>29,67</td>
<td>NW</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>64,0</td>
<td>62,5</td>
<td>29,66</td>
<td>S by W</td>
<td>S by W</td>
<td>Fine.</td>
</tr>
<tr>
<td>21</td>
<td>7 0</td>
<td>49,5</td>
<td>59,5</td>
<td>29,81</td>
<td>SW</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>65,0</td>
<td>62,0</td>
<td>29,88</td>
<td>SSW</td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>22</td>
<td>7 0</td>
<td>48,0</td>
<td>56,0</td>
<td>30,02</td>
<td>SW</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>65,0</td>
<td>65,0</td>
<td>30,11</td>
<td>ENE</td>
<td>ENE</td>
<td>Fine.</td>
</tr>
<tr>
<td>23</td>
<td>7 0</td>
<td>49,5</td>
<td>57,0</td>
<td>30,09</td>
<td>NE</td>
<td>NE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66,0</td>
<td>66,0</td>
<td>30,05</td>
<td>NW</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>24</td>
<td>7 0</td>
<td>59,0</td>
<td>59,5</td>
<td>29,84</td>
<td>NW</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66,5</td>
<td>65,0</td>
<td>29,99</td>
<td>SSW</td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>25</td>
<td>7 0</td>
<td>54,0</td>
<td>58,0</td>
<td>30,04</td>
<td>WSW</td>
<td>WSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66,5</td>
<td>67,0</td>
<td>30,04</td>
<td>SW</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>26</td>
<td>7 0</td>
<td>59,0</td>
<td>61,0</td>
<td>29,97</td>
<td>SW</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>67,0</td>
<td>64,0</td>
<td>29,92</td>
<td>WSW</td>
<td>WSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>27</td>
<td>7 0</td>
<td>51,0</td>
<td>59,0</td>
<td>29,90</td>
<td>SW</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>66,0</td>
<td>63,5</td>
<td>29,94</td>
<td>WSW</td>
<td>WSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>28</td>
<td>7 0</td>
<td>56,0</td>
<td>60,0</td>
<td>29,75</td>
<td>SW</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>64,0</td>
<td>64,5</td>
<td>29,76</td>
<td>WSW</td>
<td>WSW</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>29</td>
<td>7 0</td>
<td>53,5</td>
<td>61,5</td>
<td>29,54</td>
<td>SSE</td>
<td>SSE</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>62,0</td>
<td>63,0</td>
<td>29,54</td>
<td>SE</td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>30</td>
<td>7 0</td>
<td>50,5</td>
<td>57,0</td>
<td>29,34</td>
<td>SSW</td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>52,0</td>
<td>57,0</td>
<td>29,14</td>
<td>SW</td>
<td>SW</td>
<td>Rainy.</td>
</tr>
</tbody>
</table>
Meteorological Journal

for October 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 0</td>
<td>45.0</td>
<td>52.5</td>
<td>29.19</td>
<td>0.076</td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>2 0</td>
<td>58.5</td>
<td>55.5</td>
<td>29.09</td>
<td></td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>2 0</td>
<td>53.0</td>
<td>55.5</td>
<td>29.07</td>
<td>0.106</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>3 0</td>
<td>57.0</td>
<td>56.5</td>
<td>29.44</td>
<td></td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 0</td>
<td>53.5</td>
<td>54.0</td>
<td>29.57</td>
<td></td>
<td>WSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 0</td>
<td>58.5</td>
<td>55.5</td>
<td>29.64</td>
<td></td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>4 0</td>
<td>42.0</td>
<td>51.5</td>
<td>29.79</td>
<td>0.050</td>
<td>NNE</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 0</td>
<td>54.0</td>
<td>59.5</td>
<td>29.87</td>
<td></td>
<td>NW</td>
<td>Fair.</td>
</tr>
<tr>
<td>5 0</td>
<td>41.5</td>
<td>50.5</td>
<td>30.16</td>
<td></td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 0</td>
<td>54.0</td>
<td>52.5</td>
<td>30.18</td>
<td></td>
<td>WSW</td>
<td>Fair.</td>
</tr>
<tr>
<td>6 0</td>
<td>45.5</td>
<td>49.0</td>
<td>30.04</td>
<td></td>
<td>S by E</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 0</td>
<td>57.0</td>
<td>53.5</td>
<td>29.90</td>
<td></td>
<td>S by W</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>7 0</td>
<td>52.0</td>
<td>53.0</td>
<td>29.63</td>
<td></td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 0</td>
<td>58.5</td>
<td>55.5</td>
<td>29.56</td>
<td></td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td>8 0</td>
<td>43.5</td>
<td>52.0</td>
<td>29.62</td>
<td></td>
<td>SSW</td>
<td>Fine.</td>
</tr>
<tr>
<td>2 0</td>
<td>57.5</td>
<td>54.5</td>
<td>29.44</td>
<td></td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>9 0</td>
<td>50.5</td>
<td>55.0</td>
<td>28.66</td>
<td>0.590</td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>2 0</td>
<td>57.0</td>
<td>56.5</td>
<td>28.82</td>
<td></td>
<td>SSW</td>
<td>Showery.</td>
</tr>
<tr>
<td>10 0</td>
<td>51.5</td>
<td>50.0</td>
<td>28.68</td>
<td></td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 0</td>
<td>58.0</td>
<td>55.0</td>
<td>28.99</td>
<td></td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>11 0</td>
<td>45.5</td>
<td>53.5</td>
<td>29.51</td>
<td>0.020</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 0</td>
<td>58.0</td>
<td>50.0</td>
<td>29.61</td>
<td></td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>12 0</td>
<td>43.5</td>
<td>53.0</td>
<td>29.68</td>
<td>0.025</td>
<td>SW</td>
<td>Fair.</td>
</tr>
<tr>
<td>2 0</td>
<td>55.0</td>
<td>54.0</td>
<td>29.81</td>
<td></td>
<td>W by N</td>
<td>Fine.</td>
</tr>
<tr>
<td>13 0</td>
<td>48.5</td>
<td>51.5</td>
<td>30.04</td>
<td></td>
<td>SSE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 0</td>
<td>60.0</td>
<td>55.0</td>
<td>30.02</td>
<td></td>
<td>SE</td>
<td>Fair.</td>
</tr>
<tr>
<td>14 0</td>
<td>52.0</td>
<td>53.5</td>
<td>29.75</td>
<td></td>
<td>SE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 0</td>
<td>65.0</td>
<td>59.0</td>
<td>29.61</td>
<td></td>
<td>SE</td>
<td>Fine.</td>
</tr>
<tr>
<td>15 0</td>
<td>58.5</td>
<td>59.0</td>
<td>29.69</td>
<td></td>
<td>SSE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>2 0</td>
<td>66.0</td>
<td>62.0</td>
<td>29.69</td>
<td></td>
<td>SE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>16 0</td>
<td>53.5</td>
<td>56.5</td>
<td>29.72</td>
<td>0.530</td>
<td>SSW</td>
<td>Rainy.</td>
</tr>
<tr>
<td>2 0</td>
<td>62.0</td>
<td>61.5</td>
<td>29.71</td>
<td></td>
<td>WSW</td>
<td>Cloudy.</td>
</tr>
</tbody>
</table>
METEOROLOGICAL JOURNAL

for October 1780.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time H.M.</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom. Inches</th>
<th>Rain. Inch.</th>
<th>Winds Points</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>7 0</td>
<td>55.0</td>
<td>58.0</td>
<td>29.87</td>
<td>SSW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>65.0</td>
<td>63.5</td>
<td>29.91</td>
<td>SSW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7 0</td>
<td>49.5</td>
<td>55.0</td>
<td>30.02</td>
<td>NNE 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>62.0</td>
<td>60.0</td>
<td>30.07</td>
<td>NNE 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7 0</td>
<td>53.0</td>
<td>59.0</td>
<td>29.79</td>
<td>SW 2</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>59.0</td>
<td>59.0</td>
<td>29.58</td>
<td>SW 2</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7 0</td>
<td>46.5</td>
<td>58.0</td>
<td>29.48</td>
<td>WSW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>52.0</td>
<td>59.0</td>
<td>29.44</td>
<td>SW 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7 0</td>
<td>47.0</td>
<td>59.5</td>
<td>29.48</td>
<td>NW 2</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>55.0</td>
<td>53.0</td>
<td>29.63</td>
<td>WNW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7 0</td>
<td>46.0</td>
<td>59.5</td>
<td>29.73</td>
<td>SW 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>54.5</td>
<td>53.5</td>
<td>29.67</td>
<td>SW 1</td>
<td>Cloudy and rainy</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7 0</td>
<td>41.5</td>
<td>49.0</td>
<td>29.86</td>
<td>0.068</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>53.0</td>
<td>52.0</td>
<td>29.88</td>
<td>SW 2</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7 0</td>
<td>50.0</td>
<td>51.5</td>
<td>29.66</td>
<td>SE 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>59.0</td>
<td>61.0</td>
<td>29.70</td>
<td>SE 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7 0</td>
<td>43.5</td>
<td>51.0</td>
<td>29.73</td>
<td>NE 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>51.5</td>
<td>52.0</td>
<td>29.77</td>
<td>NW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>7 0</td>
<td>37.0</td>
<td>48.0</td>
<td>30.07</td>
<td>SSW 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>52.0</td>
<td>50.0</td>
<td>39.14</td>
<td>NNE 1</td>
<td>Fine</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7 0</td>
<td>45.0</td>
<td>46.0</td>
<td>39.27</td>
<td>NE 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>48.0</td>
<td>39.29</td>
<td>NE 1</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7 0</td>
<td>47.0</td>
<td>48.0</td>
<td>39.14</td>
<td>NNE 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>55.0</td>
<td>51.5</td>
<td>39.07</td>
<td>NE 1</td>
<td>Cloudy</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>7 0</td>
<td>47.5</td>
<td>51.0</td>
<td>29.85</td>
<td>NW 1</td>
<td>Rainy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>49.5</td>
<td>51.5</td>
<td>29.82</td>
<td>NW 1</td>
<td>Rainy</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>7 0</td>
<td>49.5</td>
<td>51.5</td>
<td>29.71</td>
<td>0.435</td>
<td>Rainy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.0</td>
<td>52.0</td>
<td>29.82</td>
<td>0.375</td>
<td>Rainy</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7 0</td>
<td>49.5</td>
<td>52.0</td>
<td>29.88</td>
<td>SW 1</td>
<td>Rainy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 0</td>
<td>50.5</td>
<td>52.5</td>
<td>29.89</td>
<td>NE 1</td>
<td>Rainy</td>
<td></td>
</tr>
</tbody>
</table>
Meteorological Journal

for November 1780.

<table>
<thead>
<tr>
<th>Time (H. M.)</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 1</td>
<td>8 o 47.5</td>
<td>49.5</td>
<td>29.94</td>
<td>0.118</td>
<td>NNE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o 50.0</td>
<td>51.0</td>
<td>30.02</td>
<td>NE</td>
<td>Rainy.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8 o 46.0</td>
<td>48.5</td>
<td>30.08</td>
<td>NNE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 50.0</td>
<td>51.0</td>
<td>30.08</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 o 46.0</td>
<td>48.5</td>
<td>29.97</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 50.0</td>
<td>53.0</td>
<td>29.94</td>
<td>NE</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8 o 46.0</td>
<td>46.0</td>
<td>29.97</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 46.0</td>
<td>47.0</td>
<td>30.08</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8 o 47.0</td>
<td>47.0</td>
<td>29.83</td>
<td>0.039</td>
<td>SW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o 51.5</td>
<td>49.0</td>
<td>29.72</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8 o 40.0</td>
<td>45.0</td>
<td>29.86</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 44.0</td>
<td>45.0</td>
<td>29.87</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8 o 35.0</td>
<td>37.5</td>
<td>29.72</td>
<td>0.039</td>
<td>NNE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o 36.0</td>
<td>38.0</td>
<td>29.82</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 o 36.0</td>
<td>37.5</td>
<td>29.91</td>
<td>0.081</td>
<td>NNE</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o 42.0</td>
<td>40.0</td>
<td>29.94</td>
<td>NE</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8 o 33.0</td>
<td>37.5</td>
<td>30.09</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 41.0</td>
<td>40.0</td>
<td>30.05</td>
<td>SSW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8 o 48.5</td>
<td>44.0</td>
<td>30.07</td>
<td>0.075</td>
<td>NE</td>
<td>Cloudy.</td>
</tr>
<tr>
<td></td>
<td>2 o 52.0</td>
<td>47.0</td>
<td>30.11</td>
<td>NE</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8 o 46.5</td>
<td>45.0</td>
<td>30.11</td>
<td>NE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 52.0</td>
<td>48.0</td>
<td>30.17</td>
<td>NNE</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8 o 47.0</td>
<td>49.0</td>
<td>30.09</td>
<td>WSW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 51.0</td>
<td>49.5</td>
<td>30.12</td>
<td>WSW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8 o 51.5</td>
<td>50.0</td>
<td>29.73</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 52.0</td>
<td>51.0</td>
<td>29.64</td>
<td>SW</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8 o 39.5</td>
<td>47.0</td>
<td>29.82</td>
<td>WSW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 47.0</td>
<td>47.5</td>
<td>29.84</td>
<td>WSW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8 o 30.0</td>
<td>41.0</td>
<td>9.97</td>
<td>0.095</td>
<td>NW</td>
<td>Fine.</td>
</tr>
<tr>
<td></td>
<td>2 o 36.0</td>
<td>41.0</td>
<td>30.02</td>
<td>NW</td>
<td>Fine.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8 o 26.0</td>
<td>36.0</td>
<td>29.93</td>
<td>SE</td>
<td>Foggy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o 28.5</td>
<td>38.0</td>
<td>30.16</td>
<td>SE</td>
<td>Foggy.</td>
<td></td>
</tr>
</tbody>
</table>
METEOROLOGICAL JOURNAL
for November 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H. M.</td>
<td>without within.</td>
<td>Inches.</td>
<td>Inch.</td>
<td>Str.</td>
</tr>
<tr>
<td>Nov. 17</td>
<td>8 o</td>
<td>36.5</td>
<td>38.5</td>
<td>29.73</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>40.0</td>
<td>41.0</td>
<td>29.63</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8 o</td>
<td>41.0</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>45.0</td>
<td>42.0</td>
<td>29.53</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8 o</td>
<td>41.0</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>43.5</td>
<td>44.0</td>
<td>29.32</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8 o</td>
<td>43.0</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>46.0</td>
<td>49.0</td>
<td>29.02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8 o</td>
<td>36.5</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>41.5</td>
<td>43.0</td>
<td>29.31</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8 o</td>
<td>36.0</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>37.0</td>
<td>40.5</td>
<td>29.08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8 o</td>
<td>32.0</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>37.0</td>
<td>38.0</td>
<td>29.42</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8 o</td>
<td>31.0</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>36.0</td>
<td>38.0</td>
<td>29.50</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8 o</td>
<td>36.0</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>38.0</td>
<td>40.5</td>
<td>29.98</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8 o</td>
<td>42.0</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>48.0</td>
<td>42.0</td>
<td>30.14</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>8 o</td>
<td>44.0</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>47.0</td>
<td>45.0</td>
<td>30.28</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8 o</td>
<td>42.0</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>45.5</td>
<td>46.0</td>
<td>30.47</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8 o</td>
<td>37.0</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>40.0</td>
<td>43.0</td>
<td>30.40</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8 o</td>
<td>37.5</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>40.5</td>
<td>42.0</td>
<td>30.32</td>
</tr>
</tbody>
</table>
Meteorological Journal

for December 1780.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 o</td>
<td>38.5</td>
<td>40.5</td>
<td>30.13</td>
<td>NE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>8 o</td>
<td>42.0</td>
<td>41.5</td>
<td>30.31</td>
<td>NE</td>
<td>1</td>
<td>Fair</td>
</tr>
<tr>
<td>3</td>
<td>8 o</td>
<td>38.0</td>
<td>40.0</td>
<td>30.34</td>
<td>NE</td>
<td>1</td>
<td>Cloudy</td>
</tr>
<tr>
<td>4</td>
<td>8 o</td>
<td>41.5</td>
<td>41.5</td>
<td>30.39</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>5</td>
<td>8 o</td>
<td>35.0</td>
<td>40.0</td>
<td>30.47</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>6</td>
<td>8 o</td>
<td>38.0</td>
<td>41.5</td>
<td>30.49</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>7</td>
<td>8 o</td>
<td>35.0</td>
<td>39.5</td>
<td>30.49</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>8</td>
<td>8 o</td>
<td>35.0</td>
<td>39.5</td>
<td>30.29</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>9</td>
<td>8 o</td>
<td>35.0</td>
<td>39.5</td>
<td>30.28</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>10</td>
<td>8 o</td>
<td>40.0</td>
<td>40.0</td>
<td>30.29</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>11</td>
<td>8 o</td>
<td>38.0</td>
<td>39.5</td>
<td>30.31</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>12</td>
<td>8 o</td>
<td>39.0</td>
<td>39.5</td>
<td>30.53</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>13</td>
<td>8 o</td>
<td>40.0</td>
<td>40.0</td>
<td>30.53</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>14</td>
<td>8 o</td>
<td>40.0</td>
<td>40.0</td>
<td>30.53</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>15</td>
<td>8 o</td>
<td>40.0</td>
<td>40.0</td>
<td>30.53</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
<tr>
<td>16</td>
<td>8 o</td>
<td>40.0</td>
<td>40.0</td>
<td>30.53</td>
<td>NE</td>
<td>2</td>
<td>Cloudy</td>
</tr>
</tbody>
</table>

Conclusion:

The table above provides a detailed record of meteorological conditions for December 1780, including temperature, barometric pressure, rainfall, and wind direction, along with the corresponding weather conditions.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time H.M.</th>
<th>Therm. without</th>
<th>Therm. within</th>
<th>Barom.</th>
<th>Rain.</th>
<th>Winds</th>
<th>Points</th>
<th>Str.</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 17</td>
<td>8 o</td>
<td>40.0</td>
<td>44.0</td>
<td>30.51</td>
<td>SW</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>43.5</td>
<td>44.0</td>
<td>30.48</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>34.5</td>
<td>41.0</td>
<td>30.46</td>
<td>NE</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>40.0</td>
<td>41.5</td>
<td>30.46</td>
<td>ENE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>30.5</td>
<td>38.0</td>
<td>30.49</td>
<td>ENE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>34.5</td>
<td>36.0</td>
<td>30.40</td>
<td>NE</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>30.0</td>
<td>34.5</td>
<td>30.08</td>
<td>NE</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>32.0</td>
<td>39.0</td>
<td>29.99</td>
<td>NE</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>28.0</td>
<td>33.0</td>
<td>29.69</td>
<td>S by E</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>29.0</td>
<td>34.5</td>
<td>29.69</td>
<td>S by E</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>33.0</td>
<td>34.0</td>
<td>29.85</td>
<td>WSW</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>36.5</td>
<td>35.0</td>
<td>29.89</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24.0</td>
<td>32.0</td>
<td>30.05</td>
<td>SSW</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>32.5</td>
<td>34.0</td>
<td>30.06</td>
<td>NW</td>
<td>1</td>
<td>Fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>34.0</td>
<td>34.5</td>
<td>30.15</td>
<td>NNE</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>37.0</td>
<td>35.5</td>
<td>30.15</td>
<td>N by E</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>37.0</td>
<td>37.5</td>
<td>30.21</td>
<td>NNE</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>38.5</td>
<td>37.5</td>
<td>30.23</td>
<td>NNE</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>32.5</td>
<td>34.5</td>
<td>30.26</td>
<td>ENE</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>38.0</td>
<td>36.5</td>
<td>30.26</td>
<td>N by E</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>29.5</td>
<td>32.5</td>
<td>30.26</td>
<td>NE</td>
<td>1</td>
<td>Frosty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>32.0</td>
<td>34.5</td>
<td>30.29</td>
<td>NE</td>
<td>1</td>
<td>Frosty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>32.5</td>
<td>33.5</td>
<td>30.35</td>
<td>SSW</td>
<td>1</td>
<td>Foggy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>37.0</td>
<td>36.5</td>
<td>30.34</td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>40.5</td>
<td>37.0</td>
<td>30.13</td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>45.0</td>
<td>39.0</td>
<td>30.03</td>
<td>WSW</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>45.0</td>
<td>41.0</td>
<td>30.01</td>
<td>WSW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>50.0</td>
<td>44.0</td>
<td>30.07</td>
<td>SW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>43.5</td>
<td>44.0</td>
<td>30.06</td>
<td>SSW</td>
<td>1</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 o</td>
<td>50.0</td>
<td>46.5</td>
<td>30.07</td>
<td>WSW</td>
<td>1</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Thermometer without</td>
<td>Thermometer within</td>
<td>Barometer</td>
<td>Rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greatest Height</td>
<td>Least Height</td>
<td>Mean Height</td>
<td>Greatest Height</td>
<td>Least Height</td>
<td>Mean Height</td>
<td>Greatest Height</td>
<td>Least Height</td>
<td>Mean Height</td>
</tr>
<tr>
<td>Jan.</td>
<td>47.0</td>
<td>20.0</td>
<td>31.9</td>
<td>40.5</td>
<td>24.5</td>
<td>33.6</td>
<td>30.35</td>
<td>28.59</td>
<td>29.77</td>
</tr>
<tr>
<td>Feb.</td>
<td>53.5</td>
<td>20.0</td>
<td>37.8</td>
<td>49.0</td>
<td>31.0</td>
<td>38.4</td>
<td>30.52</td>
<td>29.08</td>
<td>29.91</td>
</tr>
<tr>
<td>Mar.</td>
<td>59.0</td>
<td>34.5</td>
<td>51.4</td>
<td>56.5</td>
<td>36.0</td>
<td>49.9</td>
<td>30.45</td>
<td>29.38</td>
<td>29.91</td>
</tr>
<tr>
<td>Apr.</td>
<td>65.5</td>
<td>33.0</td>
<td>46.7</td>
<td>65.0</td>
<td>38.0</td>
<td>48.0</td>
<td>30.17</td>
<td>28.81</td>
<td>29.65</td>
</tr>
<tr>
<td>May</td>
<td>84.5</td>
<td>45.0</td>
<td>59.7</td>
<td>74.5</td>
<td>51.0</td>
<td>60.4</td>
<td>30.28</td>
<td>29.38</td>
<td>29.94</td>
</tr>
<tr>
<td>June</td>
<td>84.5</td>
<td>48.0</td>
<td>62.9</td>
<td>76.0</td>
<td>50.0</td>
<td>63.2</td>
<td>30.37</td>
<td>29.79</td>
<td>30.01</td>
</tr>
<tr>
<td>July</td>
<td>82.0</td>
<td>54.0</td>
<td>66.4</td>
<td>78.5</td>
<td>61.0</td>
<td>69.4</td>
<td>30.34</td>
<td>29.59</td>
<td>30.05</td>
</tr>
<tr>
<td>Aug.</td>
<td>83.5</td>
<td>58.5</td>
<td>69.2</td>
<td>76.5</td>
<td>62.0</td>
<td>68.3</td>
<td>30.20</td>
<td>29.35</td>
<td>30.05</td>
</tr>
<tr>
<td>Sept</td>
<td>84.0</td>
<td>48.0</td>
<td>61.3</td>
<td>79.0</td>
<td>56.0</td>
<td>65.2</td>
<td>30.20</td>
<td>29.14</td>
<td>29.83</td>
</tr>
<tr>
<td>Oct.</td>
<td>66.0</td>
<td>41.5</td>
<td>52.3</td>
<td>65.0</td>
<td>46.0</td>
<td>53.9</td>
<td>30.29</td>
<td>28.66</td>
<td>29.69</td>
</tr>
<tr>
<td>Nov.</td>
<td>52.0</td>
<td>26.0</td>
<td>47.0</td>
<td>53.0</td>
<td>36.0</td>
<td>43.6</td>
<td>30.47</td>
<td>28.94</td>
<td>29.85</td>
</tr>
<tr>
<td>Dec.</td>
<td>50.0</td>
<td>24.0</td>
<td>38.5</td>
<td>46.5</td>
<td>32.0</td>
<td>39.8</td>
<td>30.55</td>
<td>29.69</td>
<td>30.29</td>
</tr>
<tr>
<td>Whole year</td>
<td></td>
<td>51.7</td>
<td></td>
<td>52.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VARIATION NEEDLE

<table>
<thead>
<tr>
<th></th>
<th>7th A.M.</th>
<th>12th M.</th>
<th>2nd P.M.</th>
<th>10 or 11th P.M.</th>
<th>Daily Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 5</td>
<td>22 25</td>
<td>22 26</td>
<td>22 21</td>
<td>22 23</td>
<td>22 24</td>
</tr>
<tr>
<td>6</td>
<td>22 21</td>
<td>22 29</td>
<td>22 57</td>
<td>22 44</td>
<td>22 38</td>
</tr>
<tr>
<td>7</td>
<td>22 30</td>
<td>22 49</td>
<td>22 48</td>
<td>22 29</td>
<td>22 39</td>
</tr>
<tr>
<td>8</td>
<td>22 45</td>
<td>22 44</td>
<td>22 45</td>
<td>22 46</td>
<td>22 45</td>
</tr>
<tr>
<td>9</td>
<td>22 31</td>
<td>22 42</td>
<td>22 48</td>
<td>22 40</td>
<td>22 40</td>
</tr>
<tr>
<td>10</td>
<td>22 25</td>
<td>22 48</td>
<td>22 57</td>
<td>22 40</td>
<td>22 42</td>
</tr>
<tr>
<td>11</td>
<td>22 45</td>
<td>22 49</td>
<td>22 48</td>
<td>22 44</td>
<td>22 46</td>
</tr>
<tr>
<td>12</td>
<td>22 37</td>
<td>22 49</td>
<td>22 46</td>
<td>22 41</td>
<td>22 43</td>
</tr>
<tr>
<td>13</td>
<td>22 31</td>
<td>22 53</td>
<td>22 45</td>
<td>22 35</td>
<td>22 41</td>
</tr>
<tr>
<td>14</td>
<td>22 29</td>
<td>22 55</td>
<td>22 50</td>
<td>22 50</td>
<td>22 46</td>
</tr>
<tr>
<td>15</td>
<td>22 25</td>
<td>22 40</td>
<td>22 49</td>
<td>22 47</td>
<td>22 40</td>
</tr>
<tr>
<td>16</td>
<td>22 45</td>
<td>22 48</td>
<td>22 47</td>
<td>22 49</td>
<td>22 47</td>
</tr>
<tr>
<td>17</td>
<td>22 27</td>
<td>22 32</td>
<td>22 55</td>
<td>22 55</td>
<td>22 42</td>
</tr>
<tr>
<td>18</td>
<td>22 39</td>
<td>22 37</td>
<td>22 41</td>
<td>22 48</td>
<td>22 41</td>
</tr>
</tbody>
</table>

Means 22 32 22 43 22 47 22 42

Mean of all 22° 41'
Dipping Needle

<table>
<thead>
<tr>
<th></th>
<th>7 h. A.M.</th>
<th>12 h. M.</th>
<th>2 h. P.M.</th>
<th>10 or 11h. P.M.</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 5</td>
<td>72° 0</td>
<td>72° 5</td>
<td>72° 6</td>
<td>72° 0</td>
<td>72°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>West mark down.</td>
</tr>
<tr>
<td>6</td>
<td>72° 5</td>
<td>72° 5</td>
<td>72° 10</td>
<td>72° 10</td>
<td>72° 3</td>
</tr>
<tr>
<td>7</td>
<td>72° 0</td>
<td>72° 0</td>
<td>72° 10</td>
<td>72° 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>72° 0</td>
<td>72° 0</td>
<td>72° 5</td>
<td>72° 10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>72° 20</td>
<td>72° 20</td>
<td>72° 20</td>
<td>72° 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>East.</td>
</tr>
<tr>
<td>10</td>
<td>72° 20</td>
<td>72° 20</td>
<td>72° 30</td>
<td>72° 10</td>
<td>72° 21</td>
</tr>
<tr>
<td>11</td>
<td>72° 20</td>
<td>72° 30</td>
<td>72° 25</td>
<td>72° 10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>72° 30</td>
<td>72° 30</td>
<td>72° 30</td>
<td>72° 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>72° 5</td>
<td>72° 15</td>
<td>72° 10</td>
<td>72° 10</td>
<td>72° 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>East mark uppermost.</td>
</tr>
<tr>
<td>14</td>
<td>72° 10</td>
<td>72° 15</td>
<td>72° 20</td>
<td>72° 10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>72° 20</td>
<td>72° 15</td>
<td>72° 20</td>
<td>72° 20</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>72° 45</td>
<td>72° 40</td>
<td>72° 40</td>
<td>72° 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>West.</td>
</tr>
<tr>
<td>17</td>
<td>72° 40</td>
<td>72° 30</td>
<td>72° 25</td>
<td>72° 30</td>
<td>72° 32</td>
</tr>
<tr>
<td>18</td>
<td>72° 40</td>
<td>72° 20</td>
<td>72° 30</td>
<td>72° 20</td>
<td></td>
</tr>
</tbody>
</table>

The End of Part L or Vol. LXXI.
ELOCUTION AND POLITE LITERATURE.

MR. HENRY SMEATHMAN, who was many years a pupil of the late Mr. Rice, and before he went on his travels, practised with success that Author’s ingenious method of teaching to read, speak and write, with ease, energy and propriety; begs leave to offer his services to the public in the same mode of useful and polite instruction.

Gentlemen intending themselves for the Church, the Bar or the Senate, will by oral and familiar conversation, in a few months, receive more improvement, than by a solitary study of many years, in an art not taught in our Schools or Universities, yet absolutely necessary to those who wish to excel in public or polite life, or aspire to eminence in eloquence and literature.

By this art, a liberal education is improved and accomplished, classical learning advantageously displayed, and the want of a proficiency in the dead and other languages supplied, as by Mr. Smeathman’s method, founded on that of Mr. Rice, the pupils may acquire a critical knowledge of the idiom and elegance of their own without them.
This recommends it peculiarly to the attention of all those who wish to have the pleasure of reading the English classic authors with grace and propriety, or to write and speak correctly; of those Gentlemen, who are intended for the Navy, the Army, the Public-office or the Counting-house; or whose juvenile studies may have been obliterated by an early introduction into those situations; and of all those who may have been deprived of the advantages of a liberal education.

They are effectually cured of any defects in pronunciation, which do not arise from an imperfection in the organs of speech; and instead of provincial, disagreeable or absurd habits, they acquire an energetic, a persuasive and a graceful manner of speaking, reading and reciting. Above all, the younger pupils receive this singular and important advantage, that their minds are opened more early, their reason is assisted in its exertions, and directed to such objects as naturally promote the perfection, and the happiness of human beings.

This method is equally well adapted to both sexes, those advanced in life may receive instruction privately, as usual, and Ladies will be attended at their own houses.

Application may be made to Mr. Smeathman, at his Chambers, No 14. Clement's-Inn. Of whom, in a few days, may be had a short Treatise on the nature of eloquence, and the importance of learning to read, speak and write our own language, independent of all others; with a plan of his mode of teaching, and the advantages to be derived from it.

The following are detached extracts from the above-mentioned Treatise.

"Those
"Those who have not studied and been exercised in reading, speaking or composing, in their own language, will not do either in such a manner as to claim or deserve attention; and it is the talent of performing them with ease, energy and propriety, which we call eloquence.

"People are usually very solicitous to have their children instructed in all those liberal arts, which are deemed requisite to perfect them as Gentlemen and Scholars: and surely as nothing contributes more to this intention, they would not omit oratory, if they thought it was to be learned. They listen with rapture to the charms of eloquence, but are not aware that it is in their power to procure this inestimable talent for those who are the objects of their incessant care and daily anxiety."

"This can only arise from the erroneous idea that oratory is not to be taught or acquired. Yet no art is more simple in its Principles, or clearer in its rules, and no rules are more easily reduced to practice, or more certainly practised with success."

"It is granted that people may improve themselves much by private declamation. The art of eloquence, however, is in this respect like fencing, in which a man can learn very little by pushing against a wall: he may indeed strengthen his muscles, and enable himself to bear the fatigue, but it is by frequent exertion with a master only that he can expect to acquire skill."
It is from the friendly observations, the oral information, the frequent contentions and the unrestrained corrections, of a skilful companion, that a student in oratory can derive essential improvement: writing alone can no more communicate the art than it can speech to the dumb.

Those therefore who educate their children for eminent stations in life, with the hope that they will one day render themselves conspicuous in the Senate, the Church or the courts of Law and Justice, without having them grounded in the first principles of eloquence, expect to reap where they have not sown: they must in all probability be disappointed.

There is scarce a man of a moderate age and capacity not born with some invincible imperfection in the organs of speech, who may not in twelve months be enabled to communicate his thoughts with pleasure to his audience, and credit to himself; or so to read the Liturgy as to excite Devotion in the most lukewarm, and to confirm it by a natural, persuasive and convincing manner of delivering the great and essential truths of Religion; and how much this is to be wished is left to the opinion of all who have heard the disgusting and unedifying manner in which the finest compositions are generally delivered in our public places of worship, and seen the awkward figures some of our learned Senators make when they attempt to speak in Parliament.

We have hitherto treated only of the most obvious advantages arising from the study of eloquence. On a closer view,
view, many other important benefits will be found to be derived from it. Of these, opening the mind, improving the heart and infusing a desire of knowledge, deserve particular notice. Such is the tendency, effect and benefit of the mode of instruction here recommended; for as it applies directly to the understanding without burthening the memory, or perplexing the mind, the youngest pupils recur to it with delight; and its uncommon success, when attempted, has arisen from the immediate conviction which they feel, that our path to knowledge is pleasant, and the possession of it highly advantageous and desirable.

"Our youth are generally very defective in those polite Branches of Knowledge without which classical Learning is of little use. Their manners frequently continue rough and puerile, when they ought to be graceful and manly, their speech inarticulate or slovenly, dissonant or defective, disagreeable, and often unintelligible; and very few, even among those who are good scholars, can read or write their own language with ease or propriety: an accomplishment absolutely necessary to those who wish to derive any advantage from extensive knowledge or profound erudition.

"Young People are naturally emulous of the company of persons respectable either for their Rank or Abilities, and if they pass their time with low or ignorant people it is for want of being properly introduced and accustomed to mix in the conversation of men of polished manners and liberal accomplishments."

"The mode of Instruction here recommended, must necessarily in its Course remove these Defects, and the prejudices intailed:}
"intailed on them; and promote the acquisition of those useful arts, on which the Success of life so much depends."

"In the prosecution of it their Curiosity is excited and directed to proper objects, and a desire for general knowledge the great foundation of excellence, implanted by making them acquainted with such remarkable things in nature and art as are worthy of Attention. Instead of a slovenly or ungraceful mode of speaking, they are taught to deliver their sentiments with propriety and precision according to times and circumstances; consequently their manner when improper is reformed insensibly, and without appearing an object of attention; their Minds are cultivated by frequent appeals to their understanding, and their judgements regulated by the constant habit of observation and reflection, exercised in a Minute enquiry into the Truth and propriety of such thoughts as they are directed to in the course of their study. Thus being early qualified for the company of well bred and intelligent people they appear with becoming confidence and satisfaction on all occasions."
PHILOSOPHICAL

TRANSACTIONS

XV. New Experiments upon Gun-powder, with occasional Observations and practical Inferences; to which are added, an Account of a new Method of determining the Velocities of all Kinds of Military Projectiles, and the Description of a very accurate Eprouvette for Gun-powder. By Benjamin Thompson, Esq, F. R. S.

Read March 29, 1781.

These experiments were undertaken principally with a view to determine the most advantageous situation for the vent in fire-arms, and to measure the velocities of bullets, and the recoil under various circumstances. I had hopes also of being able to find out the velocity of the inflammation of gun-powder, and to measure its force more accurately than had hitherto been done. They were begun in the month of July in the year

Vol. LXXI. 2 I 1778.
1778, at Stoneland Lodge, a country seat of Lord George Germain’s, and I was assisted by the reverend Mr. Bale, rector of Withyham, who lives in the neighbourhood.

The weather proved remarkably favourable for our experiments, being settled and serene, so that the course of them was never interrupted for a whole day by rain or by any accident. The mercury in the barometer stood in general pretty high, and the temperature of the atmosphere was very equal, and moderately warm for the season. In order that each experiment might, as nearly as possible, be under similar circumstances, they were all made between the hours of ten in the morning and five in the afternoon: and after each discharge the piece was wiped out with tow till all the inside of the bore was perfectly clean, and as bright as if it had just come out of the hands of the maker; and great care was taken to allow such a space of time to elapse between the firings, as might render the heat of the piece nearly thesame in every experiment.

A description of the apparatus.

The barrel principally used in these experiments was made by Wogdon, one of the most famous gunsmiths in London; and nothing can exceed the accuracy with which it is bored, or the fineness of the polish on the inside. It is made of the very best iron, and, agreeably to Mr. Robins’s advice, I took care to have it well fortified in every part, that there might be no danger of its bursting. Its weight and dimensions may be seen in the table of the weight and dimensions of the apparatus, p. 242.

Fig. 1. Represents a longitudinal section of a part of the barrel, with the apparatus first made use of for shifting the vent from one part of the chamber to another, or rather for moving the
the bottom of the chamber further from, or bringing it nearer to, the vent, in order that the fire might be communicated to the powder in different parts of the charge.

\(a, b \) represent the lower part of the barrel.

\(c \) is the breech-pin, which is perforated with a hole four-tenths of an inch in diameter, the axis of which coincides with the axis of the bore.

Into this hole the screw \(b, n \), about four inches in length, is fitted; to the end of which, \(n \), that passes up into the bore, is fixed a piston \(o, p \), which, by means of collars of oiled leather, is made to fit the bore of the piece very exactly. The end of the piston \(p \), nearest the muzzle, is of brass, and forms a moveable bottom to the bore, which by turning the screw \(b, n \), by means of the handle \(m \), is brought nearer to, or removed further from, the fixed vent \(v \), by which means the powder is lighted at any assignable distance from the bottom of the charge.

But the length of the bore being altered by moving the piston, which occasioned a small inaccuracy, and some inconvenience attending the apparatus, it was laid aside, and another represented by fig. 2. was substituted in the room of it.

\(a, b \) is a section of part of the barrel as before, and \(c \) is the breech-pin, which being perforated with a small hole through its center receives the screw \(f, g \), which is about two-tenths of an inch in diameter, and four inches long. This screw being perforated with a very small hole, serves to convey the fire into the chamber of the piece, and by screwing it further up into the bore, or drawing it backwards, the fire is communicated to different parts of the charge.

But this method being found to be not entirely free from inaccuracies and inconveniences, a third was substituted in the
room of it, which was found to answer much better than either
of the preceding.

The end of the bore was now firmly closed by a solid breech-
pin p, fig. 3. and three vent holes m, n, and o, were made in
the barrel; one of them, m, even with the bottom of the bore,
and the other two at different distances from it. Any two of
these vent holes, as n and o for instance, being closed up by
solid screws, a perforated screw, or vent tube v, was screwed
into the third, which served to contain the priming, and to
convey the fire to the powder lodged in the bore of the piece.

Sometimes a longer vent-tube, represented by fig. 4. was
made use of; which, passing through the powder in the cham-
ber of the piece, communicated the fire immediately to that
part of the charge that lay in the axis of the bore.

Another vent-tube also was used occasionally, which differs
in many respects from both those that have been described. It
is so constructed as to convey the fire to the charge; but, as soon
as the powder in the chamber of the piece begins to kindle,
and the elastic fluid to be generated, the vent is firmly closed by
a valve, and no part of the generated fluid is permitted to
escape. This I shall call the valve-vent, and it is represented
by fig. 5. upon an enlarged scale, that the parts of it may
appear more distinct.

a, b, is a longitudinal section of a small portion of the solid
side of the barrel.

c, d, is the vent-tube, which is in all respects like the short
vent-tube commonly made use of, except only that in this the
end of the vent-hole (c) which goes into the chamber is en-
larged in the form of the wide end of a trumpet or funnel.

To this enlarged aperture the valve, v, is accurately fitted,
and by means of the small stem or tail, t, which is fixed to the
valve,
upon Gun-powder, &c.

valve, and which passes up through the vent-hole, and is connected with the spring S, the valve is pressed, or rather drawn into its place, and the vent is closed. The stem of the valve was at first made cylindrical; but, in order to make way for the priming to pass down to the valve, one-half of its substance was taken away, as is represented in the figure.

When this vent is primed, the space between the vent hole and the stem of the valve is filled with fine-grained powder, and the valve is gently opened by pressing upon the end of the stem till one or more grains of powder lodge themselves between the valve and the aperture; which preventing the valve from closing again, a small opening is left for the passage of the flame into the chamber of the piece: therefore, when the priming is lighted, the fire passing down the vent, and entering the chamber, inflames the charge, and the small grains of powder that were lodged between the valve and the aperture being destroyed by the flame in its passage through the vent, the valve immediately closes, and prevents the escape of any part of the elastic fluid generated by the inflammation of the powder in the chamber of the piece. The pressure of this fluid upon the valve assists the action of the spring, by which means the valve is more expeditiously and more effectually closed.

The valve was very accurately fitted to the aperture by grinding them together with powdered emery, and afterwards polishing them one upon the other. And it is very certain, that no part of the elastic fluid made its escape by this vent; for, upon firing the piece, there was only a simple flash from the explosion of the priming, and no stream of fire was to be seen issuing from the vent, as is always to be observed when a common vent is made use of, and in all other cases where this fluid finds a passage.
Mr. Thompson's Experiments

In order that every part of the apparatus employed in these experiments might be as perfect as possible, all the more delicate parts of it were executed by Mr. Fraser, mathematical instrument-maker in Duke's Court, St. Martin's Lane, and, among the rest, all the contrivances just described relative to the vent.

The velocities of the bullets were determined by means of a pendulum, according to the method invented by Mr. Robins.

The pendulum I made use of (fig. 6.) is composed of a circular plate of hammered iron (a), 13 inches in diameter, and 0.65 of an inch thick, to which is firmly fastened a bar of iron (b, c) 56.5 inches in length, 2.6 inches broad, and half an inch in thickness, by which it is suspended by means of two pivots (d, e) at the end of the bar (c), and at right angles to its length. These pivots being very accurately finished, and moving on polished grooves, which were kept constantly oiled to lessen the friction, the vibration of the pendulum was very free, as appeared by the great length of time its vibrations continued after it had been put in motion, and was left to itself. To the circular plate of the pendulum, targets of circular pieces of wood of different thicknesses were fixed, which in the course of the experiments were often spoiled and replaced: and, in order to mark the weight and dimensions of the pendulum in each experiment, the pendulums are numbered according to the different targets that were made use of; and the weight and dimensions of each pendulum are set down in a table at the end of the description of the apparatus.

The target of the pendulum No. 1. was made of a circular piece of elm-plank, 3½ inches thick, and equal in diameter to the iron plate of the pendulum to which it was fixed; but this target being too thin was very soon ruined.
The pendulum No. 2. was furnished with two targets, which were circular pieces of very tough oak-plank, near five inches thick, placed on opposite sides of the plate of the pendulum, and firmly fixed to it by screws, and to each other by iron straps. When one of these targets was ruined, the pendulum was turned about, and the other was made use of. This pendulum lasted from experiment No. 9. to experiment No. 39. when it was so much shattered as to be rendered unfit for further service.

The pendulum No. 3. was like the pendulum No. 2.; only, instead of oak, elm-plank near seven inches in thickness was made use of for the targets. This pendulum served from experiment No. 40. to experiment No. 101. inclusively.

But finding that targets made of planks of the toughest wood were very soon shattered to pieces by the bullets, I composed the pendulum No. 4. in a different manner. Instead of circular pieces of plank, solid cylinders of elm-timber were made use of for the targets, so that the bullets now entered the wood in the direction of its fibres. These cylinders are 13 inches in diameter, and about 5½ inches in length, hooped with iron at both their ends to prevent their splitting, and firmly fastened to the plate of the pendulum, and to each other by four iron straps. This pendulum lasted till the experiments were finished. It is still in being, and appears to be very little the worse for the service it has undergone.

Fig. 7. shews the two ends of the pendulum upon a large scale, together with the hooks or grooves by which it was suspended.

a, b, is the bar of the pendulum, which is seen broken off, as there is not room to shew the whole of its length.

c, d, are the pivots by which it was suspended.
Mr. Thompson's Experiments

e, is the circular plate of the pendulum, to which
f, g, two circular targets, are fastened by screws, and by
means of the iron straps, 1, 2, 3, 4, which are nailed to the
edges of the targets.
b, k, are the hooks which served instead of grooves to receive
the pivots, c, d, of the pendulum.

The hooks were firmly fixed to the horizontal beam R. S.
which supported the whole apparatus by means of three screws
m, n, o, which passed through three holes in the plate that
connects the two hooks. When the hooks were fastened to the
beam, the middle screw, n, was first put into its place, and
the pendulum was allowed to settle itself in a position truly
perpendicular, after which the grooves were immovable fixed
by means of the screws m, o.

The chord of the arc, through which the pendulum ascended
in each experiment, was measured by a ribbon, according to the
method invented and described by Mr. Robins.

The recoil was measured in the following manner. The
barrel was suspended in an horizontal position (and nearly in a
line with the center of the target) by two small pendulous
rods, 64 inches in length, and 25.6 inches asunder; which
being parallel to each other, and moving freely upon polished
pivots about the axes of their suspension, and upon two pair of
trunnions that were fixed to the barrel, formed, together with
the barrel, a compound pendulum; and from the lengths of
the vibrations of this pendulum, the velocity with which the
barrel began to recoil, or rather its greatest velocity, was deter-
mined.

But in order that the velocity of the recoil might not be too
great, so as to endanger the apparatus when large charges were
made
made use of, it was found necessary to load the barrel with an additional weight of more than 40 lbs. of iron.

This additional weight of iron, which I shall call the gun carriage, as it was so constructed as to serve as a carriage to the barrel, is composed of a bar of hammered iron 26 inches in length, 2.6 inches broad, and half an inch in thickness, which is bent in the middle of its length in such a manner, that its two flat sides at ends are parallel to each other, and distant asunder two inches. In the middle of this bar where it is bent is a hole in the form of an oblong square, which, receiving the end of the breech-pin, supports the lower end of breech of the barrel. The other end of the barrel is supported and confined in the following manner. A ring or hoop of iron, near half an inch thick, and two inches in diameter, is placed in a vertical position between the parallel sides of the bar, and near its two ends, and firmly fixed to them by screws. The barrel passing through the middle of this ring is supported upon the ends of three screws, which passing through the ring in different parts of its circumference all point towards its center.

The carriage, together with the barrel, was suspended by the pendulous rods by means of two pair of polished trunnions that are fixed to the outside of the carriage. They are placed in an horizontal line perpendicular to, and passing through, the axis of the bore.

Fig. 8. represents the barrel fixed to the carriage.

a, b, c, is the bar of iron which forms the carriage, and is edge-ways.

2, 4, 4, are the trunnions by which it was suspended.

d, e, is the barrel in its proper place.

3, is the breech-pin, which passing through a hole in the middle of the bar, a, b, c, supports the end, e, of the barrel; and

n, is the ring that supports the end, d, of the barrel.
Mr. Thompson's Experiments

Fig. 9. represents a perpendicular section through the line 2, 2, fig. 8, and in a line perpendicular to the length of the barrel.

This figure is designed to shew the manner in which the muzzle of the piece was supported and confined in the ring s, fig. 8.

a, c, are the two ends of the bar that are seen cut off.

i, is the ring, and

p, b, are the screws by which it is fastened to the two parallel sides of the bar, the ends of which form the trunnions 2, 2, fig. 8.

i, is a transverse section of the barrel, and

p, s, l, are the three screws by which the barrel is supported and confined in the center of the ring.

Fig. 10. is the same as fig. 9, but upon a larger scale.

Fig. 11. represents the two ends of one of the pendulous rods by which the barrel was suspended; and fig. 13, shews the same seen sideways.

a, b, is the rod which is seen broken off.

c, d, are the pivots by which it was suspended by a pair of hooks or grooves that were fastened to an horizontal beam, in the same manner as the pendulum for measuring the velocities of the bullets was suspended.

e, f, are the hooks which receive the trunnions that are fixed to the carriages.

The dimensions of every part of this apparatus may be seen in the tables, p. 242.

The chord of the arc through which the barrel ascended in its recoil was measured by a ribbon, and the lengths of those chords, expressed in inches and decimal parts of an inch, are set down in the tables. The method of computing the velocity
city of the recoil from the chord of the arc through which the barrel ascended, is too well known to require an explanation; and it is also well known, that the velocities are to each other as the chords of those arcs. The lengths of those chords, therefore, as they are set down in the tables, are, in all cases, as the velocities of the recoil.

The powder made use of in these experiments was of the best kind, such as is used in proving great guns at Woolwich. A cartridge, containing 12 lbs. of this powder, was given to me by the late General Desaguliers of the Royal Artillery, and Inspector of Brass and Iron Ordnance; who also, in the politest manner, offered me every other assistance in his power towards completing the experiments I had projected, or in making any others I should propose that might be useful in the prosecution of my inquiries.

This powder was immediately taken out of the cartridge, and put into glass bottles, which were previously made very clean and dry; and in these it was kept carefully sealed up till it was opened for use. When it was wanted for the experiments, it was weighed out in a very exact balance, with so much attention, that there could not possibly be an error in any instance greater than one quarter part of a grain. The bottles were never opened but in fine weather, and in a room that was free from damp, and no more charges of powder than were necessary for the experiments of the day were weighed out at a time. Each charge was carefully put up in a cartridge of very fine paper, and these filled cartridges were kept in a turned wooden box, that was varnished on the inside as well as the outside, to prevent its imbibing moisture from the air.

The paper of which these cartridges were made was so fine and thin, that 1280 sheets of it made no more than an inch in
thickens, and a cartridge capable of containing half an ounce of powder weighed but three quarters of a grain.

The cartridges were formed upon a wooden cylinder, and accurately fitted to the bore of the piece, and the edges of the paper were fastened together with paste made of flour and water.

When a cartridge was filled, the powder was gently shaken together, and its mouth was tied up and secured with a piece of fine thread; and when it was made use of it was put entire into the piece, and gently pushed down into its place with the ramrod, and afterwards it was pricked with a priming-wire thrust through the vent, and the piece was primed; so that no part of the powder of the charge was lost in the act of loading, as is always the case when the powder is put loose into the barrel: nor was any part of it expended in priming; but the whole quantity was safely lodged in the bottom of the bore or chamber of the piece, and the bullet was put down immediately upon it, without any wadding either between the cartridge and the bullet, or over the bullet.

The bullets were all cast in the same mould, and consequently could not vary in their weights above two or three grains at most, especially as I took care to bring the mould to a proper temperature as to heat before I began casting; and when leather was put about them, or other bullets that those of lead were made use of, the weight was determined very exactly before they were put into the piece.

The diameter of the bullet was determined by measurement and also by computation from its weight, and the specific gravity of the metal of which it was formed; and both these methods gave the same dimensions very nearly.

The apparatus was put up for making the experiments in a coach-house, which was found very convenient for the purpose.
as the joists upon which the floor over head was laid afforded a firm and commodious support for suspending the pendulum and the barrel, and the walls and roofs of the building served to screen the apparatus, which otherwise might have been discomposed by the wind, and injured by the rain and dews. A pair of very large doors, which formed the whole of one end of the room, were kept constantly open during the time the experiments were making, in order to preserve the purity of the air within the house, which otherwise would have been much injured by the smoke of the gun-powder; and that, in all probability, would have had a considerable effect in lessening the force of the powder, and vitiating the experiments. In order still further to guard against this evil, the barrel was placed as near as possible to the door, and the pendulum was hung up at the bottom of the room.

Fig. 12. represents the apparatus as it was put up for making the experiments.

\(a, b \), is the barrel with its carriage, suspended by the pendulous rods \(c, d \), and

\(R \), is the ribbon which served to measure the ascending arc of its recoil.

\(P \), is the pendulum, and

\(r \), the ribbon that measured the arc of its vibration.

The distance from the mouth of the piece to the pendulum was just 12 feet.
A table shewing the weights and dimensions of all the principal parts of the apparatus.

Of the barrel.

<table>
<thead>
<tr>
<th></th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>44.7</td>
</tr>
<tr>
<td>Length of the bore from the muzzle to the breech-pin</td>
<td>43.45</td>
</tr>
<tr>
<td>Diameter of the bore</td>
<td>0.78</td>
</tr>
<tr>
<td>Thickness of metal at the lower vent</td>
<td>0.36</td>
</tr>
<tr>
<td>Thickness of metal at the muzzle</td>
<td>0.1</td>
</tr>
<tr>
<td>Weight of the barrel, together with the solid breech-pin, and the vent-screws and vent-tube</td>
<td>6 lbs. 6 oz.</td>
</tr>
</tbody>
</table>

Of the gun carriage.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>28.4</td>
</tr>
<tr>
<td>Distance between the two pair of trunnions</td>
<td>25.6</td>
</tr>
<tr>
<td>Diameter of each trunnion</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight</td>
<td>40 lbs. 14 oz.</td>
</tr>
</tbody>
</table>

Of the rods by which the carriage was suspended.

Length from the axis of suspension, or center of the pivots, to the center of the trunnions of the gun carriage, 64 inches.
Weight of each rod, 1 lb. 4 oz.
Total weight of the barrel and its carriage, together with the allowance that was made for the weight of the rods by which it was suspended, 48 lbs.

N. B. This was its weight from experiment No. 3. to experiment No. 123. inclusive.
Of the bullet.

Diameter 0.75 of an inch.
Weight in lead 580 grains.

Of the pendulum.

Total length of the pendulum from the axis of suspension to the bottom of the circular plate 69.5
Diameter of the circular plate to which the targets were fastened 1.3
Distance between the shoulders of the pivots 3.8
Diameter of the pivots 0.27
Weight of the iron part of the pendulum 47 lb. 4 oz.

Of the pendulum with the targets fixed to it, as it was prepared for making the experiments, and numbered.

<table>
<thead>
<tr>
<th></th>
<th>Total length to the ribbon</th>
<th>Distance from the axis of suspension</th>
<th>Total weight of iron and wood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inches</td>
<td>To the center of gravity</td>
<td>To the center of oscillation</td>
</tr>
<tr>
<td>Pendulum No 1</td>
<td>69.25</td>
<td>50.25</td>
<td>58.45</td>
</tr>
<tr>
<td>---</td>
<td>N° 2</td>
<td>69.5</td>
<td>54.4</td>
</tr>
<tr>
<td>---</td>
<td>N° 3</td>
<td>55.62</td>
<td>60.23</td>
</tr>
<tr>
<td>---</td>
<td>N° 4</td>
<td>54.6</td>
<td>59.18</td>
</tr>
</tbody>
</table>

N. B. The measure is English feet and inches, and the weight is avoirdupois.

Having
Having now gone through the description of all the principal parts of the apparatus, I shall proceed to give an account of the experiments. And as it may be satisfactory to the Society to see the method of conducting these enquiries, as well as the result of them, I shall first give a table of the experiments in the exact order in which they were made, together with my original remarks; I shall then make such general observations as may occur: and afterwards I shall select, combine, and compare them, in the manner which best answers the different purposes to which I shall apply them.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Result</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>Result 1</td>
<td>General 1</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>Result 2</td>
<td>General 2</td>
</tr>
<tr>
<td>Experiment 3</td>
<td>Result 3</td>
<td>General 3</td>
</tr>
<tr>
<td>Experiment 4</td>
<td>Result 4</td>
<td>General 4</td>
</tr>
</tbody>
</table>
upon Gun-powder, &c.

General table of the experiments.

In the two first experiments the barrel was fixed to a carriage (that has not been described) which, together with the barrel and rods by which it was suspended, weighed only 2 3/4.

Length of the bore of the piece 43 5/4 inches.

Weight of the bullet 580 grains.

The pendulum, No. 1.

<table>
<thead>
<tr>
<th>Order of experiments</th>
<th>Weight</th>
<th>Height</th>
<th>Vent from the bottom of the charge</th>
<th>Chord of the arc of the pendulum</th>
<th>The bullet struck the target below the axis of the pendulum</th>
<th>Chord of the arc of the pendulum</th>
<th>Velocity of the bullet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 1</td>
<td>208 Gs.</td>
<td>1 8 In.</td>
<td>13.2 Inches</td>
<td>64 5/4 inches</td>
<td></td>
<td>33 5/4 inches</td>
<td>1267 Ft. in Sec.</td>
<td>First day.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 5 In.</td>
<td>14 5/4 inches</td>
<td></td>
<td></td>
<td>36 5/4 inches</td>
<td>1399</td>
<td></td>
</tr>
</tbody>
</table>

This gun carriage being found to be too light, the other, described, and represented fig. 8, was substituted in the room of it.
In order to determine how much of the force of the powder was lost by windage and by the vent, oiled leather was fastened round the bullet, so that it now accurately fitted the bore of the piece; and in the five experiments, from No. 35 to No. 39 inclusive, the valve-vent was made use of.

Weight of the bullet, together with the leather in which it was enveloped, 603 grains.
Finding that the blast of the powder always reached as far as the pendulum, when large charges were made use of, and suspecting that this circumstance, together with the impulse of the unﬁred grains, might in a great measure occasion the apparent irregularity in the velocities of the bullets; to remedy these inconveniences, a large sheet of paper of a moderate thickness was ﬂretched upon a square frame of wood, and interposed as a screen before the pendulum at the distance of two feet from the surface of the target.

Two reasons conspired to induce me to prefer this method of preventing the impulse of the flame upon the pendulum to the obvious one of removing the pendulum further from the mouth of the piece; the ﬁrst was, that I was unwilling to increase the distance between the barrel and the pendulum, lest the resistance of the air might affect the velocities of the bullets; and the second, which I confess did not operate less strongly than the ﬁrst, was, that the length of the house did not admit of a greater distance,
distance, and I was unwilling to expose any part of the apparatus in the open air.

But the screen was found to answer perfectly well the purpose for which it was designed, and it was continued during the remainder of the experiments, the paper being replaced every third or fourth experiment.

The experiments continued.

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>The charge of powder</th>
<th>Weight</th>
<th>Height</th>
<th>Vent from the bottom of the charge</th>
<th>Chord of the ascending arc of the pendulum</th>
<th>Bullet struck the target below the axis of the pendulum</th>
<th>Chord of the arc of the recoil</th>
<th>Velocity of the bullet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 32</td>
<td>Grs. 165</td>
<td>In. 1.45</td>
<td>In. 0</td>
<td>5.45</td>
<td>63</td>
<td>15.45</td>
<td>12.65</td>
<td>839</td>
<td>Not leathered; weight of the bullet and wad 605 grs. In exp. N° 32, no less than 40 large grains of unfired powder were driven through the screen.</td>
</tr>
<tr>
<td>33</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>In these 6 experiments the bullets were leathered, and the powder was lighted by the valve.</td>
</tr>
<tr>
<td>34</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>7.9</td>
<td>...</td>
<td>15.45</td>
<td>15.25</td>
<td>1129</td>
<td>The pend. N° 2, ruined.</td>
</tr>
<tr>
<td>35</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>7.1</td>
<td>60.25</td>
<td>15.25</td>
<td>16.3</td>
<td>1161</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>7.4</td>
<td>62</td>
<td>15.25</td>
<td>16.3</td>
<td>1161</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>...</td>
<td>1.3</td>
<td>...</td>
<td>8</td>
<td>61</td>
<td>17.9</td>
<td>23.5</td>
<td>1497</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>290</td>
<td>2.6</td>
<td>2.6</td>
<td>9.1</td>
<td>58.6</td>
<td>17.9</td>
<td>23.5</td>
<td>1497</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

The bullets were now put naked into the piece, and the powder was lighted by the short vent-tube (v, fig. 3) and some little improvement was made in the steel edges between which the ribbons passed that served to measure the ascending arcs of the pendulum and of the recoil, by which means the friction was lessened, and the ribbon was prevented from twisting or entangling itself as it was drawn out.

3.
Apparatus.

The barrel with its carriage as before.
The pendulum, No. 3. and
Leaden bullets, weighing 580 grains each.

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>The charge of powder</th>
<th>Weight</th>
<th>Height</th>
<th>Vent from the bottom of the charge</th>
<th>Chord of the ascending arc of the pendulum</th>
<th>Bullet struck the target below the axis of the pendulum</th>
<th>Chord of the arc of the recoil</th>
<th>Velocity of the bullet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td>218</td>
<td>1.9</td>
<td>0</td>
<td>6.45</td>
<td>64.6</td>
<td>18</td>
<td>1236</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.31</td>
<td>65.3</td>
<td>17.71</td>
<td>1197</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.45</td>
<td>65</td>
<td>17.91</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>1.3</td>
<td>6.5</td>
<td>64.9</td>
<td>18.3</td>
<td>1248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.75</td>
<td>64.5</td>
<td>18.35</td>
<td>1299</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
<td>64.9</td>
<td>.</td>
<td>1265</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.4</td>
<td>61.6</td>
<td>.</td>
<td>1295</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.3</td>
<td>62</td>
<td>18.1</td>
<td>1266</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>290</td>
<td>2.6</td>
<td>0</td>
<td>7.2</td>
<td>63.5</td>
<td>.</td>
<td>22.58</td>
<td>1414</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>.</td>
<td>22.92</td>
<td>1455</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.3</td>
<td>64.6</td>
<td>22.38</td>
<td>1412</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>290</td>
<td>2.6</td>
<td>1.3</td>
<td>7.4</td>
<td>63</td>
<td>.</td>
<td>23.21</td>
<td>1476</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
<td>64</td>
<td>23.76</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.25</td>
<td>61</td>
<td>23.6</td>
<td>1483</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>62.3</td>
<td>.</td>
<td>1502</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>64</td>
<td>23.26</td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
<td>62.2</td>
<td>.</td>
<td>1433</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>64</td>
<td>23.56</td>
<td>1454</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.31</td>
<td>.</td>
<td>11.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>.</td>
<td>11.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.16</td>
<td>.</td>
<td>9.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.6</td>
<td></td>
<td>.</td>
<td>11.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order:

5th day; medium velocity in these experiments and No. 47. 1225.

Medium velocity 1276

Medium velocity 1427.

Medium velocity 1493.

Medium velocity 1460.

In these 4 experiments the piece was fired with powder alone, and the screen was taken away from before the pendulum.
<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>Weight</th>
<th>Height</th>
<th>Vein from the bottom of the charge</th>
<th>Chord of the arc are of the pendulum</th>
<th>Chord of the arc of the recoil</th>
<th>Velocity of the bullet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>330</td>
<td>2.9</td>
<td>1.3</td>
<td>8</td>
<td>63</td>
<td>26.4</td>
<td>1599 Ft. in. sec.</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>8.5</td>
<td>65</td>
<td>...</td>
<td>1652 Ft. in. sec.</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>7.2</td>
<td>59.5</td>
<td>25.3</td>
<td>1562 Ft. in. sec.</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>65</td>
<td>...</td>
<td>1495 Ft. in. sec.</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>...</td>
<td>26.35</td>
<td>1633 Ft. in. sec.</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>64</td>
<td>25.8</td>
<td>1556 Ft. in. sec.</td>
</tr>
<tr>
<td>68</td>
<td>218</td>
<td>1.9</td>
<td>0</td>
<td>6.82</td>
<td>64</td>
<td>19.56</td>
<td>1684 Ft. in. sec.</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
<td>64.6</td>
<td>18.2</td>
<td>1294 Ft. in. sec.</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>6.85</td>
<td>...</td>
<td>19.12</td>
<td>1345 Ft. in. sec.</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
<td>...</td>
<td>16.33</td>
<td>1080 Ft. in. sec.</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>8.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>8.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following experiments No 78, 79, 80, and 81. were made in hopes of being able to discover a method of adding to the force of gun-powder. Twenty grains of the substances mentioned in the remarks upon each experiment were intimately mixed with the powder of the charge. In the experiment No 82, a large wad of tow, well soaked in ethereal spirit of turpentine, was put into the piece immediately upon the bullet: and in the experiment No 83, a wad, soaked in alcohol, was put into the piece in like manner.
In the nine following experiments, viz. from No. 84. to No. 92. inclusive, the valve-vent was made use of, and the bullets were made to fit the bore of the piece very exactly by means of oiled leather, which was so firmly fastened about them that in each experiment it entered the target with the bullet.

The bullet made use of in experiment No. 85. was of wood.

Those used in the experiments No. 86. and No. 87. were formed in the following manner; a small bullet was cast of plaister of Paris, which being thoroughly dried, and well heated at the fire, was fixed in the center of the mould that served for casting all the leaden bullets made use of in these experiments; and melted lead being poured into this mould, the cavity that surrounded the small plaister bullet was entirely filled up, and a bullet was produced, which to the eye had every appearance of solidity, but was as much lighter than a solid leaden bullet of the
the same diameter as the plaster bullet was lighter than a leaden bullet of the same size.

In the experiments No. 88. and No. 89. solid leaden bullets were made use of. In the experiment No. 90. two bullets were discharged at once; in the experiment No. 91. three; and in the experiment No. 92. four were used.

In each of these experiments a fresh sheet of paper was made use of as a screen to the pendulum, in order that the velocities of the bullets might be measured more accurately; and also, that the quantity of un-fired powder might be estimated with greater precision.

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>The charge of powder</th>
<th>Weight of the charge of the bullet</th>
<th>Weight of the bullet</th>
<th>Chord of the ascending arc of the pendulum</th>
<th>Bullet struck the target below the axis of the pendulum</th>
<th>Chord of the arc of recoil</th>
<th>Velocity of the bullet</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 84</td>
<td>Grs. 145</td>
<td>In. 1.3</td>
<td>O</td>
<td>Grs. 90</td>
<td>Inches. 1.33</td>
<td>Inches. 62.2</td>
<td>Inches. 7.16</td>
<td>Ft. in. sec. 1763</td>
</tr>
<tr>
<td>No. 85</td>
<td>Grs. 251</td>
<td>In. 2.8</td>
<td>2</td>
<td>Grs. 90</td>
<td>Inches. 2.82</td>
<td>Inches. 63.2</td>
<td>Inches. 9.62</td>
<td>Ft. in. sec. 1317</td>
</tr>
<tr>
<td>No. 86</td>
<td>Grs. 354</td>
<td>In. 3.3</td>
<td>3</td>
<td>Grs. 90</td>
<td>Inches. 3.32</td>
<td>Inches. 61.2</td>
<td>Inches. 11.3</td>
<td>Ft. in. sec. 1136</td>
</tr>
<tr>
<td>No. 87</td>
<td>Grs. 600</td>
<td>In. 6.5</td>
<td>4</td>
<td>Grs. 90</td>
<td>Inches. 6.5</td>
<td>Inches. 65.4</td>
<td>Inches. 15.22</td>
<td>Ft. in. sec. 1229</td>
</tr>
<tr>
<td>No. 88</td>
<td>Grs. 603</td>
<td>In. 6.3</td>
<td>5</td>
<td>Grs. 90</td>
<td>Inches. 6.3</td>
<td>Inches. 64.6</td>
<td>Inches. 15.13</td>
<td>Ft. in. sec. 1229</td>
</tr>
<tr>
<td>No. 90</td>
<td>Grs. 1184</td>
<td>In. 10.1</td>
<td>6</td>
<td>Grs. 90</td>
<td>Inches. 10.12</td>
<td>Inches. 65</td>
<td>Inches. 21.92</td>
<td>Ft. in. sec. 978</td>
</tr>
<tr>
<td>No. 91</td>
<td>Grs. 1754</td>
<td>In. 13.6</td>
<td>7</td>
<td>Grs. 90</td>
<td>Inches. 13.65</td>
<td>Inches. 63.4</td>
<td>Inches. 27.18</td>
<td>Ft. in. sec. 916</td>
</tr>
<tr>
<td>No. 92</td>
<td>Grs. 2352</td>
<td>In. 16.5</td>
<td>8</td>
<td>Grs. 90</td>
<td>Inches. 16.55</td>
<td>Inches. 63.3</td>
<td>Inches. 32.25</td>
<td>Ft. in. sec. 833</td>
</tr>
</tbody>
</table>
In the seven following experiments the piece was fired with powder only.

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>Weight (Grs.)</th>
<th>Height (In.)</th>
<th>Vent from the bottom of the charge (In.)</th>
<th>Chord of the arc of the pendulum (Inches)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 1</td>
<td>93</td>
<td>1.3</td>
<td>0</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>N° 2</td>
<td>94</td>
<td>1.45</td>
<td></td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>N° 3</td>
<td>95</td>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>N° 4</td>
<td>96</td>
<td>2.6</td>
<td></td>
<td>11.70</td>
<td></td>
</tr>
<tr>
<td>N° 5</td>
<td>97</td>
<td>3.9</td>
<td>1.68</td>
<td>17.5</td>
<td>The screen was taken away.</td>
</tr>
<tr>
<td>N° 6</td>
<td>98</td>
<td></td>
<td>6.7</td>
<td>15.88</td>
<td>The whole surface of the target was bespattered with unfired grains of powder.</td>
</tr>
<tr>
<td>N° 7</td>
<td>99</td>
<td></td>
<td></td>
<td>17.9</td>
<td>The pendulum was not observed.</td>
</tr>
</tbody>
</table>

In the following experiments N° 100 and N° 101. the bullets were not put down into the bore, but were supported by three wires, which being fastened to the end of the barrel projected beyond it, and confined the bullet in such a situation that its center was in a line with the axis of the bore, and its hinder part was one-twentieth of an inch without or beyond the mouth of the piece.

In experiment N° 102. the bullet was just stuck into the barrel in such a manner that near one-half of it was without the bore.
Mr. Thompson's Experiments

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>Weight (Grs.)</th>
<th>Height (In.)</th>
<th>Vellum from the bottom of the charge (Inches)</th>
<th>Chord of the ascending arc of the pendulum (Inches)</th>
<th>Bullet struck the target below the axis of the pendulum</th>
<th>Chord of the arc of the re-coil (Inches)</th>
<th>Velocity of the bullet (Ft. in. sec.)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 100</td>
<td>165</td>
<td>1.45</td>
<td>0.65</td>
<td>60.5</td>
<td>4.9</td>
<td>138</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>No 101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td>92</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>No 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All that part of the bullet which lay towards the bore of the piece appeared to be quite flat from the loss of substance it had sustained; and its surface was full of small indents, which probably were occasioned by the unfired grains of powder that impinged against it.
The following experiments were made with the pendulum No. 4. The rest of the apparatus as before.

<table>
<thead>
<tr>
<th>Order of the experiments</th>
<th>Weight.</th>
<th>Height.</th>
<th>Velvet from the bottom of the charge.</th>
<th>Chord of the ascending arc of the pendulum.</th>
<th>Bullet struck the target below the axis of the pendulum.</th>
<th>Chord of the arc of the recoil.</th>
<th>Velocity of the bullet.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>104</td>
<td>9</td>
<td>0</td>
<td>4.51</td>
<td>65</td>
<td>10.6</td>
<td>732</td>
<td>9th day. About 40 grains of powder were driven through the screen.</td>
</tr>
<tr>
<td>104</td>
<td>145</td>
<td>1.3</td>
<td>0</td>
<td>5.4</td>
<td>...</td>
<td>12.92</td>
<td>877</td>
<td>About 40 unfired grains of powder. Medium velocity 894. 40 unfired grains.</td>
</tr>
<tr>
<td>105</td>
<td>...</td>
<td>...</td>
<td>5.6</td>
<td>...</td>
<td>...</td>
<td>13.28</td>
<td>910</td>
<td>Double proof battle powder; no unfired grains. Ditto, ditto.</td>
</tr>
<tr>
<td>106</td>
<td>114</td>
<td>1.14</td>
<td>6.18</td>
<td>65.8</td>
<td>14.3</td>
<td>990</td>
<td>1380</td>
<td>Government powder; bullet leathered; weight 6oz grains.</td>
</tr>
<tr>
<td>107</td>
<td>218</td>
<td>1.8</td>
<td>8.48</td>
<td>65.1</td>
<td>19.68</td>
<td>1526</td>
<td>1526</td>
<td>Bullet naked; very few unfired grains.</td>
</tr>
<tr>
<td>108</td>
<td>290</td>
<td>2.6</td>
<td>9.45</td>
<td>65.6</td>
<td>23.9</td>
<td>1419</td>
<td>1419</td>
<td>Medium velocity 1414.</td>
</tr>
<tr>
<td>109</td>
<td>...</td>
<td>...</td>
<td>8.73</td>
<td>65.2</td>
<td>22.8</td>
<td>1460</td>
<td>1460</td>
<td>Double proof battle powder.</td>
</tr>
<tr>
<td>110</td>
<td>...</td>
<td>...</td>
<td>9.3</td>
<td>65.6</td>
<td>23.4</td>
<td>1438</td>
<td>1438</td>
<td>Medium velocity 1438.</td>
</tr>
<tr>
<td>111</td>
<td>...</td>
<td>...</td>
<td>8.85</td>
<td>65.5</td>
<td>22.94</td>
<td>1423</td>
<td>1423</td>
<td>Medium velocity 1413.</td>
</tr>
<tr>
<td>113</td>
<td>2.5</td>
<td>6.4</td>
<td>8.05</td>
<td>64</td>
<td>23.7</td>
<td>1378</td>
<td>1378</td>
<td>Government powder.</td>
</tr>
<tr>
<td>114</td>
<td>...</td>
<td>...</td>
<td>8.5</td>
<td>63.6</td>
<td>24.1</td>
<td>1525</td>
<td>1525</td>
<td>No unfired grains thro' the screen.</td>
</tr>
<tr>
<td>115</td>
<td>...</td>
<td>...</td>
<td>8.4</td>
<td>65</td>
<td>23.8</td>
<td>1738</td>
<td>1738</td>
<td>Medium velocity 1764.</td>
</tr>
<tr>
<td>116</td>
<td>2.28</td>
<td>64.9</td>
<td>9.15</td>
<td>64</td>
<td>24.6</td>
<td>1706</td>
<td>1706</td>
<td>Medium velocity 1751.</td>
</tr>
<tr>
<td>117</td>
<td>3.9</td>
<td>64.9</td>
<td>10.56</td>
<td>64.9</td>
<td>33.3</td>
<td>1757</td>
<td>1757</td>
<td>Without any bullet.</td>
</tr>
<tr>
<td>118</td>
<td>...</td>
<td>...</td>
<td>11</td>
<td>64.5</td>
<td>33.3</td>
<td>1729</td>
<td>1729</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>...</td>
<td>...</td>
<td>10.5</td>
<td>65</td>
<td>33.6</td>
<td>1706</td>
<td>1706</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>2.6</td>
<td>10.35</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>34.5</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>10.05</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>33.2</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>10.6</td>
<td>63.6</td>
<td>17.9</td>
<td>63.6</td>
<td>17.9</td>
<td>1789</td>
<td>1789</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>17.9</td>
<td>17.9</td>
<td></td>
</tr>
</tbody>
</table>
Mr. Thompson’s Experiments

Of the method made use of for computing the velocities of the bullets.

As the method of computing the velocity of a bullet from the arc of the vibration of a pendulum into which it is fired is so well known, I shall not enlarge upon it in this place, but shall just give the theorems that have been proposed by different authors, and shall refer those who wish to see more on the subject to Mr. Robins’s New Principles of Gunnery; to Professor Euler’s Observations upon Mr. Robins’s Book; and, lastly, to Dr. Hutton’s Paper on the initial Velocities of Cannon Balls, which is published in the Transactions of the Society for the year 1778.

If \(a \) denote the length from the axis of the pendulum to the ribbon which measures the chord of the arc of its vibration;
\(g \), the distance of the center of gravity below the axis;
\(f \), the distance of the center of oscillation;
\(h \), the distance of the point struck by the bullet;
\(c \), the chord of the ascending arc of the pendulum;
\(P \), the weight of the pendulum;
\(b \), the weight of the bullet; and
\(v \), the original velocity of the bullet;

\[
v = \frac{c}{a} \times \frac{P g}{b b} + \frac{h}{f} \times \frac{f}{\sqrt{2 b}}
\]

is a theorem for finding the velocity upon Mr. Robins’s principles.

\[
* v = \frac{c}{a} \times \frac{P g}{b b} + \frac{f + b}{a f} \times \sqrt{\frac{f}{2}}
\]

is the theorem proposed by Professor Euler, who has corrected a small error in Mr. Robins’s method; and

* Put the rational part \(\frac{c}{a} \times \frac{P g}{b b} + \frac{f + b}{a f} = \pi \), and express \(f \) in the thousandth parts of a Rhynland foot; then the velocity with which the ball strikes the pendulum will be

\[
v = \pi \sqrt{\frac{f}{2}} \text{ Rhynland feet in a second.}
\]
upon Gun-powder, &c.

\[v = 5,672 eg \sqrt{f} \times \frac{P+b}{bha} \]
is Dr. Hutton's theorem, which is sufficiently accurate, and far more simple and expeditious than either of the preceding. It is to be remembered, that \(g, h, \) and \(c, \) may be expressed in any measure; but \(f \) must be English feet, and \(v \) will be the velocity of the bullet in English feet in a second.

The velocities of the bullets in most of the foregoing experiments were first computed by Euler's method, as I had not then seen Dr. Hutton's paper; but in going over the calculations a second time, I made use of Dr. Hutton's theorem. Both these methods gave the same velocity very nearly, but the Doctor's method is by much the easiest in practice.

In these computations care was taken to make a proper allowance for the bullets that were lodged in the pendulum, and also for the velocity lost by the bullet in passing through the screen.

The corrections necessary on account of the bullets lodged in the pendulum were made in the following manner.

\[b \] was continually added to the value of \(P, \]

\[\frac{b-c}{P} \times b \] to the value of \(g, \) and

\[\frac{f-b}{P} \times b \] to the value of \(f. \)

Of the spaces occupied by the different charges of powder.

The heights of the charges of powder, or the lengths of the spaces which they occupied in the bore, were determined by measurement; and in order that this might be done with greater accuracy, inches and tenths of inches were marked upon the ram-rod, and the charge was gently forced down till it occupied the same space in each experiment.

The following table shews the heights of the charges as they were determined by measurement, and also their heights computed.
puted from the diameter of the bore of the piece, and the specific gravity of the powder that was made use of.

N. B. By an experiment I shall give an account of hereafter, I found the specific gravity of this powder shaken well together to be to that of rain water as 0.937 is to 1,000.

<table>
<thead>
<tr>
<th>Weight of the powder</th>
<th>Measured</th>
<th>Computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>0.9</td>
<td>0.8957</td>
</tr>
<tr>
<td>145</td>
<td>1.3</td>
<td>1.2490</td>
</tr>
<tr>
<td>165</td>
<td>1.45</td>
<td>1.4211</td>
</tr>
<tr>
<td>208</td>
<td>1.8</td>
<td>1.7914</td>
</tr>
<tr>
<td>218</td>
<td>1.9</td>
<td>1.8775</td>
</tr>
<tr>
<td>290</td>
<td>2.6</td>
<td>2.4980</td>
</tr>
<tr>
<td>310</td>
<td>2.7</td>
<td>2.6700</td>
</tr>
<tr>
<td>330</td>
<td>2.9</td>
<td>2.8422</td>
</tr>
<tr>
<td>416</td>
<td>3.0</td>
<td>3.5828</td>
</tr>
<tr>
<td>437½</td>
<td>3.9</td>
<td>3.7680</td>
</tr>
</tbody>
</table>

In the experiment No. 30. the powder was put into a cartridge so much smaller than the bore of the piece, that the charge, instead of occupying 1.45 inches, extended 3.2 inches. By this disposition of the powder, its action upon the bullet appears to have been very much diminished.

Of the effect that the heat which pieces acquire in firing produces upon the force of powder.

It is very probable, that the excess of the velocity of the bullet in the second experiment over that of the first was occasioned more by the heat the barrel had acquired in the first experiment than by the position of the vent, or any other circumstance; for I have since found, upon repeated trials, that the force of any given charge of powder is considerably greater when it is fired in a piece that has been previously heated by firing, or by any other means, than when the piece has not been heated. Every body that is acquainted with artillery knows, that the recoil of great guns is much more violent after the second or third discharge than it is at first; and on ship-board, where
where it is necessary to attend to the recoil of the guns, in order to prevent very dangerous accidents that might be occasioned by it, the constant practice has been in our navy, and, I believe, on board the ships of all other nations, to lessen the quantity of powder after the first four or five rounds: our 32-pounders, for instance, are commonly fired with 14 lbs. of powder at the beginning of an action, but the charge is very soon reduced to 11 lbs. and afterwards to 9 lbs., and the filled cartridges are prepared accordingly.

By the recoil it should seem, that the powder exerted a greater force also in the fourth experiment, being the second upon the second day, than it did upon the third, or the first upon that day; but the pendulum giving way, it was not possible to compare the velocities of the bullets in the manner we did in the two experiments mentioned above.

This augmentation of the force of powder, when it is fired in a piece that is warm, may be accounted for in the following manner. There is no substance we are acquainted with that does not require to be heated before it will burn; even gunpowder is not inflammable when it is cold. Great numbers of sparks or red-hot particles from the flint and steel are frequently seen to light upon the priming of a musket, without setting fire to the powder, and grains of powder may be made to pass through the flame of a candle without taking the fire; and what is still more extraordinary, if large grains of powder are let fall from the height of two or three feet upon a red-hot plate of iron, laid at an angle of about 45° with the plane of the horizon, they will rebound entire without being burnt, or in the least altered, by the experiment. In all these cases the fire is too feeble, or the duration of its action is not sufficiently long.
long to heat the powder to that degree which is necessary in
order to its being rendered inflammable.

Now as gun-powder, as well as all other bodies, acquires
heat by degrees, and as some space of time is taken up in this
as well as in all other operations, it follows, that powder, which
has been warmed by being put into a piece made hot by repeated
firing, is much nearer that state in which it will burn, or, I
may say, is more inflammable than powder which is cold; con-
sequently, more of it will take fire in a given short space of
time, and its action upon the bullet and upon the gun will of
course be greater.

The heat of the piece will also serve to dry the air in the
bore, and to clear the inside of the gun of the moisture that
collects there when it has not been fired for some time, and
these circumstances doubtless contribute something to the quick-
ness of the inflammation of the powder, and consequently to
its force.

As it takes a longer time to heat a large body than a small
one, it follows, that meal-powder is more inflammable than
that which is grained; and the smaller the particles are, the
quicker they will take fire. The sailors bruise the priming
after they have put it to their guns, as they find it very diffi-
cult, without this precaution, to fire them off with a match:
and if those who are fond of sporting would make use of a
similar artifice, and prime their pieces with meal-powder, they
would miss fire less often, the springs of the lock might be
made more tender, and its size considerably reduced without
any risque, and the violence of the blow of the flint and steel
in striking fire being lessened, the piece might be fired with
greater precision.

Concluding
Concluding from the result of the four experiments mentioned above, as well as from the reasons just cited, that the temperature of the piece has a considerable effect upon the force of the powder, I afterwards took care to bring the barrel to a proper degree of heat, by firing it once or oftener with powder each time I recommenced the experiments after the piece had been left to cool.

Of the manner in which pieces acquire heat in firing.

I was much surprised upon taking hold of the barrel immediately after the experiment No. 17, when it was fired with 330 grains of powder without any bullet, to find it so very hot that I could scarcely bear it in my hand; evidently much hotter than I had ever observed it before, notwithstanding the same charge of powder had been made use of in the two preceding experiments, and in both these experiments the piece was loaded with a bullet, which one would naturally imagine, by confining the flame, and prolonging the time of its action, would heat the barrel much more than when it was fired with powder alone.

I was convinced that I could not be mistaken in the fact, for it had been my constant practice to take hold of the piece to wipe it out as soon as an experiment was finished, and I never before had found any inconvenience from the heat in holding it. But in order to put the matter beyond all doubt, after letting the barrel cool down to the proper temperature, I repeated the experiment twice with the same charge of powder and a bullet; and in both these trials (experiments No. 18. and No. 19.) the heat of the piece was evidently much less than what it was in the experiment above mentioned (No. 17.).
I now regretted exceedingly the loss of a small pocket thermometer, which I had provided on purpose to measure the heat of the barrel, but it was accidentally broken by a fall the day before I began my experiments; and being so far from London, I had it not in my power to procure another: I was therefore obliged to content myself with determining the heat of the piece as well as I could by the touch.

Being much struck with this accidental discovery of the great degree of heat that pieces acquire when they are fired with powder without any bullet, and being desirous of finding out whether it is a circumstance that obtains universally, I was very attentive to the heat of the barrel after each of the succeeding experiments; and I constantly found the heat sensibly greater when the piece was fired with powder only, than when the same charge was made to impel one or more bullets.

Though the result of these experiments was totally unexpected, and even contrary to what I should have foretold if I had been asked an opinion upon the subject previous to making them; yet, after mature consideration, I am now convinced, that it is what ought to happen, and that it may be accounted for very well upon principles that are clearly admissible.

It is certain, that a very small part only of the heat that a piece of ordnance acquires in being fired is communicated to it by the flame of the powder; for the time of its action is so short (not being, perhaps, in general longer than about \(\frac{1}{4} \) or \(\frac{3}{8} \) th part of a second) that if its heat, instead of being 4 times, as Mr. Robins supposes, was 400 times hotter than red-hot iron, it could not sensibly warm so large a body of metal as goes to form one of our large pieces of cannon. And besides, if the heat of the flame was sufficiently intense to produce so great an effect in so short a time, it would certainly be sufficient
sufficient to burn up all inflammable bodies that it came near, and to melt the shot that it surrounded and impelled, especially when they were small, and were composed of lead or any other soft metal; but, on the contrary, we frequently see the finest paper come out of the mouth of a piece uninflamed, after it has sustained the action of the fire through the whole length of the bore, and the smallest lead shot is discharged without being melted.

But it may be objected here, that bullets are always found to be very hot if they are taken up immediately after they come out of a gun; and that this circumstance is a proof of the intensity of the heat of the flame of powder, and of its great power of communicating heat to the densest bodies. But to this I answer, I have always observed the same thing of bullets discharged from wind-guns and cross-bows, especially when they have impinged against any hard body, and are much flattened; and bullets from muskets are always found to be hotter in proportion to the hardness of the body against which they are fired. If a musket ball is fired into any very soft body, as (for instance) into water, it will not be found to be sensibly warmed; but if it is fired against a thick plate of iron, or any other body that it cannot penetrate, the bullet will be demolished by the blow, and the pieces of it that are dispersed about will be found to be in a state very little short of fusion, as I have often found by experience. It is not by the flame therefore that bullets are heated, but by percussion. They may, indeed, receive some small degree of warmth from the flame, and still more perhaps by friction against the sides of the bore, but it is in striking against hard bodies, and from the resistance they meet with in penetrating those that are softer, that they acquire by far...
the greater part of the heat we find in them as soon as they come to be at rest, after having been discharged from a gun.

There is another circumstance that may possibly be brought as an objection to this opinion, and that is the running of the metal in brass guns upon repeatedly firing them, by which means the vent is often so far enlarged as to render the piece entirely useless. But this, I think, proves nothing but that brass is very easily corroded, and destroyed by the flame of gun-powder; for it cannot be supposed, that in these cases the metal is ever fairly melted. The vent of a musket is very soon enlarged by firing, and after a long course of service it is found necessary to stop it up with a solid screw, through the center of which a new vent is made of the proper dimensions. This operation is called bushing, or rather bouching the piece; but in all the better kind of fowling-pieces the vent is lined, or bouched, with gold, and they are found to stand fire for any length of time without receiving the least injury. But every body knows that gold will run with a less heat than is required to melt iron: but gold is not corroded either by the spirit of nitre, or the acid spirit that is generated from sulphur, whereas iron is very easily destroyed by either; and that I take to be the only reason why a vent that is lined with gold is so much more durable than one that is made in iron. But it seems, that iron is more durable than brass; and perhaps steel, or some other cheap metal, may be found that will supply the place of gold, and by that means the great expence that attends bouching pieces with that precious metal may be spared, and this improvement may be introduced into common use.

This leads us to a very easy and effectual remedy for that defect so long complained of in all kinds of brass ordnance, the running of the vent; for if these pieces were bouched with iron,
Iron, there is no doubt but they would stand fire as well as iron
guns; and if steel, or any other metal, either simple or com-
pounded, should upon trial be found to answer for that pur-
pose better than iron, it might be used instead of it; and
even if gold was made use of for lining the vent, I imagine it
might be done in such a manner as that the expense would not
be very considerable, at the same time that the thickness of the
gold should be sufficient to withstand the force of the flame for
a very great length of time.

But to return to the heat acquired by guns in firing. It
being pretty evident that it is not all communicated by the
flame, there is but one other cause to which it can be attrib-
uted, and that is the motion and friction of the internal parts
of the metal among themselves, occasioned by the sudden and
violent effort of the powder upon the inside of the bore, and
to this cause I imagine the heat is principally if not almost
entirely owing. It is well known, that a very great degree of
heat may be generated in any hard and dense body in a short
space of time by friction, and in a still shorter time by colli-
sion. "For if two dense hard elastic bodies be struck against
each other with great force and velocity, all the parts of
such bodies will every moment be closely compressed, and
being rigid will react with equal force. Hence a quick and
powerful contraction and expansion will arise in every part,
resembling that swift kind of vibrations observed in stretched
strings; how great these vibrations are may be learnt from
the instance of a bell, when struck with a single blow, by
which the whole bulk, however vast, will for a long time
expand, and contract itself in infinite ellipses. And when
the attrition above described is produced, with what force and
velocity are all the particles of the rubbed body compressed,

"shaken,"
Mr. Thompson's Experiments

"shaken, and loosened to their very intimate substance*?" And in proportion to the swiftness of this vibration, and the violence of the attrition and friction, will be the heat that is produced.

A piece of iron that would sustain the pressure of any weight, however large, without being warmed, may be made quite hot by the blow of a hammer; and even soft and un-plastic bodies may be warmed by percussion, provided the velocity with which their parts are made to give way to the blow is sufficiently rapid. If a leaden bullet is laid upon an anvil, or any other hard body, and in that situation it is struck with a smart blow of a hammer, it will be found to be much heated; but the same bullet in the same situation may be much more flattened by pressure, or by the stroke of a very heavy body moving with a small velocity, without being sensibly warmed.

To generate heat therefore the action of the powder upon the inside of the piece must not only be sufficient to strain the metal, and produce a motion in its parts, but this effect must be extremely rapid; and the heat will be much augmented, if the exertion of the force and the duration of its action are momentaneous; for in that case, the fibres of the metal (if I may use the expression) that are violently stretched, will return with their full force and velocity, and the swift vibratory motion and attrition before described will be produced.

The heat generated in a piece by firing is therefore as the force by which the particles of the metal are strained and compressed, the suddenness with which this force is exerted, and the shortness of the time of its action; that is to say, as the strength of the powder and the quantity of the charge, the quickness of its inflammation, and the velocity with which the generated fluid makes its escape.

Now the effort of any given charge of powder upon the gun is very nearly the same, whether it be fired with a bullet or without; but the velocity with which the generated elastic fluid makes its escape, is much greater when the powder is fired alone, than when it is made to impel one or more bullets; the heat ought therefore to be greater in the former case than in the latter, as I found by experiment.

But to make this matter still plainer, we will suppose any given quantity of powder to be confined in a space that is just capable of containing it, and that in this situation it is by any means set on fire. Let us suppose this space to be the chamber of a piece of ordnance of any kind, and that a bullet, or any other solid body, is so firmly fixed in the bore immediately upon the charge, that the whole effort of the powder shall not be able to remove it. As the powder goes on to be inflamed, and the elastic fluid is generated, the pressure upon the inside of the chamber will be increased, till at length all the powder being burnt, the strain upon the metal will be at its greatest height, and in this situation things will remain, the cohesion or elasticity of the particles of metal counterbalancing the pressure of the fluid.

Under these circumstances very little heat would be generated; for the continued effort of the elastic fluid would approach to the nature of the pressure of a weight; and that concussion, vibration, and friction, among the particles of the metal, which in the collision of elastic bodies is the cause of the heat that is produced, would scarcely take effect.

But instead of being firmly fixed in its place, let the bullet now be moveable, but let it give way with great difficulty, and by slow degrees. In this case, the elastic fluid will be generated as before, and will exert its whole force upon the chamber.
of the piece; but as the bullet gives way to the pressure, and moves on in the bore, the fluid will expand itself and grow weaker, and the particles of the metal will gradually return to their former situations; but the velocity with which the metal restores itself being but small, the vibration that remains in the metal, after the elastic fluid has made its escape, will be very languid, as will be the heat that is generated by it.

But if, instead of giving way with so much difficulty, the bullet is much lighter, so as to afford but little resistance to the elastic fluid in making its escape, or if the powder is fired without any bullet at all; then, there being little or nothing to oppose the flame in its passage through the bore, it will expand itself with an amazing velocity, and its action upon the gun will cease almost in an instant, the strained metal will restore itself with a very rapid motion, and a sharp vibration will ensue, by which the piece will be much heated.

Of the effect of ramming the powder in the chamber of the piece.

The charge, consisting of 218 grains of powder, being put gently into the bore of the piece in a cartridge of very fine paper, without being rammed, the velocity of the bullets at a mean of the 40th, 41st, 42d, and 47th experiments, was at the rate of 1225 feet in a second; but in the 68th, 69th, and 70th experiments, when the same quantity of powder was rammed down with five or six hard strokes of the ram-rod, the mean velocity, was 1329 feet in a second. Now the total force or pressure exerted by the charge upon the bullet is as the square of its velocity, and 1329 is to 1225 as 1,1776 is to 1; or nearly
nearly as 6 is to 5; and in that proportion was the force of the
given charge of powder increased by being rammed.

In the 71st experiment the powder was also rammed, but the
vent, instead of being at the bottom of the bore, was at 1,3,
and the velocity of the bullet was very considerably diminished,
being only at the rate of 1080 feet in a second, instead of 1276
feet in a second, which was the mean velocity with this
charge, and with the vent in this situation when the powder
was rammed. See the experiments No. 43, 44, 45, and 46.

When, instead of ramming the powder, or pressing it gently
together in the bore, it is put into a space larger than it is
capable of filling, the force of the charge is thereby very sensi-
sibly lessened, as Mr. Robbins and others have found by repeated
trials. In my 30th experiment the charge, consisting of no
more than 165 grains of powder, was made to occupy 3.2
inches of the bore instead of 1.45 inches, which space it just
filled when it was gently pushed into its place without being rammed; the consequence was, the velocity of the bullet,
instead of being 1100 feet in a second or upwards, was only at
the rate of 914 feet in a second, and the recoil was lessened in
proportion.

And from hence we may draw this practical inference, that
the powder, with which a piece of ordnance or a fire-arm is
charged, ought always to be pressed together in the bore; and
if it is rammed to a certain degree, the velocity of the bullet
will be still farther increased. It is well known, that the recoil
of a musket is greater when its charge is rammed than when it
is not; and there cannot be a stronger proof that ramming
increases the force of the powder.
Of the relation of the velocities of bullets to the charges of powder by which they are impelled.

It appears by all the experiments that have hitherto been made upon the initial velocities of bullets, that when the weights and dimensions of the bullets are the same, and they are discharged from the same piece by different quantities of powder, the velocities are in the sub-duplicate ratio of the weights of the charges very nearly.

The following table will shew how accurately this law obtained in the foregoing experiments.

<table>
<thead>
<tr>
<th>Charges</th>
<th>Computed</th>
<th>Actual</th>
<th>Difference</th>
<th>No of exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>437½</td>
<td>1764</td>
<td>1764</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>330</td>
<td>1533</td>
<td>1594</td>
<td>+ 61</td>
<td>2</td>
</tr>
<tr>
<td>310</td>
<td>1486</td>
<td>1459</td>
<td>- 27</td>
<td>1</td>
</tr>
<tr>
<td>290</td>
<td>1436</td>
<td>1436</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>218</td>
<td>1232</td>
<td>1225</td>
<td>- 7</td>
<td>4</td>
</tr>
<tr>
<td>208</td>
<td>1216</td>
<td>1256</td>
<td>+ 40</td>
<td>3</td>
</tr>
<tr>
<td>165</td>
<td>1083</td>
<td>1087</td>
<td>+ 4</td>
<td>2</td>
</tr>
<tr>
<td>145</td>
<td>1018</td>
<td>1040</td>
<td>+ 22</td>
<td>2</td>
</tr>
<tr>
<td>104</td>
<td>860</td>
<td>757</td>
<td>- 103</td>
<td>2</td>
</tr>
</tbody>
</table>

The computed velocities, as they are set down in this table, were determined from the ratio of the square root of 437½ (the weight in grains of the largest charge of powder) to the mean velocity of the bullet with that charge and the vent at 0; viz. 1764 feet in a second, and the square root of the other charges expressed in grains. And the actual velocities are means of all experiments that were made under similar circumstances.
The fourth column shews the difference of the computed and actual velocities, or the number of feet in a second by which the actual velocity exceeds or falls short of the computed: and in the fifth column is set down the number of experiments with each charge, from the mean of which the actual veloci
ty was determined.

The agreement of the computed and actual velocities will appear more striking, if we take the sum and difference of those velocities with all the charges except the first: thus,

<table>
<thead>
<tr>
<th>Sum of the velocities,</th>
<th>-1764</th>
</tr>
</thead>
<tbody>
<tr>
<td>9864</td>
<td>9854</td>
</tr>
</tbody>
</table>

So that it appears, that the difference, or the actual velocity, was smaller than the computed by \(\frac{1}{11}\) part only at a mean of 23 experiments.

But as by far the greater number of the experiments were made with the following charges, viz. 290, 218, 208, 165, and 145 grains of powder, let us take the sum and difference of the computed and actual velocities of those charges: thus,

<table>
<thead>
<tr>
<th>Sum of the velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>5985</td>
</tr>
</tbody>
</table>

Here the agreement of the theory with the experiments is so very remarkable, that we must suppose it was in some measure accidental; for the difference of the velocities in repeating the same experiment is in general much greater than the difference of the computed and actual velocities in this instance: but, I think, we may fairly conclude, from the result of all these trials,
Mr. Thompson's Experiments

trials, that the velocities of like musket bullets, when they are discharged from the same piece by different quantities of the same kind of powder, are very nearly in the sub-duplicate ratio of the weights of the charges. Whether this law will hold good when applied to cannon balls, and bomb shells of large dimensions, I dare not at present take upon me to decide; but, for several reasons that might be mentioned, I am rather of opinion, that it will not; at least, not with that degree of accuracy which obtained in these experiments.

Of the effect of placing the vent in different parts of the charge.

There have been two opinions with respect to the manner in which gun-powder takes fire. Mr. Robins supposes that the progress of its inflammation is so extremely rapid, "that all the powder of the charge is fired and converted into an elastic fluid, before the bullet is sensibly moved from its place;" while others have been of opinion, that the progress of the inflammation is much slower, and that the charge is seldom or never completely inflamed before the bullet is out of the gun.

The large quantities of powder that are frequently blown out of fire arms un-inflamed, seem to favour the opinion of the advocates for the gradual firing; but Mr. Robins endeavours to account for that circumstance upon different principles, and supports his opinion by shewing that every increase of the charge within the limits of practice produces a proportional increase of the velocity of the bullet, and that when the powder is confined by a great additional weight, by firing two or more bullets at a time instead of one, the velocity is not sensibly greater than it ought to be according to his theory.
If this were a question merely speculative, it might not be worth while to spend much time in the discussion of it; but as it is a matter upon the knowledge of which depends the determination of many important points respecting artillery, and from which many useful improvements may be derived, too much pains cannot be taken to come at the truth. Till the manner in which powder takes fire, and the velocity with which the inflammation is propagated, are known, nothing can with certainty be determined with respect to the best form for the chambers of pieces of ordnance, or the most advantageous situation for the vent; nor can the force of powder, or the strength that is required in different parts of the gun, be ascertained with any degree of precision.

As it would be easy to determine the best situation for the vent from the velocity of the inflammation of powder being known, so on the other hand I had hopes of being able to come at that velocity by determining the effect of placing the vent in different parts of the charge; for which purpose the following experiments were made.
A table of experiments, shewing the effect of placing the vent in different parts of the charge.

<table>
<thead>
<tr>
<th>Weight of the charge of powder</th>
<th>Space occupied by the powder</th>
<th>Vent from the bottom of the bore</th>
<th>Velocity of the bullet at a mean of two experiments (Ft. in a sec.)</th>
<th>Recoil measured upon the ribbin of the medium</th>
<th>Number of experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains</td>
<td>Inches</td>
<td>Inches</td>
<td>Ft. in a sec.</td>
<td>Inches</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>165</td>
<td>1.45</td>
<td>0</td>
<td>1087</td>
<td>14,465</td>
<td>2</td>
</tr>
<tr>
<td>218</td>
<td>1.9</td>
<td>1.32</td>
<td>1082</td>
<td>14.31</td>
<td>3</td>
</tr>
<tr>
<td>290</td>
<td>2.6</td>
<td>0</td>
<td>1225</td>
<td>17,93</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1270</td>
<td>18.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1427</td>
<td>22,626</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1493</td>
<td>23,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1460</td>
<td>23,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1444</td>
<td>23,135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>2.7</td>
<td>1413</td>
<td>24.5</td>
<td>24.69</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.32</td>
<td></td>
<td>24,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>2.9</td>
<td>2.65</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1594</td>
<td>26.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1625</td>
<td>26.4</td>
<td>25.3</td>
<td>2</td>
</tr>
<tr>
<td>437½</td>
<td>3.9</td>
<td>2.6</td>
<td>1764</td>
<td>33.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1751</td>
<td>32,866</td>
<td></td>
</tr>
</tbody>
</table>

By the foregoing experiments it appears, first, that the difference in the force of any given charge of powder which arises from the particular situation of the vent is extremely small.

With 165 grains of powder, and the vent at 0, the velocity of the bullet at a mean of two experiments (viz. the 20th and 21st) was 1087 feet in a second; and with the same charge, and the vent at 1.32 inches, the velocity at a mean of the 22d, 23d, and 24th experiments, was 1082 feet in a second; the
the difference, equal five feet in a second, is less than what occurred in a repetition of the same experiment.

With 218 grains of powder, and the vent at 0, the velocity at a mean in the 40th, 41st, 42d, and 47th experiments, was at the rate of 1225 feet in a second; and with the same charge, and the vent at 1,3, the velocity was 1276 feet in a second at a mean of four experiments, viz. the 43d, 44th, 45th, and 46th.

In the first set of experiments, with 290 grains of powder, the velocities were:

<table>
<thead>
<tr>
<th>Vent at 0</th>
<th>Vent at 1,3</th>
<th>Vent at 2,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1414</td>
<td>1476</td>
<td>1502</td>
</tr>
<tr>
<td>1455</td>
<td>1520</td>
<td>1450</td>
</tr>
<tr>
<td>1412</td>
<td>1483</td>
<td>1433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1454</td>
</tr>
<tr>
<td>34281</td>
<td>4479</td>
<td>5839</td>
</tr>
</tbody>
</table>

Means 1427 1493 1460

See the experiments from No. 48. to No. 57. inclusive.

In the second set the velocities were,

<table>
<thead>
<tr>
<th>Vent at 0</th>
<th>Vent at 2,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1419</td>
<td>1438</td>
</tr>
<tr>
<td>1460</td>
<td>1423</td>
</tr>
<tr>
<td>1462</td>
<td>1378</td>
</tr>
<tr>
<td>1436</td>
<td></td>
</tr>
<tr>
<td>45777</td>
<td>34239</td>
</tr>
</tbody>
</table>

Means 1444 1413

See the experiments from No. 109. to No. 115. inclusive.
And taking the means of all the velocities in both sets in each position of the vent it will be,

<table>
<thead>
<tr>
<th></th>
<th>Vent at 0</th>
<th>Vent at 1.3</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean velocity</td>
<td>1436</td>
<td>1493</td>
<td>1437</td>
</tr>
</tbody>
</table>

The mean recoils in these experiments were,

<table>
<thead>
<tr>
<th></th>
<th>Vent at 0</th>
<th>Vent at 1.3</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.88</td>
<td>23.34</td>
<td>23.61</td>
<td></td>
</tr>
</tbody>
</table>

In the experiments with 310 grains of powder the velocities of the bullets were not determined with sufficient accuracy to be depended on; but the recoils, which were measured with great nicety, were as follows, \textit{viz.}

<table>
<thead>
<tr>
<th></th>
<th>Vent at 0</th>
<th>Vent at 1.3</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.69</td>
<td>24.95</td>
<td>24.9</td>
<td></td>
</tr>
</tbody>
</table>

With 330 grains of powder the mean velocities and recoils were,

<table>
<thead>
<tr>
<th></th>
<th>Vent at 0</th>
<th>Vent at 1.3</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocities</td>
<td>1594</td>
<td>1625</td>
<td>1525</td>
</tr>
<tr>
<td>Recoils</td>
<td>26.075</td>
<td>26.4</td>
<td>25.3</td>
</tr>
</tbody>
</table>

In the experiments with 437.5 grains (an ounce avoirdupois) of powder the velocities and recoils were,

<table>
<thead>
<tr>
<th></th>
<th>Vent at 0</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>1738</td>
<td>1707</td>
</tr>
<tr>
<td>Recoil</td>
<td>33</td>
<td>32.5</td>
</tr>
<tr>
<td>1824</td>
<td>33.3</td>
<td>1757</td>
</tr>
<tr>
<td>1728</td>
<td>33.6</td>
<td>1789</td>
</tr>
<tr>
<td>35291</td>
<td>399.9</td>
<td>35253</td>
</tr>
<tr>
<td>Means</td>
<td>1764</td>
<td>1751</td>
</tr>
</tbody>
</table>

32,866

Secondly,
Secondly, From the result of all these experiments it appears, that the effect of placing the vent in different positions with respect to the bottom of the chamber is different, in different charges; thus, with 165 grains of powder the velocity of the bullet was rather diminished by removing the vent from o, or the bottom of the bore to 1,32; but with 218 grains of powder the velocity was a little increased, as was also the recoil. With 290 grains of powder the velocity was greatest when the powder was lighted at the vent 1,3 which was near the middle of the charge, and rather greater when it was lighted at the top, or immediately behind the bullet, than when it was lighted at the bottom. And by the recoil it would seem, that the velocities of the bullets varied nearly in the same manner when the charge consisted of 310 grains of powder.

With 330 grains of powder, both the velocity and the recoil were greater when the powder was lighted at the middle of the charge, than when it was lighted at the bottom; but they were least of all when it was lighted near the top. And when an ounce of powder was made use of for the charge, its force was greatest when it was lighted at the bottom. But the difference in the force exerted by the powder which arose from the particular position of the vent was in all cases so inconsiderable (being, as I have before observed, less than what frequently occurred in repeating the same experiment) that no conclusion can be drawn from the experiments, except only this, that any given charge of powder exerts nearly the same force, whatever is the position of the vent.

And hence the following practical inference naturally occurs, viz. that in the formation of fire-arms no regard need be had to any supposed advantages that gun-smiths and others have hitherto imagined were to be derived from particular situations for
the vent, such as diminishing the recoil, increasing the force of the charge, &c.; but the vent may be indifferently in any part of the chamber where it will best answer upon other accounts: and there is little doubt but the same thing will hold good in great guns, and all kinds of heavy artillery.

Almost every workman who is at all curious in fire-arms has a particular fancy with regard to the best form for the bottom of the chamber, and the proper position of the vent. They in general agree, that the vent should be as low or far back as possible, in order, as they pretend, to lessen the recoil; but no two of them make it exactly in the same manner. Some make the bottom of the chamber flat, and bring the vent out even with the end of the breech-pin. Others make the vent flaxing through the breech-pin, in such a manner as to enter the bore just in its axis. Others again make the bottom of the chamber conical; and there are those who make a little cylindric cavity in the breech-pin, of about two-tenths of an inch in diameter, and near half an inch in length, coinciding with the axis of the bore, and bring out the vent even with the bottom of this little cavity.

The objection to the first method is, the vent is apt to be stopped up by the foul matter that adheres to the piece after firing, and which is apt to accumulate, especially in damp weather. The same inconvenience in a still greater degree attends the other methods, with the addition of another, arising from the increased length of the vent; for the vent being longer it is not only more liable to be obstructed, but it takes a longer time for the flame to pass through it into the chamber, in consequence of which the piece is slower in going off, or, as sportsmen term it, is apt to hang fire.
The form I would recommend for the bottom of the bore is that of a hemisphere; and the vent should be brought out directly through the side of the barrel, in a line perpendicular to its axis, and pointing to the center of the hemispheric concavity of the chamber.

In this case the vent would be the shortest possible; it would be the least liable to be obstructed, and the piece would be more easily cleaned, than if the bottom of the bore was of any other form. All these advantages, and several others not less important, would be gained by making the bottom of the bore and vent of great guns in the same manner.

A new method of determining the velocities of bullets.

From the equality of action and re-action it appears, that the momentum of a gun must be precisely equal to the momentum of its charge; or that the weight of the gun, multiplied into the velocity of its recoil, is just equal to the weight of the bullet and of the powder (or the elastic fluid that is generated from it) multiplied into their respective velocities: for every particle of matter, whether solid or fluid, that issues out of the mouth of a piece, must be impelled by the action of some power, which power must re-act with equal force against the bottom of the bore.

Even the fine invisible elastic fluid that is generated from the powder in its inflammation cannot put itself in motion without re-acting against the gun at the same time. Thus we see pieces, when they are fired with powder alone, recoil as well as when their charges are made to impel a weight of shot, though the recoil is not in the same degree in both cases.

It
It is easy to determine the velocity of the recoil in any given case, by suspending the gun in an horizontal position by two pendulous rods, and measuring the arc of its ascent, by means of a ribbon according to the method already described, and this will give the momentum of the gun, its weight being known, and consequently the momentum of its charge. But in order to determine the velocity of the bullet from the recoil, it will be necessary to find out how much the weight and velocity of the elastic fluid contributes to it.

That part of the recoil which arises from the expansion of this fluid is always very nearly the same, whether the powder is fired alone, or whether the charge is made to impel one or more bullets, as I have found by a great variety of experiments.

If therefore a gun, suspended according to the method prescribed, is fired with any given charge of powder, but without any bullet or wad, and the recoil is observed, and if the same piece is afterwards fired with the same quantity of powder, and a bullet of a known weight, the excess of the velocity of the recoil in the latter case, over that in the former, will be proportional to the velocity of the bullet; for the difference of these velocities, multiplied into the weight of the gun, will be equal to the weight of the bullet multiplied into its velocity.

Thus if \(W \) is put equal to the weight of the gun,

\[
U = \text{the velocity of its recoil, when it is fired with any given charge of powder, without any bullet,}
\]

\[
V = \text{the velocity of the recoil, when the same charge is made to impel a bullet,}
\]

\[
B = \text{the weight of the bullet, and}
\]

\[
v = \text{its velocity,}
\]

It will be

\[
v = \frac{V - U \times w}{B}.
\]

\(1 \)
Upon Gun-powder, &c.

Let us see how this method of determining the velocities of bullets will answer in practice.

In the 94th experiment the recoil, with 165 grains of powder, without a bullet, was 5.5 inches, and in the 95th experiment, with the same charge, the recoil was 5.6 inches. The mean is 5.55 inches; and the length of the rods by which the barrel was suspended being 64 inches, the velocity of the recoil (= U) answering to 5.55 inches measured upon the ribbon, is that of 1,135.8 feet in a second.

In five experiments, with the same charge of powder, and a bullet weighing 580 grains, the recoil was as follows, viz.:

The 20th experiment 14.73 inches

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21st</td>
<td>14.2</td>
</tr>
<tr>
<td>22d</td>
<td>14.8</td>
</tr>
<tr>
<td>23d</td>
<td>14.58</td>
</tr>
<tr>
<td>24th</td>
<td>14.68</td>
</tr>
</tbody>
</table>

\[\frac{5.73}{5} \], (= 14.6 inches at a mean.

And the velocity of the recoil (= V) answering to the length is that of 2,988.6 feet in a second: consequently \(V - U \), or 2,988.6 - 1,135.8 is equal to 1,852.2 feet in a second.

But as the velocities of recoil are known to be as the chords of the arcs through which the barrel ascends, it is not necessary in order to determine the velocity of the bullet to compute the velocities \(V\) and \(U \); but the quantity \(V - U \), or the difference of the velocities of the recoil when the given charge is fired with and without a bullet, may be computed from the value of the difference of the chords, by one operation. Thus the velocity answering to the chord 9.05 is that of 1,852 feet in a second, which is just equal to \(V - U \), as was before found.

The
Mr. Thompson's Experiments

The weight of the barrel, together with its carriage, was 47½ pounds, to which three quarters of a pound is to be added on account of the weight of the rods by which it was suspended, which makes \(W = 48 \) pounds, or 336,000 grains, and the weight of the bullet was 580 grains. \(B \) is therefore to \(W \) as 580 is to 336,000, that is, as 1 is to 579,31 very nearly; and \(v = \frac{V - U \times W}{B} \) is equal to \(V - U \times 579,31 \).

The value of \(V - U \) answering to the experiments before mentioned was found to be 1,8522; consequently the velocity of the bullets \((=v) \) was \(1,8522 \times 579,31 = 1073 \) feet in a second, which is extremely near 1083 feet in a second, the mean of the velocities, as they were determined by the pendulum.

But the computation for determining the velocity of a bullet upon these principles may be rendered still more simple and easy in practice; for the velocities of the recoil being as the chords measured upon the ribbon, if

\[c \text{ is put equal to the chord of the recoil expressed in English inches, when the piece is fired with powder only, and} \]

\[C = \text{the chord when a bullet is discharged by the same charge,} \]

then \(C - c \) will be as \(V - U \); and consequently as \(\frac{V - U \times W}{B} \), which measures the velocity of the bullet, the ratio of \(W \) to \(B \) remaining the same.

If therefore we suppose a case in which \(C - c \) is equal to one inch, and the velocity of the bullet is computed from that chord, the velocity in any other case, wherein \(C - c \) is greater or less than one inch, will be found by multiplying the difference of the chords \(C \) and \(c \) by the velocity that answers to a difference of one inch.
The length of the parallel rods by which the barrel was suspended being 64 inches, the velocity of the recoiling answering to \(C - c = 1 \) inch measured upon the ribbon is \(0.204655 \) parts of a foot in a second; and this is also, in this case, the value of \(V - U \); the velocity of the bullet is therefore \(v = 0.204655 \times 579.31 = 118.35 \) feet in a second.

Consequently the velocity of the bullet expressed in feet per second may in all cases be found by multiplying the difference of the chords \(C \) and \(c \), by 118.35, the weight of the barrel, the length of the rods by which it is suspended, and the weight of the bullet remaining the same, and this whatever the charge of powder may be that is made use of, and however it may differ in strength or goodness.

According to this rule the velocities of the bullets in the following experiments have been computed from the recoil; and by comparing them with the velocities shewn by the pendulum, we shall be enabled to judge of the accuracy of this new method of determining the velocities of bullets.

In the 76th and 77th experiments, when the piece was fired with 145 grains of powder and a bullet, the recoil was 13.25 and 13.15, or 13.2 at a mean; and with the same charge of powder, without a bullet, the recoil was 4.5 and 4.3, or 4.4 at a mean (see the 84th and 93d experiments). \(C - c \) is therefore 13.2 - 4.4 = 8.8 inches, and the velocity of the bullets = 8.8 \times 118.35 = 1045 \) feet in a second. The mean of the velocities as they were determined by the pendulum is that of 1040 feet in a second. In the 104th and 105th experiments, the recoil was 12.92 and 13.28, and the velocity computed from the mean of those chords is 1030 feet in a second; but the velocity shewn by the pendulum was no more than about 900 feet in a second. As the recoil was so nearly equal to what:
Mr. Thompson's Experiments

what it was in the 76th and 77th experiments before mentioned, when the velocities shewn by the recoil and by the pendulum were almost exactly the same, I am inclined to believe, that there must have been some mistake in determining the velocities by the pendulum in these last experiments, and that the velocity shewn by the recoil is most to be depended on.

With 290 grains, or half the weight of the bullet in powder, in the 48th, 49th, and 50th experiments, the recoil was 22,58, 22,92, and 22,38; and the recoil, with the same charge of powder, without a bullet, at a mean of the 60th and 99th experiments, was 10,66. The mean of the velocities of the bullets, computed from the recoil, is therefore 1416 feet in a second, and the velocity shewn by the pendulum was 1427 feet in a second: the difference is not considerable. The mean of the velocities in the 109th, 110th, 111th, and 112th experiments is by the recoil 1464, and by the pendulum 1444 feet in a second.

With 330 grains of powder the velocities of the bullets appear to have been as follows, viz.

<table>
<thead>
<tr>
<th>Vent at 0</th>
<th>Vent at 1.3</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the recoil</td>
<td>1543</td>
<td>1620</td>
</tr>
<tr>
<td>By the pendulum</td>
<td>1594</td>
<td>1625</td>
</tr>
</tbody>
</table>

See the 62d, 63d, 64th, 65th, 66th, 67th, and 17th experiments.

The uniformity of the recoil was in all cases very remarkable. Thus, in the first set of experiments with 290 grains of powder (from the 48th to the 57th experiment inclusive), the recoil was,
upon Gun-powder, &c.

<table>
<thead>
<tr>
<th>Vent at 0.</th>
<th>Vent at 1.5</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.58</td>
<td>23.21</td>
<td>23.06</td>
</tr>
<tr>
<td>22.92</td>
<td>23.76</td>
<td>23.26</td>
</tr>
<tr>
<td>22.38</td>
<td>23.06</td>
<td>23.26</td>
</tr>
</tbody>
</table>

\[\text{Means} = 22.626 \quad 23.343 \quad \text{and} \quad 23.285 \]

If now we take a mean of the 60th and 99th experiments, and call the recoil, without a bullet, 10.66 as before, the velocities will turn out,

\[
\begin{array}{ccc}
\text{Vent at 0.} & \text{Vent at 1.5} & \text{Vent at 2.6} \\
1416 & 1501 & 1494 \\
1427 & 1493 & 1494 \\
\hline
-11 & +8 & +34
\end{array}
\]

The recoil was equally regular in the 117th and five succeeding experiments, when the charge was no less than 437\frac{1}{2} grs. = 1 ounce avoirdupois in powder; and the velocities of the bullets determined from the recoil are very nearly the same as they were shewn by the pendulum. Thus, in the 117th, 118th, and 119th experiments the mean recoil was 33.3; and in the 120th, 121st and 122d experiments it was 32.866. And if the recoil without a bullet is called 17.9, as it was determined by the 123d experiment, which was made immediately after the experiments before mentioned, then will the velocities be,
Mr. Thompson's Experiments

By the recoil

<table>
<thead>
<tr>
<th>Vent at 0</th>
<th>Vent at 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1822</td>
<td>1771</td>
</tr>
</tbody>
</table>

And by the pendulum they were

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1764</td>
<td>1751</td>
</tr>
</tbody>
</table>

The difference is only +58 and +20 feet in a second, which is less than what frequently occurs in repeating the same experiment.

In the 11th, 12th, 13th, and 14th experiments, when the piece was fired with 310 grains of powder and a bullet, the recoil was 24.69, 24.95, 24.9, and 24.9; and in the 15th, 16th, 18th, and 19th experiments with 330 grains of powder, the recoil was 26.2, 26.2, 26.3, and 26.4. The regularity of these numbers is very striking; and though we cannot compare the velocities of the bullets determined by the two methods as we have done in other cases (as there are reasons to believe, that the velocities, as they are set down in the tables, are not much to be depended on, and as the recoil, with the given charge of 310 grains of powder without a bullet, is not known) yet the regularity of the recoil in these experiments affords good grounds to conclude, that the method of determining the velocities of bullets founded upon it must be very accurate.

But of all the experiments those numbered from 84 to 92 inclusive afford the strongest proof of the accuracy of this method. In those every possible precaution was taken to prevent errors arising from adventitious circumstances, and the weights of the bullets and their velocities were so various, that the uniform agreement of the two methods of determining the velocities in those trials amounts almost to a demonstration of the truth of the principles upon which this new method is founded.
By the following table the result of these experiments may be seen at one view.

<table>
<thead>
<tr>
<th>The experiments</th>
<th>Weight of the bullets.</th>
<th>The barrel heavier than the bullet.</th>
<th>The recoil.</th>
<th>Velocity of the bullet.</th>
<th>By the recoil.</th>
<th>By the pendulum</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grs.</td>
<td>W/B = c = v = v =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84th and 93d</td>
<td></td>
<td>c = 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85th</td>
<td>90</td>
<td>3733.3</td>
<td>7.16</td>
<td>2109</td>
<td>1763</td>
<td>+ 346</td>
<td></td>
</tr>
<tr>
<td>86th</td>
<td>251</td>
<td>1338.6</td>
<td>9.62</td>
<td>1430</td>
<td>1317</td>
<td>+ 113</td>
<td></td>
</tr>
<tr>
<td>87th</td>
<td>354</td>
<td>949.15</td>
<td>11.03</td>
<td>1288</td>
<td>1136</td>
<td>+ 152</td>
<td></td>
</tr>
<tr>
<td>88th</td>
<td>600</td>
<td>560.2</td>
<td>15.22</td>
<td>1240</td>
<td>1229</td>
<td>+ 11</td>
<td></td>
</tr>
<tr>
<td>89th</td>
<td>603</td>
<td>557.22</td>
<td>15.13</td>
<td>1224</td>
<td>1229</td>
<td>+ 5</td>
<td></td>
</tr>
<tr>
<td>90th</td>
<td>1184</td>
<td>283.78</td>
<td>21.92</td>
<td>1017</td>
<td>978</td>
<td>- 39</td>
<td></td>
</tr>
<tr>
<td>91st</td>
<td>1754</td>
<td>191.56</td>
<td>27.18</td>
<td>893</td>
<td>916</td>
<td>- 23</td>
<td></td>
</tr>
<tr>
<td>92d</td>
<td>2352</td>
<td>141.86</td>
<td>32.25</td>
<td>812</td>
<td>833</td>
<td>- 21</td>
<td></td>
</tr>
</tbody>
</table>

The charge of powder consisted of 145 grains in weight in each experiment.

In order to shew, in a more striking manner, the result of these experiments, and the comparison of the two methods of ascertaining the velocities of bullets, I have drawn the fig. 16, where the numbers that are marked upon the line AB are taken from A towards B, in proportion to the weights of the bullets; while the lines drawn from those numbers perpendicular from AB (as w, v, for instance, at the number 2352) and ending at the curve c, d, express their velocities, as shewn by the pendulum. The continuation of those lines on the opposite side of the line AB shew the recoil, and also the velocities of the bullets as determined from it; thus w, r, and the (dotted) lines 2 Q 2 parallel
Mr. Thompson's Experiments

parallel to it, which end at the line g, f, express the recoil; and the portion of each of those lines that is comprehended between the line AB and the curve m, n (as w, u) is as the velocity of the bullet in the several experiments. The line A, c, denotes the weight of the charge of powder; and the line A, m, the velocity with which the elastic fluid escapes out of the piece, when the powder is fired without any bullet.

Upon an inspection of this figure, as well as from an examination of the foregoing table, it appears, that the velocities determined by the two methods agree with great nicety in all the experiments after the 87th; but in the 87th experiment, and also in the 86th, but particularly in the 85th, the difference in the result of these different methods is very considerable: and it is remarkable, that in those experiments where they disagree most, the velocities of the bullets, as determined by the pendulum, are extremely irregular; while, on the other hand, the gradual increase of the recoil as the bullets were heavier, and the great regularity of the corresponding velocities, afford good grounds to conclude, that this disagreement is not owing to any inaccuracy in the new method of ascertaining the velocities, but to some other cause that remains to be investigated.

But before we proceed in this inquiry, let us separate the five last experiments in the foregoing table; and, summing up the velocities determined by the two methods, we shall see by their difference how those methods agreed upon the whole, in this instance.
Upon Gun-powder, &c.

Velocity.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Weight of the bullets</th>
<th>By the recoil</th>
<th>By the pendulum</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>88th</td>
<td>600</td>
<td>1240</td>
<td>1229</td>
<td>+11</td>
</tr>
<tr>
<td>89th</td>
<td>603</td>
<td>1224</td>
<td>1229</td>
<td>-5</td>
</tr>
<tr>
<td>90th</td>
<td>1184</td>
<td>1017</td>
<td>978</td>
<td>+39</td>
</tr>
<tr>
<td>91st</td>
<td>1754</td>
<td>893</td>
<td>916</td>
<td>-23</td>
</tr>
<tr>
<td>92d</td>
<td>2352</td>
<td>812</td>
<td>833</td>
<td>-21</td>
</tr>
</tbody>
</table>

Sums and diff. of the velocities 5186 5185 +1

Here the difference in the result of the two methods does not amount to \(\frac{1}{1000}\)th part of the whole velocity; but I lay no stress upon this extraordinary argument. I am sensible that it must in some degree have been accidental; but as the difference in the velocities, computed by these different methods, was in no instance considerable, not being in any case so great as what frequently occurred in the most careful repetition of the same experiment, and as the velocities, as determined by the recoil, were much more regular than those shewn by the pendulum, as appears by comparing the curves \(g, f, \) and \(m, n,\) (fig. 16.) with the crooked line \(c, d,\) I think we may fairly conclude, that this new method may with safety be relied on in practice.

The greatest difference in the velocities, as ascertained by the two methods, appears, in the instance of the 85th experiment, where the velocity determined from the recoil exceeds that shewn by the pendulum by 346 feet in a second, the former velocity being that of 2109 feet in a second, the latter only 1763 feet in a second; and in the two succeeding experiments, the velocities shewn by the pendulum are likewise deficient, though not in so great a degree.

This
Mr. Thompson's Experiments

This apparent deficiency remains now to be accounted for; and, first, it cannot be supposed, that it arose from any imperfection in Mr. Robins's method of determining the velocities of bullets; for that method is founded upon such principles as leave no room to doubt of its accuracy; and the practical errors that occur in making the experiments, and which cannot be entirely prevented, or exactly compensated, are in general so small, that the difference of the velocities in question cannot be attributed to them. It is true, the effect of those errors is more likely to appear in experiments made under such circumstances as those under which the experiments we are now speaking of were made, than in any other case; for the bullets being very light, the arc of the ascent of the pendulum was but small, and a small mistake in measuring the chord upon the ribbon would have produced a very considerable error in computing the velocity of the bullet: thus, a difference of one tenth of an inch, more or less, upon the ribbon in the 85th experiment, would have made a difference in the velocity of more than 120 feet in a second. But independent of the pains that were taken to prevent mistakes, the striking agreement of the velocities determined by the two methods in the experiments which immediately follow, as also in all other cases where they could be compared, affords abundant reason to conclude, that the errors arising from those causes were in no instance very considerable.

But if both methods of ascertaining the velocities of bullets are to be relied on, then the difference of the velocities, as determined by them in these experiments, can only be accounted for by supposing that it arose from their having been diminished by the resistance of the air in the passage of the bullets from the mouth of the piece to the pendulum; and this suspicion will
will be much strengthened when we consider how great the resistance is that the air opposes to bodies that move very swiftly in it, and that the bullets in these experiments were not only projected with great velocities, but were also very light, and consequently more liable to be retarded by the resistance on that account.

To put the matter beyond all doubt, let us see what the resistance was that these bullets met with, and how much their velocities were diminished by it. The weight of the bullet (in the 85th experiment) was 90 grains; its diameter was 0.78 of an inch, and it was projected with a velocity of 2109 feet in a second.

If now a computation be made according to the method laid down by Sir ISAAC NEWTON for compressed fluids, it will be found, that the resistance to this bullet was not less than 84 lbs. avoirdupois, which is something more than 660 times its weight. But Mr. ROBINS has shewn, by experiment, that the resistance of the air to bodies moving in it with very great velocity is near three times greater than Sir ISAAC has determined it, and as the velocity with which this bullet was impellèd is considerably greater than any in Mr. ROBINS's experiments, it is highly probable, that the resistance in this instance was at least 2000 times greater than the weight of the bullet.

The distance from the mouth of the piece to the pendulum, as we have before observed, was 12 feet; but, as there is reason to think, that the blast of the powder, which always follows the bullet, continues to act upon it for some sensible space of time after it is out of the bore, and by urging it on counter-balances, or at least counter-acts in a great measure the resistance of the air, we will suppose, that the resistance does not
not begin, or rather that the motion of the bullet does not begin to be retarded, till it has got to the distance of two feet from the muzzle. The distance, therefore, between the barrel and the pendulum, instead of 12 feet, is to be estimated at 10 feet; and as the bullet took up about \(\frac{1}{7} \) part of a second in running over that space, it must in that time have lost a velocity of about 335 feet in a second, as will appear upon making the computation, and this will very exactly account for the apparent diminution of the velocity in the experiment; for the difference of the velocities, as determined by the recoil and by the pendulum, \(= 2109 - 1763 = 346 \) feet in a second, is extremely near 335 feet in a second, the diminution of the velocity by the resistance as here determined.

If the diminution of the velocities of the bullets in the two subsequent experiments be computed in like manner, it will turn out in the 86th experiment \(= 65 \) feet in a second, and in the 87th experiment \(= 33 \) feet in a second; and making these corrections, the comparison of the two methods of ascertaining the velocities will stand thus:

<table>
<thead>
<tr>
<th></th>
<th>85th exp.</th>
<th>86th exp.</th>
<th>87th exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocities shewn by the pendulum</td>
<td>1763</td>
<td>1317</td>
<td>1136</td>
</tr>
<tr>
<td>Add the diminution of the velocity by the resistance of the air</td>
<td>335</td>
<td>65</td>
<td>33</td>
</tr>
<tr>
<td>Velocity by the recoil</td>
<td>2109</td>
<td>1430</td>
<td>1288</td>
</tr>
<tr>
<td>The difference</td>
<td>+11</td>
<td>+48</td>
<td>+119</td>
</tr>
</tbody>
</table>

So that it appears, notwithstanding these corrections, that the velocities in the 86th and 87th experiments, and particularly in the last, as they were determined by the pendulum, are still
still considerably deficient. But the manifest irregularity of the velocities in those instances affords abundant reason to conclude, that it must have arisen from some extraordinary accidental cause, and therefore, that little dependance is to be put upon the result of those experiments. I cannot take upon me to determine positively what the cause was which produced this irregularity; but I strongly suspect, that it arose from the breaking of the bullets in the barrel by the force of the explosion: for these bullets, as has already been mentioned, were formed of lead, inclosing leffer bullets of plaster of Paris; and I well remember to have observed at the time several small fragments of the plaster which had fallen down by the side of the pendulum. I confess, I did not then pay much attention to this circumstance, as I naturally concluded, that it arose from the breaking of the bullet in penetrating the target of the pendulum, and that the small pieces of plaster I saw upon the ground had fallen out of the hole by which the bullet entered. But if the bullets were not absolutely broken in pieces in firing, yet, if they were considerably bruised, and the plaster or a part of it were separated from the lead, such a change in their form might produce a great increase of the resistance, and even their initial velocities might be affected by it, for their form being changed from that of a globe to some other figure, they might not fit the bore, and a part of the force of the charge might be lost by the windage.

That this actually happened in the 87th experiment seems very probable, as the velocity with which the bullet was projected, as it was determined by the recoil, is considerably less in proportion in that experiment than in either of those that precede it in that set, or in those which follow it, as will ap-
Mr. Thompson's Experiments:

pear upon inspecting the curvature of the line m, n, fig. 16. But I forbear to insist further upon this matter.

As I have made an allowance for the resistance of the air in these experiments, it may be expected that I should do it in all other cases; but, I think, it will appear upon enquiry, that the diminution of the velocities of the bullets on that account was in general so inconsiderable that it might safely be neglected: thus, for instance, in the experiments with an ounce of powder, when the velocity of the bullet was more than 1750 feet in a second, the diminution turns out no more than about 25 or 30 feet in a second, though we suppose the full resistance to have begun so near as two feet from the mouth of the piece; and in all cases where the velocities were less, the effect of the resistance was less in a much greater proportion; and even in this instance there is reason to think, that the diminution of the velocity as we have determined it is too great; for the flame of gun-powder expands with such an amazing rapidity, that it is scarcely to be supposed but that it follows the bullet, and continues to act upon it more than two feet, or even four feet, from the gun, and when the velocity of the bullet is less, its action upon it must be sensible at a still greater distance.

With 218 grains of powder the recoil appears to have been very uniform; but if the velocities of the bullets are determined from the recoil in the 40th and seven following experiments, when this charge was made use of, and from the recoil without a bullet in the 72d and 73d experiments, the velocities will turn out considerably too small, as we shall see by making the computation.
Vent at 0. Vent at 1.3.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>41st</th>
<th>42nd</th>
<th>47th</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>40th exp.</td>
<td>17.71</td>
<td>17.91</td>
<td>8.1</td>
<td>17.93</td>
</tr>
<tr>
<td>43rd exp.</td>
<td></td>
<td></td>
<td></td>
<td>18.35</td>
</tr>
</tbody>
</table>

And in the 72nd and 73rd experiments the recoil, with the same charge without a bullet, was 8.72, and 8.47 = 8.595 at a medium, the velocities therefore turn out,

Vent at 0. Vent at 1.3.

By the recoil 1105 - 1153
instead of 1225 and 1276 as they were shewn by the pend.

The difference 120 and 123 feet in a second amounts to near one twelfth part of the whole velocity.

This difference is undoubtedly owing to the recoil without a bullet being taken too great; for it is not only greater than it ought to be, in order that the velocities of the bullets may come out right; but it is considerably greater in proportion than the recoil with any other charge.

Thus, with 145 grains of powder the recoil was 4.4.
with 165 grains - - it was 5.55
290 grains - - - 10.66
330 grains - - - 12.7
and with 437½ grains - - - it was 17.9

And if the recoil with 218 grains is determined from these numbers by interpolation, it comes out 7.5; and with that value
value for \(C \) the velocities of the bullets in the before mentioned experiments appear to be,

\[
\begin{align*}
\text{Vent at 0:} & \quad 1243 \quad \text{and} \quad 1283 \quad \text{by the recoil} \\
\text{which is extremely near} & \quad 1225 \quad \text{and} \quad 1276 \quad \text{the velocities shewn by the pendulum.}
\end{align*}
\]

It is to be remembered, that the 72d and 73d experiments, from which we before determined the recoil with the given charge of powder without a bullet, were not made upon the same day with the experiments before mentioned; and it is well known, that the force of powder is different upon different days. And it is worthy of remark, that in those two experiments the strength of government powder appeared to be considerably the greatest. I mention these circumstances to shew the probability there is, that the recoil in those experiments, from some unknown cause, was greater than it ought to have been, or rather than it would have been, had the experiments been made at the same time when the experiments with the bullets were made; or at any other time under the same circumstances.

As this method of determining the velocities of the bullets did not occur to me till after I had finished the course of my experiments, and had taken down my apparatus, I have not had an opportunity of ascertaining the recoil, with and without a bullet, with that degree of precision that I could wish. If I had thought of it sooner, or if I had recollected that passage in Mr. Robins's new Principles of Gunnery, where he says, "The part of the recoil, arising from the expansion of the powder alone, is found to be no greater when it impels a leaden bullet before it, than when the same quantity is fired without any wad to confine it:" I say, if that passage had occurred
upon Gun-powder, &c. 297

occurred to me before it had been too late, I certainly should have taken some pains to have ascertained the fact; but as it is, I think, enough has been done to shew, that there is the greatest probability that the velocities of bullets may in all cases be determined by the recoil with great accuracy; and I hope soon to have it in my power to put the matter out of all doubt, and to verify this new method by a course of conclusive experiments which I am preparing for that purpose.

In the mean time I would just observe, that if this method should be found to answer, when applied to musket bullets, it cannot fail to answer equally well when it is applied to cannon balls and bomb shells of the largest dimensions; and it is apprehended, that it will be much preferable to any method hitherto made public; not only as it may be applied differently to all kinds of military projectiles, and that with very little trouble or expense in making the experiment; but also because by it the velocities with which bullets are actually projected are determined; whereas by the pendulum their velocities can only be ascertained at some distance from the gun, and after they have lost a part of their initial velocities by the resistance of the air through which they are obliged to pass to arrive at the pendulum.

At the trifling expense of ten or fifteen pounds an apparatus might be constructed that would answer for making the experiments with all the different kinds of ordnance in the British service. The advantages that might be derived from such a set of experiments are too obvious to require being mentioned.
Of a very accurate method of proving gun-powder.

All the éprouvettes, or powder-triers, in common use are defective in many respects. Neither the absolute force of gun-powder can be determined by means of them, nor the comparative force of different kinds of it, but under circumstances very different from those in which the powder is made use of in service.

As the force of powder arises from the action of an elastic fluid that is generated from it in its inflammation, the quicker the charge takes fire, the more of this fluid will be generated in any given short space of time, and the greater of course will be its effect upon the bullet. But in the common method of proving gun-powder, the weight by which the powder is confined is so great in proportion to the quantity of the charge, that there is time quite sufficient for the charge to be all inflamed, even when the powder is of the slowest composition, before the body to be put in motion can be sensibly removed from its place. The experiment, therefore, may shew which of two kinds of powder is the strongest, when equal quantities of both are confined in equal spaces, and completely inflamed; but the degree of the inflammability, which is a property essential to the goodness of the powder, cannot by these means be ascertained.

Hence it appears, how powder may answer to the proof, such as is commonly required, and may nevertheless turn out very indifferent when it comes to be used in service. And this, I believe, frequently happens; at least I know complaints from officers of the badness of our powder are very common; and I would suppose that no powder is ever received by the Board
Board of Ordnance but such as has gone through the established examination, and has answered to the usual test of its being of the standard degree of strength.

But though the common powder triers may shew powder to be better than it really is, they never can make it appear to be worse than it is; it will therefore always be the interest of those who manufacture that commodity to adhere to the old method of proving it. But the purchaser will find his account in having it examined in a method by which its goodness may be ascertained with greater precision.

The method I would recommend is as follows. A quantity of powder being provided, which, from any previous examination or trial, is known to be of a proper degree of strength to serve as a standard for the proof of other powder, a given charge of it is to be fired, with a fit bullet, in a barrel suspended by two pendulous rods, according to the method before described; and the recoil is to be carefully measured upon the ribbon. And this experiment being repeated three or four times; or oftener if there is any difference in the recoil, the mean and the extremes of the chords may be marked upon the ribbon by black lines drawn across it, and the word proof may be written upon the middle line; or if the recoil is uniform (which it will be to a sufficient degree of accuracy, if care is taken to make the experiments under the same circumstances) then the proof mark is to be made in that part of the ribbon to which it was constantly drawn out by the recoil in the different trials.

The recoil, with a known charge of standard powder, being thus ascertained and marked upon the ribbon, let an equal quantity of any other powder (that is to be proved) be fired in the same barrel, with a bullet of the same weight, and every other circumstance alike, and if the ribbon is drawn out as far
far or farther than the proof mark, the powder is as good or better than the standard; but if it falls short of that distance, it is worse than the standard, and is to be rejected.

For the greater the velocity is with which the bullet is impelled, the greater will be the recoil; and when the recoil is the same, the velocities of the bullets are equal, and the powder is of the same degree of strength, if the quantity of the charge is the same. And if care is taken in proportioning the charge to the weight of the bullet, to come as near as possible to the medium proportion that obtains in practice, the determination of the goodness of gun-powder from the result of this experiment cannot fail to hold good in actual service.

Fig. 14. represents the proposed apparatus, drawn to a scale of one foot to the inch. a, b, is the barrel suspended by the pendulous rods c, d; and r is the ribbon for measuring the recoil.

The length of the bore is 30 inches, and its diameter is one inch, consequently it is just 30 calibres in length, and will carry a leaden bullet of about 3 ounces.

The barrel may be made of gun metal, or of cast iron as that is a cheaper commodity; but great care must be taken in boring it, to make the cylinder perfectly strait and smooth, as well as to preserve the proper dimensions. Of whatever metal the barrel is made, it ought to weigh at least 50 lbs. in order that the velocity of the recoil may not be too great; and the rods by which it is suspended should be five feet in length. The vent may be about one twentieth of an inch in diameter; and it should be bouched or lined with gold, in the same manner as the touch-hole is made in the better kind of fowling pieces, in order that its dimensions may not be increased by repeated firing.
The bullets should be made to fit the bore with very little windage; and it would be better if they were all cast in the same mould, and of the same parcel of lead, as in that case their weights and dimensions would be more accurately the same, and the experiments would of course be more conclusive.

The stated charge of powder may be half an ounce, and it should always be put up in a cartridge of very fine paper; and after the piece is loaded it should be primed with other powder, first taking care to prick the cartridge by thrusting a priming wire down the vent.

As it appears, from several experiments made on purpose to ascertain the fact, that ramming the powder more or less has a very sensible effect to increase or diminish the force of the charge; to prevent any inaccuracies that might arise from that cause, a ram-rod, such as is represented fig. 15., may be made use of. It is to be made of a cylindric piece of wood in the same manner as ram-rods in general are made, but with the addition of a ring C, about one inch and a half, or two inches in diameter, which, being placed at a proper distance from the end (a) of the ram-rod that goes up into the bore, will prevent its being thrust up too far. This ring may be made of wood, or of any kind of metal as shall be found most convenient. The other end of the ram-rod (b) may be 31 or 32 inches in length from the ring, and the extremity of it being covered with a proper substance, it may be made use of for wiping out the barrel after each experiment.

The machine (f) for the tape to slide through may be the same as is described by Dr. Hutton in his account of his experiments on the initial velocities of cannon balls; as his method is much better calculated to answer the purpose than that proposed and made use of by Mr. Robins. It will also be better
Mr. Thompson's Experiments

better for the axis of the pendulous rods to rest upon level pieces of wood or iron, than for them to move in circular grooves: only care must be taken to confine them by staples or some other contrivance, to prevent their slipping out of their places.

The trunnions, by means of which the barrel is connected with the pendulous rods, and upon which it is supported, should be as small as possible, in order to lessen the friction; and for the same reason they should be well polished, as well as the grooves that receive them. They need not be cast upon the barrel, but may be screwed into it after it is finished.

In making the experiments, regard must be had to the heat of the barrel, as well as to the temperature of the atmosphere; for heat and cold, dryness and moisture, have a very sensible effect upon gun-powder to increase or diminish its force. If therefore a very great degree of accuracy is at any time required, it will be best to begin by firing the piece two or three times merely to warm it; after which three or four experiments may be made with standard powder, to determine anew the proof mark (for the strength of the same powder is different upon different days); and when this is done, the experiments with the powder that is to be proved are to be made, taking care to preserve the same interval of time between the firings, that the heat of the piece may be the same in each trial.

If all these precautions are taken, and if the bullets are of the same weight and dimensions, powder may be proved by this method with much greater accuracy than has hitherto been done by any of the common methods made use of for that purpose.
Of the comparative goodness, or value, of powder of different degrees of strength.

Let V denote the velocity of the bullet with the stronger powder, and put u equal to the velocity with the weaker, when the charges are equal, and the weight and dimensions of the bullets are the same, and when they are discharged from the same piece. If the charge is augmented when the weaker powder is made use of, till the velocity of the bullet is increased from u to V, or becomes equal to the velocity with the given charge of the stronger powder, the value of the charges may then be said to be equal; and consequently the weaker powder is as much worse than the stronger, or is of less value in proportion as the quantity of it required by the pound, to produce the given effect is greater.

But it is well known, that the velocities, with different quantities of the same kind of powder, are in the sub-duplicate ratio of the weights of the charges. The charges, therefore, must be as the squares of the velocities, and consequently the charge of the weaker powder must be to that of the stronger, when the velocities are equal, as VV is to uu. The weaker powder is therefore as much worse than the stronger as VV is greater than uu; or the comparative goodness of powder, of different degrees of strength, is as the squares of the velocities of the bullets when the charges are equal.

The mean velocity of the bullets, as shewn by the pendulum in the 104th and 105th experiments, when the piece was fired with 145 grains of government powder, was 894 feet
Mr. Thompson's Experiments

in a second; and with the same quantity of double proof battle powder (experiment No. 106) the velocity was 590 feet in a second. Now the squares of these velocities, which, as we just observed, measure the goodness of the powder, are to each other as 1 is to 1,2263, or nearly as 5 is to 6.

With 218 grains of government powder, the mean velocity in four experiments (viz. the 40th, 41st, 42d, and 43d) was 1225 feet in a second; and in the experiment No. 107, when the same quantity of double proof battle powder was made use of, the velocity was 1380 in a second; and

\[\frac{1225}{1380} \text{ as } 1 \text{ is to } 1,299. \]

With 289 grains, or half the weight of the bullet in government powder in the 109th, 110th, 111th, and 112th experiments, the mean velocity of the bullet was 1444 feet in a second; but with the same quantity of the battle powder (experiment No. 116.) the velocity was 1525 feet in a second;

\[\frac{1444}{1525} \text{ as } 1 \text{ is to } 1,153. \]

By taking a medium of these trials it appears, that double proof battle powder is better than government powder in proportion as 1,2036 is to 1, or nearly as 6 is to 5.

But if, instead of weighing the powder, we estimate the quantity of the charge by measurement, or the space it occupies in the bore of the piece, the comparative strength of battle powder will appear to be considerably greater, or its strength will be to that of government powder nearly as 4 is to 3; for the grains of this better kind of powder being more compact and nearly of a spherical form, a greater weight of it will lie in any

* This is called battle powder, not because it is used in battle or in war; but from Battle, the name of a village in Kent, where that kind of powder is made.

5

given
given space than of government powder, which is formed more loosely, and of various and of very irregular figures.

Now the common price of double proof battle powder, as it is sold by the wholesale dealers in that commodity, is at the rate of £. 10 per cwt. net, which is just two shillings by the pound; while government powder is sold at £. 5 5s. per hundred, or one shilling and three-th of a penny per pound; but battle powder is better than government powder only in the proportion of 1,2036 to 1, or of one shilling and two pence to one shilling and three-th of a penny; battle powder is therefore sold at the rate of ten pence by the pound, or 41½ per cent. dearer than it ought to be; or those, who make use of it in preference to government powder, do it at a certain loss of 41½ per cent. of the money that the powder costs them.

Of the relation of the velocities of bullets to their weights.

According to Mr. Robins's theory, when bullets of the same diameter, but different weights, are discharged from the same piece by the same quantity of powder; their velocities should be in the reciprocal sub-duplicate ratio of their weights; but as this theory is founded upon a supposition that the action of the elastic fluid, generated from the powder, is always the same in any and every given part of the bore when the charge is the same, whatever may be the weight of the bullet; and as no allowance is made for the expenditure of force required to put the fluid itself in motion, or for the loss of it by the vent; it is plain that the theory is defective. It is true, Dr. Hutton in his experiments found this law to obtain without any great error, and possibly it may hold good with sufficient accuracy in many cases; for it sometimes happens that a number of errors or actions,
actions, whose operations have a contrary tendency, to compensate each other, that their effects when united are not sensible. But when this is the case, if any one of the causes of error is removed, those which remain will be detected.

When any given charge is loaded with a heavy bullet, more of the powder is inflamed in any very short space of time than when the bullet is lighter, and the action of the powder ought of course to be greater on that account; but then a heavy bullet takes up more time in passing through the bore than a light one, and consequently more of the elastic fluid, generated from the powder, escapes by the vent and by windage. It may happen, that the augmentation of the force, on account of one of these circumstances, may exactly counterbalance the diminution of it arising from the other; and if it should be found upon trial that this is the case in general, in pieces as they are now constructed, and with all the variety of shot that are made use of in practice, it would be of great use to know the fact: and possibly it might answer as well, as far as it relates to the art of gunnery, as if we were perfectly acquainted with, and were able to appreciate, the effect of each varying circumstance under which an experiment can be made. But when, concluding too hastily from the result of a partial experiment, we suppose with Mr. Robins, that because the sum total of the action or pressure of the elastic fluid upon the bullet, during the time of its passage through the bore, happens to be the same when bullets of different weights are made use of (which collective pressure is in all cases proportional to, and is accurately measured by, the velocity, or rather motion, communicated to the bullet) that therefore the pressure in any given part is always exactly the same, when the quantity of powder is the same with which the piece is fired; and from thence endeavour to prove,
prove, that the inflammation of gun-powder is instantaneous, or that the whole charge is in all cases inflamed, and "converted into an elastic fluid before the bullet is sensibly moved from its place;" such reasonings and conclusions may lead to very dangerous errors.

It is undoubtedly true, that if the principles assumed by Mr. Robins with respect to the manner in which gun-powder takes fire, and the relation of the elasticity of the generated fluid to its density, or the intensity of its pressure upon the bullet as it expands in the barrel, were just, and if the loss of force by the vent and windage was in all cases inconsiderable, or if it was prevented, the deductions from the theory respecting the velocities of bullets of different weights would always hold good. But if, on the contrary, it should be found upon making the experiments carefully, and in such a manner as entirely to prevent inaccuracies arising from adventitious circumstances, that the velocities observe a law different from that which the theory supposes, we may fairly conclude, that the principles upon which the theory is founded are erroneous.

Let us now see how far these experiments differ from the theory. Those numbered from 84 to 92 inclusive were made in such a manner that no part of the force of the powder was lost by the vent, or by windage, as has already been mentioned, and all possible attention was paid to every circumstance that could contribute to render them perfect and conclusive.

A particular account of them with the means used for forming the bullets, and making them fit for the bore, and the contrivance for preventing the escape of the elastic fluid by the vent, &c. may be seen in the general table, p. 245. The following table shews the result of them.

3. N. B.
Mr. Thompson's Experiments

N. B. The charge of powder was the same in each experiment, and consisted of 145 grains in weight.

<table>
<thead>
<tr>
<th>Weight of the bullet</th>
<th>Velocity of the bullet</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Computed</td>
</tr>
<tr>
<td>85th exp.</td>
<td>90 grs.</td>
<td>2109</td>
</tr>
<tr>
<td>86th</td>
<td>251</td>
<td>1430</td>
</tr>
<tr>
<td>87th</td>
<td>354</td>
<td>1288</td>
</tr>
<tr>
<td>88th</td>
<td>600</td>
<td>1240</td>
</tr>
<tr>
<td>89th</td>
<td>603</td>
<td>1224</td>
</tr>
<tr>
<td>90th</td>
<td>1184</td>
<td>1017</td>
</tr>
<tr>
<td>91st</td>
<td>1754</td>
<td>893</td>
</tr>
<tr>
<td>92d</td>
<td>2351</td>
<td>812</td>
</tr>
</tbody>
</table>

The computed velocities, as they are set down in this table, were determined from the actual velocity of the bullet, as determined by the recoil in the 85th experiment; and the reciprocal sub-duplicate ratio of its weight to the weight of the bullet in each subsequent experiment; and in the last column is marked the difference between the experiment and the theory, or the number of feet in a second, by which the actual velocity exceeds the computed.

But in order that we may see this matter in different points of view, let the order of the experiments be now inverted, and let the computed velocities be determined from the actual velocity in the 92d experiment; and assuming the total or collective pressure exerted by the powder upon the bullet in that experiment equal to unity, let the collective pressure in the other experiments be computed from the ratio of the actual to the computed velocities, and the table will stand thus:

92d
In the following figure let AB represent the axis of the piece, and AP the length of the space filled with powder; and at the point P let the perpendicular PH be erected, upon which let PL and PM be taken from P towards H of such magnitudes that while PL expounds the uniform force of gravity, or the weight of the bullet, PM shall be as the force exerted by the powder upon...
Mr. Thompson's Experiments

upon the bullet at the moment of the explosion. If now we suppose, that while the bullet moves on from P towards B, the line PM or pm, goes along with it, and that the point m is always taken in such a manner that the line pm, shall be to pl, or PL, as the force acting upon the bullet in the point p, is to its weight, till pm, coincides with QB, then will the area PMQB be to the area PLDB in the duplicate proportion of the velocities which the bullet would acquire when acted on by its own gravity through the space PB, and when impelled through the same space by the force of the powder, as may be seen demonstrated by Sir Isaac Newton, in his Mathematical Principles of Natural Philosophy, book I. prop. 39.

Now what I call the collective pressure, or sum total of the action of the powder upon the bullet, is the measure of the area PMQB; and it is plain, from what has been said above, that its measures are in all cases to be accurately determined, when the weight and velocity of the bullet are known.

If all the powder of the charge was inflamed at once, or before the bullet sensibly moved from its place; and if the pressure of the generated fluid was always as its density, or inversely as the space it occupies, then would the line MQ be an hyperbola, the area PMQB would always be the same when the charge was the same, and consequently the velocities of the bullets would be as the square roots of their weights inversely. But it appears, from the before mentioned experiments, that when the weight of the bullet was increased four times, the action of the powder, or area PMQB, was nearly doubled; for in the 92d experiment, when four bullets were discharged at once, the collective pressure was as 1; but in the 89th experiment, when a single bullet was made use of, the collective pressure
pressure was only as 0.5825; and in the 85th, 86th, and 87th experiments, when the bullets were much lighter, the action of the charge was still less.

But though we can determine with great certainty, from these experiments, the ratio in which the action of the powder upon the bullet was increased or diminished, by making use of bullets of greater or less weight; yet we cannot from thence ascertain the relation of the elasticity of the generated fluid to its density, nor the quantity of powder that is inflamed at different periods before and after the bullet begins to move in the bore.

But assuming Mr. Robins's principles as far as relates to the elasticity of the fluid, and supposing that in all the experiments, except the 92d, a part only of the charge took fire, and that that part was inflamed and converted into an elastic fluid before the bullet began to move; upon that supposition we can determine the quantity of powder that took fire in each experiment; for the quantity of powder in that case would be as the collective pressure.

Thus, if the whole charge, = 145 grains in weight, is supposed to have been inflamed in the 92d experiment, the quantity inflamed in each of the other experiments will appear to have been as follows; viz.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td></td>
</tr>
</tbody>
</table>
Mr. Thompson's Experiments

85th exp	90 grs.	2109	0.2581	37 grs.
86th	251	1430	0.3310	48
87th	354	1288	0.3778	55
88th	600	1240	0.5949	86
89th	603	1224	0.5825	84
90th	1184	1017	0.7897	114
91st	1754	893	0.9020	131

But there are many reasons to suppose, that the diminution of the action of the powder upon the bullet, when it is lighter, is not so much owing to the smallness of the quantity of powder that takes fire; in that case, as to the vis inertia of the generated fluid. It is true, that a greater portion of the charge takes fire when the bullet is heavy than when it is light, as I found in the very experiments of which I am now speaking; but then the quantity of unburned powder in any case was much too small to account for the apparent diminution of the force, when light bullets were made use of.

If the elastic fluid, in the action of which the force of powder consists, were infinitely fine, or if its weight bore no proportion to that of the powder that generated it; and if the gross matter, or caput mortuum, of the powder remained in the bottom of the bore after the explosion, then, and upon no other supposition, would the pressure upon the bullet be inversely as the space occupied by the fluid: but it is evident that this can never be the case.

A curious subject for speculation here occurs: how far would it be advantageous, were it possible, to diminish the specific gravity of gun-powder, and the fluid generated from it, without...
out lessening its elastic force? It would certainly act upon very light bullets with greater force; but when heavy ones came to be made use of, there is reason to think, that, except extraordinary precaution was taken to prevent it, the greatest part of the force would be lost by the vent and by windage.

The velocity with which elastic fluids rush into a void space is as the elasticity of the fluid directly, and inversely as its density; if, therefore, the density of the fluid generated from powder was four times less than it is, its elasticity remaining the same, it would issue out at the vent, and escape by the side of the bullet in the bore, with nearly four times as great a velocity as it does at present; but we know from experiment that the loss of force on those accounts is now very considerable.

In the experiments No. 76. and 77. when the piece was fired with 145 grains of powder, the velocity of the bullets at a medium was 1040 feet in a second; but in the 88th and 89th experiments, when the bullets were even heavier, and the piece was fired with the same quantity of powder, the mean velocity was 1232 feet in a second. The difference = 192 feet in a second, answers to a difference of force greater in the last experiments than in the first in the proportion of 14 to 10.

I know of no way to account for this difference, but by supposing that it was owing entirely to the escape of the elastic fluid by the vent, and by windage, in those experiments where the vent was open, and the bullets were put naked into the piece.

An elastic bow, made of very light wood, will throw an arrow, and especially a light one, with greater velocity than a bow of steel of the same degree of stiffness: but, for practice, I think it is plain, that gun-powder may be supposed to be so light
light as to be rendered entirely useless: and for some purposes it seems probable, that it would not be the worse for being even heavier than it is now made. Vents are absolutely necessary in fire-arms, and in large pieces the windage must be considerable, in order that the bullets, which are not always so round as they should be, may not stick in the bore; and those who have been present at the firing of heavy artillery and large mortars with shot and shells, must have observed, that there is a sensible space of time elapses between the lighting of the prime and the explosion; and that, during that interval, the flame is continually issuing out at the vent with a hissing noise, and with a prodigious velocity, as appears by the height to which the stream of fire mounts up in the air. It is plain, that this loss must be greater in proportion as the shot that is discharged is heavier; and I have often fancied, that I perceived a sensible difference in the time that elapsed between the firing of the prime and the explosion, when bullets were discharged, and when the piece has been fired with powder only; the time being apparently longer in the former case than the latter.

Almost all the writers upon gun-powder, and particularly those of the last century, gave different recipes for powder that is designed for different uses. Thus the French authors mention poudre à mousquet, poudre ordinaire de guerre, poudre de chasse, and poudre d'artifice; all of which are composed of salt petre, sulphur, and charcoal, taken in different proportions. Is it not probable, that this variety in the composition of powder was originally introduced in consequence of observation that one kind of powder was better adapted for particular purposes than another, or from experiments made on purpose to ascertain the fact? There is one circumstance that would lead us to suppose that that was the case.—That kind of powder
der which was designed for great guns and mortars was weaker than those which were intended to be used in smaller pieces: for if there is any foundation for these conjectures, it is certain, that the weakest powder, or the heaviest in proportion to its elastic force, ought to be used to impel the heaviest bullets, and particularly in guns that are imperfectly formed, where the vent is large, and the windage very great.

I am perfectly aware, that an objection may here be made, viz. that the elastic fluid, which is generated from gun-powder, must be supposed to have the same properties very nearly, whatever may be the proportion of the several ingredients, and that therefore the only difference there can be in powder is, that one kind may generate more of this fluid, and another less; and that when it is generated, it acts in the same manner, and will alike escape, and with the same velocity, by any passage it can find. But to this I answer, though the fluid may be the same, as undoubtedly it is, and though its density and elasticity may be the same in all cases at the instant of its generation, yet in the explosion, the elastic and un-elastic parts are so mixed and blended, that I imagine the fluid cannot expand without taking the gross matter along with it, and the velocity with which the flame issues out at the vent is to be computed from the elasticity of the fluid, and the density or weight of the fluid and the gross matter taken together, and not simply from the elasticity and density of the fluid. If antimony in an impalpable powder, or any other heavy body, was intimately mixed with water in a vessel of any kind, and kept in suspension by shaking or stirring them about; and if a hole was opened in the side or bottom of the vessel, the water would not run out without taking the particles of the solid body along with it. And in the same manner I conceive the solid particles that remain
Mr. Thompson's Experiments

remain after the explosion of gun-powder are carried forward with the generated elastic fluid, and being carried forward retard its motion.—But to return from this digression.

As it appears from these experiments, that the relation of the velocities of bullets to their weights is different from that which Mr. Robins's theory supposes, it remains to inquire what the law is which actually obtains. And, first, as the velocities bear a greater proportion to each other than the reciprocal sub-duplicate ratio of the weights of the bullets, let us see how near they come to the reciprocal sub-triplicate ratio of their weights.

<table>
<thead>
<tr>
<th>Weight of the bullet</th>
<th>Computed Recip. sub-dup. ratio</th>
<th>Error of the theory</th>
<th>Computed Recip. sub-trip. ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>92d</td>
<td>2352</td>
<td>812</td>
<td>342</td>
</tr>
<tr>
<td>91st</td>
<td>1754</td>
<td>940</td>
<td>+ 47</td>
</tr>
<tr>
<td>90th</td>
<td>1184</td>
<td>1145</td>
<td>+ 228</td>
</tr>
<tr>
<td>89th</td>
<td>603</td>
<td>1604</td>
<td>+ 380</td>
</tr>
<tr>
<td>88th</td>
<td>600</td>
<td>1608</td>
<td>+ 368</td>
</tr>
<tr>
<td>87th</td>
<td>354</td>
<td>2093</td>
<td>+ 805</td>
</tr>
<tr>
<td>86th</td>
<td>251</td>
<td>2488</td>
<td>+ 1566</td>
</tr>
<tr>
<td>85th</td>
<td>90</td>
<td>4454</td>
<td>+ 2042</td>
</tr>
</tbody>
</table>

Here the velocities computed upon the last supposition appear to agree much better with the experiments than those computed upon Mr. Robins's principles; but still there is a considerable difference between the actual and the computed velocities in the three last experiments in the table.

As the powder itself is heavy, it may be considered as a weight that is put in motion along with the bullet; and if we
Suppose the density of the generated fluid is always uniform from the bullet to the breech, the velocity of the center of gravity of the powder or (which amounts to the same thing) of the elastic fluid, and the gross matter generated from it will be just half as great as the velocity of the bullet. If therefore we put P to denote the weight of the powder, B the weight of the bullet, and \(v \) its initial velocity; then \(Bv + \frac{1}{2}P \cdot \cdot \cdot \) will express the momentum of the charge at the instant when the bullet quits the bore.

If now, instead of ascertaining the relation of the velocities to the weights of the bullets, we add half the weight of the powder to the weight of the bullet, and compute the velocities from the reciprocal sub-triplicate ratio of the quantity \(B + \frac{1}{2}P \) in each experiment, the table will stand thus:

<table>
<thead>
<tr>
<th>Weight of the bullet and half the powder</th>
<th>Velocity of the bullet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual.</td>
</tr>
<tr>
<td>(B + \frac{1}{2}P =)</td>
<td></td>
</tr>
<tr>
<td>92d exp. (2352 + 72\frac{1}{4})</td>
<td>812</td>
</tr>
<tr>
<td>94th (1754 + 72\frac{1}{4})</td>
<td>893</td>
</tr>
<tr>
<td>90th (1184 + 72\frac{1}{4})</td>
<td>1017</td>
</tr>
<tr>
<td>89th (603 + 72\frac{1}{4})</td>
<td>5224</td>
</tr>
<tr>
<td>88th (600 + 72\frac{1}{4})</td>
<td>1240</td>
</tr>
<tr>
<td>87th (354 + 72\frac{1}{4})</td>
<td>1288</td>
</tr>
<tr>
<td>86th (251 + 72\frac{1}{4})</td>
<td>1430</td>
</tr>
<tr>
<td>85th (90 + 72\frac{1}{4})</td>
<td>2109</td>
</tr>
</tbody>
</table>

Vol. LXXI

U u

The
Mr. Thompson's Experiments

The agreement between the actual and computed velocities is here very remarkable, and particularly in the five first experiments, which are certainly those upon which the greatest dependence may be placed.

And hence we are enabled to determine the natures of the mn, and gf (fig. 16); for since B (which expresses the weight of the bullet) is as the length taken from A towards B in the figure in the several experiments; and as the velocities are as the lines drawn perpendicular to the line AB from the plates where those lengths terminate, as w, x, &c. ending at the curve mn; if we put \(u = \frac{1}{P} \), \(x = B \), and \(y = wx \); then will the relation of \(x \) and \(y \) be defined by this equation \(\frac{1}{\sqrt{a + x}} = y \). And if \(z \) be put to denote the line \(w r \), and \(b \) the recoil when the given charge is fired, without any bullet, it will be \(z = \frac{x}{\sqrt{a + x}} \) in the curve gf, \(x \) being the abscissa, and \(z \) the corresponding ordinate to the curve.

In the 92d experiment half the weight of the powder (=a) was 72 1/2 grains; the weight of the bullet was 2352 grains (=x); the recoil (=b) was 32 2/5 inches, and with the given charge without any bullet the recoil (=d) was 4 4/ inches; if now from these data, and the known weight of the bullet in each of the other experiments in this set, the recoil be computed by means of the theorem \(\frac{z}{\sqrt{a + x}} = b \), we shall see how the result of those experiments agrees with this theory; thus,
Recoil

<table>
<thead>
<tr>
<th>Weight of the bullet</th>
<th>Actual</th>
<th>Computed</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>92d exp. 2352</td>
<td>32.25</td>
<td>32.25</td>
<td>—</td>
</tr>
<tr>
<td>91st 1754</td>
<td>27.18</td>
<td>27.22</td>
<td>+0.04</td>
</tr>
<tr>
<td>90th 1184</td>
<td>21.92</td>
<td>21.85</td>
<td>—0.07</td>
</tr>
<tr>
<td>89th 603</td>
<td>15.13</td>
<td>15.33</td>
<td>+0.2</td>
</tr>
<tr>
<td>88th 600</td>
<td>15.22</td>
<td>15.29</td>
<td>+0.07</td>
</tr>
<tr>
<td>87th 354</td>
<td>11.03</td>
<td>11.87</td>
<td>+0.84</td>
</tr>
<tr>
<td>86th 251</td>
<td>9.62</td>
<td>10.21</td>
<td>+0.59</td>
</tr>
<tr>
<td>85th 90</td>
<td>7.16</td>
<td>7.02</td>
<td>—0.14</td>
</tr>
<tr>
<td>84th and 93d 0</td>
<td>4.44</td>
<td>4.4</td>
<td>—</td>
</tr>
</tbody>
</table>

Here the agreement of the actual and computed recoils is as remarkable as that of the actual and computed velocities in the foregoing table.

By the figure 17. may be seen at one view the result of all these experiments and computations. The numbers upon the line AB (as in the fig. 16.) represent the weights of the bullets, while the lines drawn from those numbers perpendicular to AB on each side, and ending at the curves m, n, are as the velocities of the bullets in the several experiments; the line AB being the axis of the curves, the lengths taken from A to the different numbers towards B (=x) the abscissa, and the perpendiculars (=y) the corresponding ordinates. The ordinates to the curve bn, are as the velocities computed from the theorem

\[\frac{1}{\sqrt{x+z}} = y \]

and the ordinates to the curve p, n (which is the logarithmic curve, as it is \(\frac{1}{\sqrt{n}} = y \)) show the velocities computed upon Mr. Robins's principles. The curve gf is drawn from
the theorem \(\frac{x}{\sqrt{a+x^2}} + b = z \); and the actual recoil is marked upon the ordinates to this curve by large round dots, which in all the experiments, except the 86th and 87th, very nearly coincide with the curve.

In the fig. 18, the numbers upon the line AB, taken from A, denote the different charges of powder used in the course of the experiments, while the ordinates to the curve cd, express the velocities of the bullets, with the vent at o. The lines drawn perpendicular from the line AB to the line ef, represent the recoil with the several charges of powder, and a leaden bullet; and the portion of those lines that is comprehended between the line AB and the line gb, denotes the recoil when the given charge was fired without any bullet.

Having now shewn by experiment the relation of the velocities of bullets to their weights, when care is taken to prevent entirely the loss of force by the escape of the elastic fluid through the vent and by the windage, I shall leave it to mathematicians to determine from those data the properties of that fluid.

But, before I take my leave of this subject, I would just observe, that Mr. Robbins is not only mistaken in the principle he assumes, respecting the relation of the elasticity of the fluid generated from gun-powder to its density, or rather the law of its action upon the bullet as it expands in the bore; but his determination of the force of gun-powder is also erroneous, even upon his own principles: for he determines its force to be 1600 times greater than the mean pressure of the atmosphere; whereas it appears, from the result of the 92d experiment, that its force is at least 1308 times greater than the mean.
mean pressure of the atmosphere, as will be evident to those who will take the trouble to make the computation.

Of an attempt to determine the explosive force of aurum fulminans, or a comparison between its force and that of gun-powder.

Having provided myself with a small quantity of this wonderful powder, upon the goodness of which I could depend, I endeavoured to ascertain its explosive force by making use of it instead of gun-powder for discharging a bullet, and measuring, by means of the pendulum, the velocity which the bullet acquired; and concluding, from the tremendous report with which this substance explodes, that its elastic force was vaftly greater than that of gun-powder, I took care to have a barrel provided of uncommon strength, on purpose for the experiment. Its length in the bore is 13,25 inches, the diameter of the bore is 0,55 of an inch, and its weight 7 lbs. 2 oz. It is of the best iron, and was made by Woodson; and the accuracy with which it is finished does credit to the workman.

This barrel being charged with one sixteenth of an ounce (= 27,34 grains) of aurum fulminans and two leaden bullets, which, together with the leather that was put about them to make them fit the bore, without windage, weighed 427 grains; it was laid upon a chaffing-dish of live coals, at the distance of about 10 feet from the pendulum, and against the center of the target of the pendulum the piece was directed.

Having secured the barrel in such a manner that its direction should not alter, I retired to a little distance, in order to be out of danger in case of an accident, where I waited in anxious expectation the event of the explosion.

I had
Mr. Thompson's Experiments

I had remained in this situation some minutes, and almost despaired of the experiment's succeeding, when the powder exploded, but with a report infinitely less than what I expected, the noise not greatly exceeding the report of a well-charged wind gun; and it was not till I saw the pendulum in motion that I could be persuaded that the bullets had been discharged. I found, however, upon examination, that nothing was left in the barrel, and from the great number of small particles of revived metal that were dispersed about, I had reason to think that all the powder had exploded.

The bullets struck the pendulum nearly in the center of the target, and both of them remained in the wood: and I found, upon making the calculation, that they had impinged against it with a velocity of 428 feet in a second.

If we now suppose that the force of aurum fulminans arises from the action of an elastic fluid that is generated from it in the moment of its explosion, and that the elasticity of this fluid, or rather the force it exerts upon the bullet as it goes on to expand, is always as its density, or inversely as the space it occupies; then, from the known dimensions of the barrel, the length of the space occupied by the charge (which in this experiment was 0.47 of an inch), and the weight and velocity of the bullets, the elastic force of this fluid at the instant of its generation may be determined: and I find, upon making the calculation upon these principles, that its force turns out 307 times greater than the mean elastic force of common air.

According to Mr. Robins's theory, the elastic force of the fluid generated from gun-powder in its inflammation is 1,000 times greater than the mean pressure of the atmosphere; the force of aurum fulminans, therefore, appears to be to that of gun-powder as 307 is to 1,000, or as 4 is to 13 very nearly.
Of the specific gravity of gun-powder.

To determine the specific gravity of gun-powder I made use of the following method. A large glass bucket, with a narrow mouth, being suspended to one of the arms of a very nice balance, and exactly counter-poised by weights put in the opposite scale, it was filled first with government powder poured in lightly, then with the same powder shaken well together, afterwards with powder and water together, and lastly with water alone, and in each case the contents of the bucket were very exactly weighed.

The specific gravity of gun-powder, as determined from these experiments, is as follows:

- Specific gravity of rain water: 1.000
- Government powder, as it lies light in a heap, mixed with air: 0.836
- Government powder well shaken together: 0.937
- Solid substance of the powder: 1.745

Hence it appears, that a cubic inch of government powder shaken well together weighs just 4.3 grains; that a cubic inch of solid powder would weigh 44.2 grains; and, consequently, that the interstices between the particles of the powder, as it is granulated for use, are nearly as great as the spaces which these particles occupy.
Of some unsuccessful attempts to increase the force of gun-powder.

It has been supposed by many, that the force of steam is even greater than that of gun-powder; and that if a quantity of water, confined in the chamber of a gun, could at once be rarified into steam, it would impel a bullet with prodigious velocity. Several attempts have been made to shoot bullets in this manner; but I know of none that have succeeded; at least so far as to render it probable that water can ever be substituted in the room of gun-powder for military purposes, as some have imagined.

The great difficulty that attends making these experiments lies in finding out a method by which the water can at once be rarified, and converted into elastic steam; and it occurred to me, that possibly that might be effected by means of gun-powder, by confining a small quantity of water in some very thin substance, and surrounding and inclosing it with powder, and afterwards setting fire to the charge. The method I took to do this was as follows. Having procured a number of air bladders of very small fishes, I put different quantities of water into them, from the size of a small pea to that of a small pistol bullet, and tying them up close with some very fine thread, I hung up these little globules in the open air till they were quite dry on the outside. I then provided a number of cartridges made of fine paper, and filled them with a known quantity of powder, equal to the customary charge for a common horseman's pistol; and having loaded such a pistol with one of them and
and a fit bullet, I laid it down upon the ground, and directing it against an oaken plank that was placed about six feet from the muzzle, I fired it off by a train, and carefully observed the recoil, and also the penetration of the bullet. I then took several of the filled cartridges that remained, and pouring out part of the powder, I put one or more of the little bladders filled with water in the center of the cartridge, and afterwards pouring back the remaining part of the charge, confined the water in the midst of the powder.

With these cartridges and a fit bullet, the pistol was successively loaded, and being placed upon the ground as before, and fired by a train, the recoil, and the penetration of the bullets were observed; and I constantly found, that the force of the charge was very sensibly diminished by the addition of the globule of water, and the larger the quantity of water was that was thus confined, the less was the effect of the charge; neither the recoil of the pistol, nor the penetration of the bullet, being near equal to what they were when the given quantity of powder was fired without the water; and the report of the explosion appeared to be lessened in a still greater proportion than the recoil or penetration.

Concluding that this diminution of the force of the charge arose from the bursting of the little bladder, and the dispersion of the water among the powder before it was all inflamed, by which a great part of it was prevented from taking fire, I repeated the experiments with highly rectified spirits of wine instead of water; but the result was nearly the same as before: the force of the charge was constantly and very sensibly diminished. I afterwards made use of ethereal oil of turpentine, and then of small quantities of quicksilver; but still with no
better success. Every thing I mixed with the powder, instead of increasing, served to lessen the force of the charge.

These trials were all made several months before I began the course of my experiments upon gun-powder, which I have already given an account of; and though they were altogether unsuccessful, yet I resumed the inquiry at that time, and made several new experiments, with a view to find out something that should be stronger than powder, or which, when mixed with it, should increase its force.

It is well known, that the elastic force of quicksilver converted into vapour is very great; this substance I made use of in my former trials, as I have just observed, but without success. I thought, however, that the failure of that attempt might possibly be owing to the quicksilver being too much in a body, by which means the fire could not act upon it to the greatest advantage; but that if it could be divided into exceedingly small particles, and so ordered that each particle might be completely surrounded by, and exposed to, the action of the flame of the powder, it would be very soon heated, and possibly might be converted into an elastic steam or vapour, before the bullet could be sensibly removed from its place. To determine this point I mixed 20 grains of æthiops mineral very intimately with 145 grains of powder, and charging the piece with this compound, it was loaded with a fit bullet and fired; but the force of the charge was less than that which the powder alone would have exerted, as appears by comparing the 76th and 77th experiments with the 79th.

Common pulvis fulminans is made of one part of sulphur, two parts of salt of tartar, and three parts of nitre; and if we may judge by the report of the explosion, the elastic force of this compound is considerably greater than that of gun-powder. I was
I was willing to see the effect of mixing salt of tartar with gunpowder, and accordingly having provided some of this alkaline salt in its purest state, thoroughly dry, and in a fine powder, I mixed 20 grains of it with 145 grains of gunpowder; and upon discharging a bullet with the mixture, I found that the alkaline salt had considerably lessened the force of the powder. See experiment No. 78.

I next made use of sal ammoniacum. That salt has been found to produce a very large quantity of elastic air, or vapour, when exposed to heat under certain circumstances; but when 20 grains of it were mixed with a charge of gunpowder, instead of adding to its force, it diminished it very sensibly. See the 80th experiment.

Most, if not all, the metals, are thought to produce large quantities of air when they are dissolved in proper menstrua, and particularly brass, when it is dissolved in spirit of nitre. Desirous of seeing if this could be done by the flame, or acid vapour of fired powder, I mixed 20 grains of brass in a very fine powder, commonly called brass dust (being the small particles of this metal that fly off from the wheel in sharpening pins), with 145 grains of powder, and with this compound and a fit bullet I loaded my barrel and discharged it; but the experiment (No. 81.) shewed, that the force of the powder was not increased by the addition of the brass dust, but the contrary.

It seems probable, however, that neither brass dust nor æthiops mineral are of themselves capable of diminishing the force of gunpowder in any considerable degree, otherwise than, by filling up the interfices between the grains, and obstructing the passage of the flame, and so impeding the progress of the inflammation. And hence it appears, how earthy particles and
impurities of all kinds are so very detrimental to gun-powder. It is not that they destroy or alter the properties of any of the bodies of which the powder is composed, but simply, that by obstructing the progress of the inflammation, they lessen its force, and render it of little or no value. Too much care, therefore, cannot be taken in manufacturing powder to free the materials from all heterogeneous matter.

Of an attempt to shoot flame instead of bullets.

Having often observed paper and other light bodies to come out of great guns and small arms inflamed, I was led to try if other inflammable bodies might not be set on fire in like manner, and particularly inflammable fluids; and I thought if this could be effected, it might be possible to project such ignited bodies by the force of the explosion, and by that means communicate the fire to other bodies at some considerable distance; but in this attempt I failed totally. I never could set dry tow on fire at the distance of five yards from the muzzle of my barrel. I repeatedly discharged large wads of tow and paper, thoroughly soaked in the most inflammable fluids, such as alkobol, aethereal spirit of turpentine, balsam of sulphur, &c.; but none of them were ever set on fire by the explosion. Sometimes I discharged three or four spoonfuls of the inflammable fluid, by interposing a very thin wad of cork over the powder, and another over the fluid; but still with no better success. The fluid was projected against the wall as before, and left a mark where it hit; but it never could be made to take fire; so I gave up the attempt. If it had succeeded, probably it would have turned out one of the most important discoveries in the art of war that have been made since the invention of gun-powder.
XVI. Account of a luminous Appearance in the Heavens. By Mr. Tiberius Cavallo, F. R. S. in a Letter to Sir Joseph Banks, Bart. P. R. S.

Read April 5, 1781.

I TAKE the liberty to send you an account of a luminous appearance observed last night in the heavens, which seems to be very singular in its nature, and quite distinct from the aurora borealis.

At about half an hour past nine yesterday evening, being the 27th of March, a white light began to be seen in the sky, which became gradually more and more dense till ten o'clock, at which time it formed a compleat luminous arch from east to west. Of this I have been informed by others; but at a quarter past ten I went out of the house and observed it myself. At that time it appeared to be an arch of about seven or eight degrees in breadth extended from east to west, or, as some of my friends imagined, in the direction of east by north to west by south. Its western part quite reached the horizon; but the eastern part of the arch seemed to begin at about 50° or 60° above the horizon. It did not pass through the zenith but at about 8° or 10° southward of it, and it was nearly perpendicular to the horizon.

The whiteness of this arch was much denser than that any aurora borealis I ever observed, though it did not cast so much light upon the terrestrial objects. Towards the middle it was so dense, that the stars over which it passed were eclipsed;
Mr. Cavallo's Account of a luminous Appearance, &c. eclipsed; but the sides of this luminous arch were more faint and transparent.

The inclosed drawing shews its appearance at about half an hour past ten o'clock. At about three quarters past ten it began to lose its brightness, first at A, and then vanished gradually, so that at eleven o'clock none of it could be perceived. As soon as any part of this arch lost its dense whiteness, the stars appeared through it quite distinct, so that it could not be a cloud. The light also seemed to vanish without change of place; for it did not appear to be dispersed through the sky, or to be driven in any direction.

This extraordinary appearance to me seemed quite distinct from the aurora borealis for the following reasons, viz. because it eclipsed the stars over which it passed; because its light, or rather its white appearance, was stationary and not lambent; and because its direction was from east to west.

The atmosphere was in other respects very serene, the stars shining very bright, and no cloud appearing. The northern light was exceedingly faint, and very low about the northern point of the horizon. The wind was nearly north-east, and it could be just perceived in the streets.

I am, &c.
XVII. Account of an Earthqua' e at Hafodunos near Denbigh.
By John Lloyd, Esq. F. R. S. in a Letter to Sir Joseph
Banks, Bart. P. R. S.

Read April 5, 1781.

DEAR SIR;

Hafodunos near Denbigh,
Dec. 31, 1781.

UPON the 29th day of last August, at 8 h. 37' 30', I
was sitting on my * bed-side, and heard a rumbling
noi se, as if at a distance: the sound seemed to approach me,
and when it was greatest the bed rocked and shook so much
that I could scarcely keep my seat. I could have no doubt of
its being an earthquake, and instantly looked at my barometer,
which is of Mr. De Luc's construction; it stood at 29.57 inches.
Attached thermometer 65°. The barometer had been stationary
nearly for the three preceding days, and did not seem to be
affected with the shock. The morning was remarkably fine,
and not a single cloud to be seen. Two of my sisters and a
gentleman were walking upon the terrace in the garden by the
side of a wall: they all perceived the noise, at first as if at a
great distance; but when it was greatest they perceived the
wall to shake, though they did not observe any agitation under
their feet. As they were walking, and observed the spot when

* This house is built upon the side of a rock; and my bed-chamber, though
up two pair of stairs, is on a ground-floor, the floor is not more than one foot
from the solid rock in my bed-chamber.
they first heard the sound, and the spot they came to when it ceased, I was enabled to ascertain its duration pretty exactly, and find it to have been from fifteen to eighteen seconds. Its course was nearly from south-east to north-west. Some other persons in our house perceived a double shock; and this has been observed by many who felt it in other places. It was felt at Flint by Mrs. Seaman and her daughter, who observed the cups rattled upon the saucers as they sat at breakfast. Mr. Pennant's family, at Downing, fancied that an empty wagon was coming into the back-court, which is paved. It was strongly felt at Llônrfest by the whole town, and part of a stone wall was flung down. At Carnarvon (which is in the same parallel of latitude as this place, 53° 10') the shock was very slight. It was perceived in many places about Conway; but not at all by any one in town. Sir Hugh Williams felt it very strongly at his house near Beaumaris. At our friend Mr. Davies's, in that town, a door clapped backwards and forwards several times; and at Lord Bulkeley's seat, Boron-hill, the family were much alarmed, it was so violent. It was strongly felt at Holyhead, and at an eminent solicitor's in the island of Anglesey, the desks before several clerks in his office shook so that they could not write. It was strongly perceived at Mr. Fitzmaurice's, at Lleweny-hall in the Vale of Clwyd, and in several other places in that Vale. All the peninsula in Carnarvonshire called Llun, surrounded by St. George's Channel, was shook very much. There have been two shocks since this I have been describing. Mr. Pennant felt one; but I was not sensible of either. The times it was felt at differ very much on account of the variations in the several dials from whence the clocks are regulated; but I am very exact as to my own time, having the day preceding the earthquake, and that very day, ascertained
Earthquake at Hafodunos near Denbigh.

ascertained my time by equal altitudes, taken with one of Mr. Bird's astronomical quadrants of one foot radius. As every phenomenon of this kind is interesting, you may, perhaps, wish to communicate this account to the Royal Society; which you are welcome to do, if you think it worth the attention of so illustrious a body.

I have the honour to be, &c.
XVIII. On the Heat of the Water in the Gulf-stream. By Charles Bladen, M. D. Physician to the Army, F. R. S.

Read April 26, 1771.

One of the most remarkable facts observed in navigating the ocean, is that constant and rapid current which runs along the coast of North America to the northward and eastward, and is commonly known to seamen by the name of the Gulf-stream. It seems justly attributed to the effect of the trade-winds, which blowing from the eastern quarter into the great Gulf of Mexico, cause there an accumulation of the water above the common level of the sea; in consequence of which, it is constantly running out by the channel where it finds least resistance, that is, through the Gulf of Florida, with such force as to continue a distinct stream to a very great distance. Since all ships going from Europe to any of the southern provinces of North America must cross this current, and are materially affected by it in their course, every circumstance of its motion becomes an object highly interesting to the seaman, as well as of great curiosity to the philosopher. An observation which occurred to me on the spot suggests a new method of investigating a matter that appears so worthy of attention.

During a voyage to America in the spring of the year 1776, I used frequently to examine the heat of sea-water newly drawn, in order to compare it with that of the air. We made our passage
far to the southward. In this situation, the greatest heat of the water which I observed was such as raised the quicksilver in Fahrenheit's thermometer to 77° 4'. This happened twice; the first time on the 10th of April, in latitude 21° 10' N. and longitude, by our reckoning, 52° 5' W; and the second time, three days afterwards, in latitude 22° 7' and longitude 55°; but in general the heat of the sea near the tropic of Cancer about the middle of April was from 76° to 77°.

The rendezvous appointed for the fleet being off Cape Fear, our course, on approaching the American coast, became north-westward. On the 23rd of April the heat of the sea was 74°, our latitude at noon 28° 7' N. Next day the heat was only 71°; we were then in latitude 29° 12'; the heat of the water, therefore, was now lessening very fast in proportion to the change of latitude. The 25th our latitude was 31° 3'; but though we had gone almost 2° farther to the northward, the heat of the sea was this day rather increased, it being 72° in the morning, and 72° ½ in the evening. Next day, the 26th of April, at half after eight in the morning, I again plunged the thermometer into sea-water, and was greatly surprised to see the quicksilver rise to 78°, higher than I had ever observed it, even within the tropic. As the difference was too great to be imputed to any accidental variation, I immediately conceived that we must have come into the Gulf-stream, the water of which still retained great part of the heat that it had acquired in the torrid zone. This idea was confirmed by the subsequent regular and quick diminution of the heat; the ship's run for a quarter of an hour had lessened it 2°; the thermometer,

* From the difference between civil and nautical time, it becomes necessary to observe, that the former is always meant in this paper.
at three quarters after eight, being raised by sea-water fresh
drawn only to 76°; by nine the heat was reduced to 73°, and
in a quarter of an hour more, to 71° nearly: all this time the
wind blew fresh, and we were going seven knots an hour on a
north-western course. The water now began to lose the fine
transparent blue colour of the Ocean, and to assume something
of a greenish olive tinge, a well-known indication of sound-
ings. Accordingly, between four and five in the afternoon
ground was struck with the lead at the depth of eighty fathom,
the heat of the sea being then reduced to 69°. In the course of
the following night and next day, as we came into shallower
water and nearer the land, the temperature of the sea gra-
dually sunk to 65°, which was nearly that of the air at the
time.

Unfortunately bad weather on the 26th prevented us from
taking an observation of the sun; but on the 27th, though it
was then cloudy at noon, we calculated the latitude from two
altitudes, and found it to be 33° 26′ N. The difference of this
latitude from that which we had observed on the 25th, being
2° 23′, was so much greater than could be deduced from the
ship’s run marked in the log-book, as to convince the seamen
that we had been set many miles to the northward by the
current.

On the 25th at noon, the longitude by our reckoning
was 74° W. and I believe the computation to have been pretty
just; but the soundings, together with the latitude, will deter-
mine the spot where these observations were made better than
any reckoning from the eastward. The ship’s run on the 26th,
from nine in the forenoon to four in the afternoon, was about
ten leagues on a north-west by north course; soon afterwards
we
we hove-to in order to sound, and, finding bottom, we went very slowly all night, and till noon the next day.

From these observations, I think, it may be concluded, that the Gulf-stream, about the 33d degree of north latitude, and the 76th degree of longitude west of Greenwich, is, in the month of April, at least six degrees hotter than the water of the sea through which it runs. As the heat of the sea-water evidently began to increase in the evening of the 25th, and as the observations shew that we were getting out of the current when I first tried the heat in the morning of the 26th; it is most probable, that the ship’s run during the night is nearly the breadth of the stream measured obliquely across; that, as it blew a fresh breeze, could not be much less than twenty-five leagues in fifteen hours; the distance of time between the two observations of the heat, and hence the breadth of the stream, may be estimated at twenty leagues. The breadth of the Gulf of Florida, which evidently bounds the stream at its origin, appears by the charts to be two or three miles less than this, excluding the rocks and sand-banks which surround the Bahama Islands, and the shallow water that extends to a considerable distance from the Coast of Florida; and the correspondence of these measures is very remarkable, since the stream, from well-known principles of hydraulics, must gradually become wider as it gets to a greater distance from the channel by which it issues.

If the heat of the Gulf of Mexico was known, many curious calculations might be formed by comparing it with that of the current. The mean heat of Spanish-town and Kingston in Jamaica seems not to exceed 81°; that of St. Domingo on

* History of Jamaica, London, 1774, vol. III. p. 652, 653. The different observations of the heat recorded in that work do not agree together; but those adopted here are taken from that series which appeared to me the most correct.
Dr. Blagden on the Heat of
the sea-coast may be estimated at the same from Monf. Godin's observations *; but as the coast of the continent which bounds the gulf to the westward and southward is probably warmer, perhaps a degree or two may be allowed for the mean temperature of the climate over the whole bay: let it be stated at 82° or 83°. Now there seems to be great probability in the supposition that the sea, at a certain comparatively small distance below its surface, agrees in heat pretty nearly with the average temperature of the air during the whole year in that part; and hence it may be conjectured, that the general heat of the water, as it issues out of the bay to form the stream, is about 82° †, the small variations of temperature on the surface not being sufficient to affect materially that of the general mass. At the tropic of Cancer I found the heat to be 77°; the stream, therefore, in its whole course from the gulf of Florida, may be supposed to have been constantly running through water from 4° to 6° colder than itself, and yet it had lost only 4° of

* Monf. Godin's experiments upon the pendulum were made at the Petit Goave. They continued from the 9th of August to the 4th of September, and the average heat during that time was such as is indicated by 15° of Monf. de Beaumur's thermometer (see Mem. Acad. Scienc. 1735, p. 517.). According to Monf. de Luc's calculation (see Modifications de l'Atmosphère, vol. I. p. 378.) the 25th degree of Monf. de Beaumur's true thermometer answers to about the 85th of Fahrenheit's; but the average heat in Jamaica during the months of August and September is also 85°; hence we may conclude, that the mean heat for the whole year is nearly the same on the sea-coasts in both islands.

† The lowest calculation of the mean temperature of the gulf is preferred on this occasion, because of the constant influx of new water from the Atlantic Ocean produced by the trade-winds; which water not having been near any land must, I think, be sensibly cooler than that which has remained some time inclosed in the bay. On this subject the observations made by Alexander Dalrymple, Esq. relative to the heat of the sea near the Coast of Guinea, ought to be consulted (see Phil. Trans. vol. LXVIII. p. 394. &c.).
heat, though the surrounding water where I observed it was 10° below the supposed original temperature of the water which forms the current. From this small diminution of the heat, in a distance, probably of 300 miles, some idea may be acquired of the vast body of fluid which sets out of the gulf of Mexico, and of the great velocity of its motion. Numerous observations on the temperature of this stream, in every part of it, and at different seasons of the year, compared with the heat of the water in the surrounding seas, both within and without the tropic, would, I apprehend, be the best means of ascertaining its nature, and determining every material circumstance of its movement, especially if the effect of the current in pushing ships to the northward is carefully attended to, at the same time with the observations upon its heat.

On the 25th of September 1777, as the ships which had transported Sir William Howe's army up Chesapeake Bay were returning toward the Delaware, with the sick and stores, they were overtaken, between Cape Charles and Cape Hinlopen, by a violent gale of wind; which, after some variation, fixed ultimately at N.N.E. and continued five days without intermission. It blew so hard that we were constantly losing ground, and driving to the southward; we also purposely made some easting to keep clear of the dangerous shoals which lie off Cape Hatteras.

The 28th at noon, our latitude was 36° 40' N. and the heat of the sea all day about 65°. On the 29th our latitude was 36° 2'; we had, therefore, in the course of these twenty-four hours, been driven by the wind 38 nautical miles to the southward:
Dr. Blagden on the Heat of

ward: the temperature of the sea continued nearly at 65°. Next day, the 30th, our latitude at noon was 35° 44', only 18 miles farther to the southward, though in the opinion of the seamen aboard, as well as my own, it had blown at least as hard on this as any of the preceding days, and we had not been able to carry more sail; consequently it may be concluded, that some current had set the ship 20 miles to the northward. To know whether this was the Gulf-stream, let us consult the thermometer. At half after nine in the forenoon of this day the heat of this water was 76°, no less than eleven degrees above the temperature of the sea before we came into the current!

Towards evening the wind fell, and we stood N.W. by N. close-hauled. As the sea still ran very high, and the ship scarcely went above two knots an hour, we did not make less than three points of lee-way on this tack; the course we made good, therefore was W.N.W. which, on the distance run by noon next day, gave us about sixteen miles of northing; but that day, the 1st of October, our latitude was 36° 22', 38 miles farther to the north than we had been the day before; the difference, 22 miles, must be attributed to the Gulf-stream. This, however, is only part of the effect which the current would have produced upon the ship if we had continued in it the whole four and twenty hours; for, though we were still in the stream at five in the afternoon of the 30th, as appeared by the heat of the water being then above 75°, and at eight in the evening the heat being still 74°, yet by seven next morning we were certainly got clear of it, the heat of the sea being then reduced to its former standard of 65°. On this occasion, therefore, we did not cross the stream, but having fallen-in with it obliquely
obliquely on the western side, we pushed out again on the same side as soon as the gale abated.

These observations having been made three degrees to the northward of my former ones, it is curious to observe, that the heat of the Gulf-stream was about 2° less. The seasons of the year, indeed, were very different; but, perhaps, under such circumstances that their effects were nearly balanced. In the latter observations the meridian altitude of the sun was less; but then a hot summer preceded them: whereas in the former, though the sun’s power was become very great, yet the winter had been past but a short time. Calculating upon this proportion we may be led to suspect, that about the 27th degree of latitude, which is as soon as the stream has got clear of the gulf of Florida, it begins sensibly to lose its heat from 82°, the supposed temperature of the gulf of Mexico, and continues to lose it at the rate of about 2° of Fahrenheit’s scale to every 3° of latitude, with some variation, probably as the surrounding sea, and the air, are warmer or colder at different seasons of the year.

The preceding facts had made me very desirous of observing the heat of the Gulf-stream on my passage homeward; but a violent gale of wind, which came on two days after we had failed from Sandy Hook, disabled every person aboard, who knew how to handle a thermometer, from keeping the deck. The master of the ship, however, an intelligent man, to whom I had communicated my views, assured me, that on the second day of the gale the water felt to him remarkably warm; we were then near the 70th degree of west longitude. This agrees very well with the common remark of seamen, who allege, that they are frequently sensible of the Gulf-stream off Nain-

Vol. LXXI.
bucket shoals, a distance of more than 1000 miles from the gulf of Florida! According to the calculation I have before adopted of a loss of two degrees of heat for every 3° of latitude, the temperature of the Gulf-stream here would be nearly 73°; the difference of which from 59°, the heat that I observed in the sea-water both before and after the gale, might easily be perceived by the master of the vessel. This was in the winter season, at the end of December.

An opinion prevails among seamen, that there is something peculiar in the weather about the Gulf-stream. As far as I could judge, the heat of the air was considerably increased by it, as might be expected; but whether to a degree or extent sufficient for producing any material changes in the atmosphere must be determined by future observations.

Perhaps other currents may be found which, issuing from places warmer or colder than the surrounding sea, differ from it in their temperature so much as to be discovered by the thermometer. Should there be many such, this instrument will come to be ranked among the most valuable at sea; as the difficulty of ascertaining currents is well known to be one of the greatest defects in the present art of navigation.

In the mean time, I hope the observations which have been here related are sufficient to prove, that in crossing the Gulf-stream very essential advantages may be derived from the use of the thermometer: for if the master of a ship, bound to any of the southern provinces of North America, will be careful to try the heat of the sea frequently, he must discover very accurately his entrance into the Gulf-stream, by the sudden increase of the heat; and a continuance of the same experiments will shew him, with equal exactness, how long he remains in it. Hence he will always be able to make a proper allowance for
the Water in the Gulf-stream.

For the number of miles that the ship is set to the northward, by multiplying the time into the velocity of the current. Though this velocity is hitherto very imperfectly known, for want of some method of determining how long the current acted upon the ships, yet all uncertainty arising from thence must soon cease, as a few experiments upon the heat of the stream, compared with the ship's run checked by observations of the latitude, will ascertain its motion with sufficient precision. From differences in the wind, and perhaps other circumstances, it is probable, that there may be some variations in the velocity of the current; and it will be curious to observe, whether these variations may not frequently be pointed out by a difference in its temperature; as the quicker the current moves, the less heat is likely to be lost, and consequently the hotter will the water be. In this observation, however, the season of the year must always be considered; partly, because it may, perhaps, in some degree affect the original temperature of the water in the gulf of Mexico; but principally, because the actual heat of the stream must be greater or less in proportion as the tract of the sea through which it has flown was warmer or colder. In winter, I should suppose, that the heat of the stream itself would be rather less than in summer; but that the difference between it and the surrounding sea would be much greater; and I can conceive that, in the middle of summer, though the stream had lost very little of its original heat, yet the sea might, in some parts, acquire so nearly the same temperature, as to render it scarcely possible to distinguish by the thermometer when a ship entered into the current.

Besides the convenience of correcting a ship's course, by knowing how to make a proper allowance for the distance she is set to the northward by the current, a method of determining
with certainty when she enters into the Gulf-stream is attended
with the further inestimable advantage of shewing her place
upon the ocean in the most critical situation: for, as the cur-
rent sets along the coast of America at no great distance from
foundings, the mariner, when he finds this sudden increase of
heat in the sea, will be warned of his approach to the coast,
and will thus have timely notice to take the necessary preca-
utions for the security of his vessel. As the course of the Gulf-
stream comes more to be accurately known, from repeated ob-
servations of the heat and latitudes, this method of deter-
mining the ship's place will be proportionally more applicable
to use. And it derives additional importance from the peculiar
circumstances of the American coast, which, from the mouth
of the Delaware to the southernmost point of Florida, is every
where low, and beset with frequent shoals, running out so far
into the sea that a vessel may be aground in many places where
the shore is not to be distinguished even from the masts-head.
The gulf-stream, therefore, which has hitherto served only to
increase the perplexities of seamen, will now, if these obser-
vations are found to be just in practice, become one of the chief
means of their preservation upon that dangerous coast.
XIX. Account of the Appearance of the Soil at opening a Well at Hanby in Lincolnshire. In a Letter from Sir Henry C. Englesfield, Bart. F. R. and A. S. to Sir Joseph Banks, Bart. P. R. S.

Read May 3, 1781.

DEAR SIR,

The appearance of the soil which fell under my own inspection, on opening a well at Hanby, the seat of Sir C. Buck, in Lenton parish, Lincolnshire, being, as far as I can recollect, quite singular, I hope you will not think this account of it unworthy the attention of the Society.

The spot on which the well was sunk is nearly on a level with Lincoln Heath, and of course high ground compared with the fen, which is distant from it above six miles. The soil was uniformly a blue clay, in parts rather inclining to a shaly structure, and contained many casts of tellinae, a very little pyrites, and some few small, but very elegant, belemnites. These are all the usual fossils of clay; but what I think without example is, that through the whole mass of clay were interspersed nodules of pure chalk, evidently rounded by long attrition, and of all sizes from that of a pea to a child's head.

They lay in no sort of order that I could find. How deep this appearance might have continued I cannot determine, but no water having been found at the depth of thirty feet, the trial
trial was given up, as the expence would have exceeded the advantage proposed. A specimen of the chalk is herewith exhibited to the Society.

I must add, that in all the environs there is not the least trace of chalk in any form whatever that I could discover or hear of.

I am, &c.

Read May 3, 1781:

HAVING given in the Philosophical Transactions, vol. LXVI. for the year 1776, and vol. LXVIII. part II. for 1778, an ample description of the excellent astronomical instruments in my possession, it will be needless to say any thing here on that subject, further than that the following observations were made with them.

During the summer of 1777, part of which I spent with Lady Widdrington, at her house named Wickhill, about a mile from Stow on the Would, Gloucestershire, I determined, by six observations of 4’s satellites, compared to correspondent ones made on the same days, Wickhill W. of Greenwich 1° 29’ 45”. It is proper to add, this is likewise the longitude of Stow, it being under the same meridian, or very nearly so, as Wickhill.

In 1778 and 1779 I observed in Glamorganshire; and by thirty-five meridian observations of the sun and stars, all agreeing within 12” from the mean, I determined the latitude of my observatory at Frampton House 51° 25’ 1” N.

Frampton
Frampton-house lies between Cowbridge and Lantwit; about four miles south of the former, and one mile north of the latter, and about two miles from the Bristol channel; is nearly under the same meridian as Watchet, a market town in Somersetshire.

The rocks on the Welch coast, which run obliquely flanking into the Bristol channel, render the navigation so dangerous that each year affords the horrid spectacle of ships wrecked; and here I am sorry to add, that the barbarous custom of plundering these unfortunate vessels still subsists in all its inhumanity; at the same time it would be injustice to the gentlemen of the country to pass under silence their repeated endeavours to check this enormity; but hitherto their efforts have not been attended with much success: it is due to humanity to make such bad practices public, in hopes of exciting an inquiry, which justice and the honour of the nation loudly call for.

The little that has been said suffices to shew the expediency of correct maps of this channel. The universal opinion of the country is, that to the Somersetshire opposite coast, about Watchet, Purlock, &c. the breadth of the channel is twenty or twenty-one miles. A single glance of the eye seems sufficient to contradict this notion; however, as upon inspecting my maps I found the distances set down not greatly different from what report had made them, we measured them geometrically, and the result gave the channel, not twenty, but little more than thirteen miles broad at the abovementioned places.

Upon the whole it is to be wished, that astronomical observations, sufficiently correct, were made on the Somersetshire side, which might be compared with those I have made on the opposite shore. It may possibly be found, that the towns on the English
Astronomical Observations.

English coast are placed in the maps too much south, and those in Wales too much north; and hence, perhaps, the too great breadth given to the Bristol channel. This is, at least, the case with the town of Lantwit, which, as I have said, is to the southward of Frampton-house, the latitude of which is $51^\circ 25' 1''$; nevertheless the best and most extensive map I have been able to procure gives the latitude of Lantwit $51^\circ 29' 40''$, that is to say $4' 39''$ N. of Frampton-house. There may very possibly be particular charts of the Bristol channel more exact; but it is not less true, that the common maps ought to be cleared of such enormous errors.

I determined the difference of meridians between Frampton-house and Greenwich by comparing four immersions and fourteen emersions of 24's first and second satellites to corresponding ones made in other observatories. The result is as follows:

<table>
<thead>
<tr>
<th>App. time.</th>
<th>Imersions</th>
<th>App. time.</th>
<th>Emersions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 11</td>
<td>By an observ. at Greenwich.</td>
<td>13 43</td>
<td>By an observ. at Oxford.</td>
</tr>
<tr>
<td>13 52</td>
<td>at Upsal.</td>
<td>14 2</td>
<td>at Greenwich.</td>
</tr>
<tr>
<td>13 54</td>
<td>at Paris.</td>
<td>13 50</td>
<td>N. Almanack.</td>
</tr>
<tr>
<td>14 6</td>
<td>at Oxford.</td>
<td>13 45</td>
<td>at Greenwich.</td>
</tr>
<tr>
<td></td>
<td>14 the mean.</td>
<td>13 46</td>
<td>at Oxford.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 44</td>
<td>at Paris.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 12</td>
<td>at Paris.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 50</td>
<td>at Oxford.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 11</td>
<td>at Berlin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 44</td>
<td>at Oxford.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 50</td>
<td>at Oxford.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 59</td>
<td>at Greenwich.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 3</td>
<td>at Greenwich.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 7</td>
<td>at Greenwich.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 55</td>
<td>Mean of emersions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 1</td>
<td>Mean of immersions.</td>
</tr>
</tbody>
</table>

Frampton-house $W.$ of Greenwich in time, or $3^\circ 29' 30''$ by the equator.

* By John Adams. The scale is to minutes of a degree.

Vol. LXXI. A a a Occultations
Occultations of fixed stars observed at Frampton-house in 1777 and 1778.

App. time. October 21, 1777.
8 16 20 Imm. η Pollux: doubtful to 2" or 3".

November 15.
6 19 3 Imm. 1st, δ Tauri into light part of Δ: doubtful to 3".
6 54 22 Imm. 2d, δ Tauri.
7 8 42 Emered. 1st, δ Tauri: dark part of Δ.

November 16.
10 59 27 Imm. ζ Tauri: very good.

July 5, 1778.
9 2 15½ Imm. telescopic star: instantaneous.
9 3 28½ Imm. Vm: instantaneous.
10 27 8½ Emered. Vm, from light limb of Π: sure to 1" or 2".

Declination of the needle.

In the beginning of 1778 the declination west of a magnetic needle of four inches made by Mr. Dollond, appeared to be 22° 11'.
II. Abstract of a Register of the Barometer, Thermometer, and Rain, at Lyndon, in Rutland, 1780. By Thomas Barker, Esquire.

Read May 3, 1781.

<table>
<thead>
<tr>
<th>Barometer</th>
<th>Thermometer</th>
<th>Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In the House</td>
<td>Abroad</td>
</tr>
<tr>
<td></td>
<td>High, Low, Mean</td>
<td>High, Low, Mean</td>
</tr>
<tr>
<td>Higheft</td>
<td>Lowest</td>
<td>Mean</td>
</tr>
<tr>
<td>29,89</td>
<td>28,16</td>
<td>29,39</td>
</tr>
<tr>
<td>30,06</td>
<td>28,72</td>
<td>29,49</td>
</tr>
<tr>
<td>29,94</td>
<td>28,99</td>
<td>29,47</td>
</tr>
<tr>
<td>29,77</td>
<td>28,40</td>
<td>29,21</td>
</tr>
<tr>
<td>29,83</td>
<td>28,80</td>
<td>29,48</td>
</tr>
<tr>
<td>29,89</td>
<td>29,26</td>
<td>29,55</td>
</tr>
<tr>
<td>29,87</td>
<td>29,21</td>
<td>29,61</td>
</tr>
<tr>
<td>29,81</td>
<td>29,43</td>
<td>29,65</td>
</tr>
<tr>
<td>29,79</td>
<td>28,70</td>
<td>29,38</td>
</tr>
<tr>
<td>29,87</td>
<td>28,20</td>
<td>29,23</td>
</tr>
<tr>
<td>30,00</td>
<td>28,62</td>
<td>29,41</td>
</tr>
<tr>
<td>30,08</td>
<td>29,22</td>
<td>29,83</td>
</tr>
</tbody>
</table>
The three driest seasons from one month to twelve are the same as in vol. LXI. except the following.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.370</td>
<td>0.451</td>
<td>0.934</td>
<td>0.942</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jan.—Mar. 79</td>
<td>0.582</td>
<td>Dec. 42—Feb. 43</td>
<td>Oct. 40—July 41</td>
<td>13,427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The three wettest seasons from one month to twelve are entirely different from those in vol. LXI.

<table>
<thead>
<tr>
<th>Months</th>
<th>Sept. 74*</th>
<th>Nov. 70</th>
<th>May 73</th>
<th>6,843</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,000</td>
<td>7,818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aug. and Sept. 74</td>
<td>11,910</td>
<td>Aug. and Sept. 75</td>
<td>10,932</td>
</tr>
<tr>
<td>3</td>
<td>July—Sept. 74</td>
<td>15,137</td>
<td>July—Sept. 75</td>
<td>14,508</td>
</tr>
<tr>
<td>4</td>
<td>July—Oct. 75</td>
<td>17,888</td>
<td>June—Sept. 74</td>
<td>17,520</td>
</tr>
<tr>
<td>5</td>
<td>July—Nov. 75</td>
<td>21,558</td>
<td>May—Sept. 74</td>
<td>20,762</td>
</tr>
<tr>
<td>6</td>
<td>July—Dec. 75</td>
<td>22,045</td>
<td>April—Sept. 74</td>
<td>22,285</td>
</tr>
<tr>
<td>7</td>
<td>July 75—Jan. 76</td>
<td>25,115</td>
<td>Mar.—Sept. 74</td>
<td>25,013</td>
</tr>
<tr>
<td>8</td>
<td>July 75—Feb. 76</td>
<td>28,360</td>
<td>Feb.—Sept. 74</td>
<td>26,959</td>
</tr>
<tr>
<td>9</td>
<td>Jan.—Sept. 74</td>
<td>30,267</td>
<td>July 75—Mar. 76</td>
<td>29,878</td>
</tr>
<tr>
<td>10</td>
<td>Dec. 73—Sept. 74</td>
<td>33,164</td>
<td>May 73—Feb. 74</td>
<td>30,877</td>
</tr>
<tr>
<td>11</td>
<td>Nov. 73—Sept. 74</td>
<td>36,769</td>
<td>May 73—Mar. 74</td>
<td>33,605</td>
</tr>
<tr>
<td>12</td>
<td>Oct. 73—Sept. 74</td>
<td>39,390</td>
<td>May 73—April 74</td>
<td>35,128</td>
</tr>
</tbody>
</table>

The year began with frost, and was perhaps the severest winter since 1740, but there was not a great deal of snow, and in general it was calm. The frost was not so steady as it was that winter, there being several breaks in it; but was very sharp, and the ice was never entirely gone for nine or ten weeks together from December 22, till near the end of February, when it went away without wet, leaving the ground remarkably light and fine, and the weather grew mild, and continued so most part of March; but the coldness of the ground hindered the grass from growing greatly till toward the end of the time. The feed-
the Weather at Lyndon.

time was fine and good, and the grain came up very well, but
the first three weeks of April were cold, backening, and often
frosty. Toward the end it was more showery, warmer and
growing, and from that time the spring continued to come on,
and there were so few N.E. winds that ships found a difficulty
in getting down the channel, which is very unusual at that
time of year, and all the spring from the end of February till
toward the end of June was very windy, chiefly N.W. and
S.W.

In the former part of summer there were at times very hot
days; but the season was oftener cool; many little showers,
which in some countries were so small there was want of rain
and grass, here we did pretty well. The hay-time was fine,
but the crop small. The harvest was exceedingly well got:
the barley and oats good, and some of the wheat; but the late-
sowing was thin through the severe winter, and in several places
the wheat was mildewed, which could not be by wet such a
year as this; but by this means wheat became three times the
price of barley, being 50 and 52 shillings a quarter, and bar-
ley 16 or 17 shillings. From the latter part of July to the
beginning of September it was very dry, hot, and burning;
much scorching sun, the ground very much burnt up, and
great want of water; but the N.E. winds, which came at this
time of year instead of the spring, were sometimes fresh and
cool.

The beginning of September the rains began, and for above
two months there was a good deal, with such fine and warm
weather, that there was good grass, a pleasant autumn, and
very few frosty mornings, and the ground, which before was
so dry, did not get much dirty with it. The wheat feed-time
was fine, and the weather mild till the middle of November,
when a hard frost, with snow, made people think of a hard winter; but it grew mild again, was chiefly dark and cloudy, but little rain, and drying a good deal of December; remarkably calm, but near a week's frost about Christmas.

The sickly seasons, which began in August 1779, continued more or less all the year; and about the same time of the year increased again. There were great numbers of fevers and agues, especially in and near the fens, which were very obstinate, and did not yield to the usual medicines, but frequently returned again, and hung very long on the patients.
XXII. Some Calculations of the Number of Accidents or Deaths which happen in consequence of Parturition; and of the Proportion of Male to Female Children, as well as of Twins, monstrous Productions, and Children that are dead-born; taken from the Midwifery Reports of the Westminster General Dispensary: with an Attempt to ascertain the Chance of Life at different Periods, from Infancy to Twenty-six Years of Age; and likewise the Proportion of Natives to the rest of the Inhabitants of London. In a Letter from Robert Bland, M. D. Physician-Man-Midwife to the Westminster General Dispensary, to Samuel Foart Simmons, M. D. F. R. S.

Read May 10, 1784.

DEAR SIR,

The great advantage of hospitals and other similar institutions, in improving and disseminating medical knowledge, is generally acknowledged; but there are other purposes they seem equally calculated to answer, which, though subordinate to the former, may yet deserve attention, as they may throw light upon, and perhaps finally determine, certain political questions, about which various opinions are at present entertained. Thus, though it is known that this city contains persons from various countries, and that a very small portion of its inhabitants are natives; yet the proportion which the latter bear to the aliens can at present only be guessed at.

But
Dr. Bland's Midwifery Reports

But this question might be resolved, with a tolerable degree of accuracy, if to the register of the names of the persons admitted to the several charities were added the places of their birth. Again, the great mortality of the human species, particularly in infancy, and the small chance a child has to attain to years of maturity, have been calculated from parish-registers, bills of mortality, &c. But I do not know, that an attempt has hitherto been made to ascertain them, by noting the number of children a promiscuous multitude of women had borne, together with the number they had been able to preserve.

This, however, is what I have here done; and from it I have attempted to form a table, shewing the chance of life at different periods. I am far from pretending that by this mode clear and certain intelligence will be obtained; but in a matter of such moment, I presume, that any assistance will be acceptable. Dr. Smellie* has curiously mentioned, for the encouragement of his pupils, the small proportion of the unnatural and laborious births to the natural; but he did not carry his views farther, or point out the proportionate number of consequent accidents, which might occur to retard or prevent the recovery of the woman, although this is not less necessary to be known than the former. With a view to these, and other useful purposes, the following register has been kept of the most material circumstances concerning the patients admitted to the midwifery-department of the Westminster General Dispensary, from its first institution, in the year 1774, to the present time; viz.

1. The ages of the several women.
2. The number of children they had borne.
3. The sexes of the children,

* See Smellie's Midwifery, 8vo, p. 195.

4. The
of the Westminster General Dispensary.

4. The number of children they had been able to preserve.
5. The place or country where they and their husbands were born.

And after the delivery of the patient I have constantly noted,

1. The accidents that attended, or were the consequences of parturition.
2. The sexes of the children delivered.
3. The number of twins or triplets.
4. The number of the children that were deficient or monstrous.
5. The number of the children that were dead-born, and, as the women were enjoined to return their letters as soon as they were able to go abroad, I farther intended to have added the proportion of the children who died under four or five weeks; but many of the women neglecting this duty, prevented my information under this head from being so compleat as I could have wished. Of those, however, who came, or of whom certain account could be obtained, the number is set down.

From the above mentioned register the following tables and accounts have been composed; and as the greatest care and exactness were used in recording the several circumstances, the same punctuality has been observed in collecting and digesting them. And that they might be kept as free from error as possible, tables for each year were first composed and compared together; but finding no material variation, I did not think it necessary to produce them in that form. My first intention was to have given the tables simply, and without any explanatory observations; but finding I could not introduce all the circumstances I had noted in my register, as was particularly the case with regard to the first table, and imagining that

Vol. LXXI. B b b in
in some places they were not perfectly intelligible, without some explanation, as for instance in the table of the chance of life at different periods, I have ventured to add such occasional remarks as I think will tend to illustrate the subject.

As my first view was to find the proportion of difficult labours, and of the accidents or deaths that happen in consequence of child-birth, I shall begin with the following table.

Of 1897 women delivered under the care of the Dispensary,

<table>
<thead>
<tr>
<th>63</th>
<th>1 in 30 had unnatural labours: in</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>of these, or 1 in 105, the children presented by their feet; in</td>
</tr>
<tr>
<td>36</td>
<td>or 1 in 52, the breech presented; in</td>
</tr>
<tr>
<td>8</td>
<td>the arms presented; and in</td>
</tr>
<tr>
<td>1</td>
<td>the funis.</td>
</tr>
</tbody>
</table>

| 63 |

<table>
<thead>
<tr>
<th>17</th>
<th>women, or 1 in 111, had laborious labours: in</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>of these, or 1 in 236, the heads of the children were lessened; in</td>
</tr>
<tr>
<td>4</td>
<td>a single blade of a forceps was used; and in the remaining</td>
</tr>
<tr>
<td>5</td>
<td>in which the faces of the children were turned to the pubes, the delivery was at length accomplished by the pains.</td>
</tr>
</tbody>
</table>

| 80 17 |

* In all these nine cases the children were turned.

† Two of these women have since been delivered of full-sized healthy children.

A third bore a very small and weakly child, who died in two or three days. A fourth
1 woman had convulsions about the seventh month of her pregnancy, and was delivered a month after of a dead child, and recovered.

1 woman had convulsions during labour; brought forth a live child, and recovered.

9 women, or 1 in 210, had uterine hæmorrhage before and during labour.

Of these 1 died undelivered;
1 died a few hours, and
1 ten days, after delivery, and
6 recovered.

5 women had the puerperal fever, of whom four died. In one of these the placenta was undelivered, and continued so to her death.

2 women were seized with mania, but recovered in about three months. In

1 woman a suppuration took place, soon after labour, from the vagina into the bladder and rectum. This patient recovered, but the urine and stools continue to pass through the wounds. Of

99

fourth was delivered of a seven-months child, without mutilating it, which died in its passage. The number of women, therefore, who from error in their conformation were incapable of bearing live children appears to be very inconsiderable. Of the remaining four I have not been able to get any intelligence.

* In these nine cases only one child was saved.
A woman the perineum was lacerated to the sphincter ani. A future was attempted, but without effect; she recovered, but is troubled with prolapsus uteri.

5 had large and painful swellings of the legs and thighs, but recovered.

105 therefore of these, or 1 in 18, had preternatural or laborious births, or suffered in consequence of labour. Of this number of cases 43, or 1 in 44, were attended with particular difficulty or danger; and 7 only, or 1 in 270, died. The remaining 62 were delivered and recovered with little more than the common assistance: and

1792 had natural labours, not attended with any particular accidents.

1897

Of two women the uterus was retroverted in the third or fourth month of their pregnancy; but in both the uterus was replaced, and the women went to their full time, and brought forth live children.

Besides the accidents above enumerated, it seems right to observe, that many of the women were afflicted with severe after-pains, or had what is called the milk-fever; but as these complaints were generally relieved in three or four days, and did not seem to have any influence in retarding their recovery, or to affect their future healths, no notice is taken of them. Some women also had symptoms of incipient prolapsus uteri, who had not before been troubled with that complaint; but as
I seldom saw them above once or twice, I cannot give the result. But as few of them were able to indulge themselves with rest, or to comply with the rules necessary for their cure, it is to be feared, that in many of them the complaint would gradually increase; and that in a course of years, the uterus would make its appearance externally, when, finding it an impediment to their activity, they would apply and submit to wear a pessary, or to such palliatives as in that state can only be administered. Excepting this accident, and the flux albus, to which many of them are subject after child-bearing, but which, I think, does not often materially affect their healths until late in life, I am inclined to believe, that the lower sort of people recover more certainly after parturition than persons in higher stations of life: at least, they are less subject to the puerperal fever, which is so fatal, if not checked on its first attack; and which, if not caused, is certainly nourished, and its malignancy increased, by great fires, close rooms, warm septic diet and costiveness. But the apartments of the poor are generally so crazy, that without opening doors or windows, to which they are sufficiently averse, the air pours in upon them from all sides. To this circumstance, added to their inability to keep great fires, or to indulge themselves with animal food, and to the care that is taken very early to empty their bowels, I have been induced to attribute their so generally escaping this fatal disease; and by adopting rules in my private practice consonant to this idea, I have the satisfaction to be able to say, that I have not seen the puerperal fever among my private patients for more than three years.
TABLE of the proportion of male to female children, of the number of twins, and of the children that were deficient or monstrous, and of those that were dead-born.

1897 women were delivered of 1923 children; 972 boys and 951 girls, or as 46 boys to 45 girls.

23 of the women, or 1 in 80, were delivered of twins, 16 of whom were boys and 30 girls.

1 woman was delivered of 3 girls.

Of the twins and triplets, therefore, the males were only half the number of the females.

8 of the children, or 1 in 241, were deficient or monstrous.

Of these 1 was web-fingered;

1 had a hare-lip;

1 had a dropstical head and distorted spine;

1 a dropstical head;

in 1 a part of the palate;

and in 2 a considerable portion of the cranium was wanting;

and 1 had two heads †, see fig. 1.

\[\text{One} \]

* One of these lived an hour after it was born.

† This was the child of ELIZABETH wife of BRONFIELD, Peruke-maker, Jees-court, Oxford-street. It had two heads and necks, four hands and arms, two spines, uniting at the sacrum, and terminating in one pelvis, from whence the lower extremities proceeded single: there was one navel-string, and one male organ of generation. On opening the body there were found, two thoracic cavities, the right more compleat than the left: the heart also, and the lungs on the right side, were more perfect than those on the left, which latter were very small.
One woman was delivered of a twin *, see fig. 2.
84 of the children, or 1 in 23 of the whole number, were
dead-born †. Of these, 49, or nearly five-eighths, were boys,
and 35 were girls.

Of 1400 women who returned their letters, or of whom a
certain account could be obtained, 85, or nearly 1 in 16, had

There were two stomachs, two sets of intestines, which, at length uniting, ter-
minated in one rectum and anus. There was but one urinary bladder. The
drawing that accompanies this will give a more just idea of its external figure;
and Dr. Hunter, who dissected it, will probably one day oblige the world with
an exact anatomical description of it.

* Of this singular production, to which I have not ventured to give a name,
the following is the history and description. The woman who produced it is
about twenty-seven years of age; this was her first pregnancy. She was, after a
labour, delivered of a female fetus, and its placenta, in which nothing uncommon
was observed; and although the uterus remained of an unusual size, yet the pains
not recommencing, there was no suspicion entertained but that its bulk was occa-
sioned by coagulated blood. On the third day the pains became violent, and this
monster was born. Its shape was spherical, but somewhat flattened. It mea-
sured in its largest diameter eight inches, and weighed about eighteen ounces. It
received its nourishment by an umbilical chord, to which was attached a portion
of membranes, and although no placenta was found, it is probable it had a small
one, and that it was inclosed in its own involucrum. It was completely covered
with a cuticula, and a little above the part, where the navel-string terminated, there
was a hairy scalp covering a bony prominence, somewhat resembling the arch of the
cranium. On dissection it was found to be plentifully supplied with blood vessels,
proceeding from the navel-string, and branching through every part of it. It had a
small brain and medulla spinalis continued into a bony theca, with nerves passing
from thence through the foramina of the bones; but no resemblance of any
thoracic or abdominal viscera. The rest of its bulk was made up of fat.

† By dead-born children I mean those that die after they have been perceived to
move, that is, generally after four months. Abortions, or deaths before that
period, may reasonably be estimated at double this number; so that, perhaps,
1 child in 8 dies in the womb, or in the act of coming into the world.

buried
buried their children before the end of two months. Of this number 53, or 5 in 8, were boys, and 32 girls.

This singular circumstance of there being a greater number of males than females among the still-born children, and of a greater number of male children dying in infancy than of females, has been remarked by Dr. Price and other writers on calculations; and Dr. Haygarth* has shewn that at Chester more husbands die in a given period than wives. This naturally suggests an enquiry, whether the lives of males are at all ages more precarious than those of females.

To be enabled to assist in answering this question, I have added the following article to my register, viz. of the children that shall be living at the time the women apply for their letters, how many will be boys, and how many girls?

* Observations on the bills of mortality in Chester for the year 1772.
TABLE of the ages at which women begin and cease to be capable of bearing children, and of the intermediate periods at which they are most so.

Of 2102 pregnant women

<table>
<thead>
<tr>
<th>Years of age</th>
<th>15 to 19</th>
<th>85, or 1 in 25, from 15 to 20 inclusive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 or 1 in 58 were from</td>
<td>21 to 25</td>
<td>1684, or four-fifths</td>
</tr>
<tr>
<td>49 or 1 in 43 were</td>
<td>26 to 30</td>
<td>were from 21 to 35 inclusive.</td>
</tr>
<tr>
<td>578 or 5 in 19 were from</td>
<td>31 to 35</td>
<td>35 inclusive.</td>
</tr>
<tr>
<td>699 nearly 1 in 3 were from</td>
<td>36 to 40</td>
<td></td>
</tr>
<tr>
<td>407 nearly 1 in 5 were from</td>
<td>41 to 45</td>
<td>42, or 1 in 50, from 41 to 49.</td>
</tr>
<tr>
<td>291 or 3 in 22 were from</td>
<td>46 to 49</td>
<td></td>
</tr>
<tr>
<td>36 or 1 in 58 were from</td>
<td>41 to 45</td>
<td>42, or 1 in 50, from 41 to 49.</td>
</tr>
<tr>
<td>6 or 1 in 350 were from</td>
<td>46 to 49</td>
<td></td>
</tr>
</tbody>
</table>

* Although 2102 women, the number here mentioned, obtained letters, entitling them to the assistance of the midwives, 1897 only were delivered by them; the remainder either removed out of the bounds of the Dispensary, or, from some alteration in their circumstances, were obliged to go to an hospital or workhouse.

† 1 of these women was between 15 and 16 years of age.

| 1 between 16 and 17; |
| 3 between 17 and 18; |
| 10 between 18 and 19; and |
| 21 between 19 and 20. |
TABLES of the number of children borne by 1389 * women, with the number that were living at the time of their applying to the Dispensary.

<table>
<thead>
<tr>
<th>Women</th>
<th>No of children borne by each woman</th>
<th>Total of children born</th>
<th>Total of children living</th>
<th>No of women who had preserved their children</th>
<th>No of children preserved by each woman</th>
<th>Total of children preserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>24</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>17</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>48</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>28</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>155</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>168</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>165</td>
<td>45</td>
<td>1</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>220</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>297</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>8</td>
<td>448</td>
<td>151</td>
<td>4</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>74</td>
<td>7</td>
<td>518</td>
<td>213</td>
<td>3</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>89</td>
<td>6</td>
<td>534</td>
<td>214</td>
<td>11</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>138</td>
<td>5</td>
<td>690</td>
<td>288</td>
<td>32</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>169</td>
<td>4</td>
<td>676</td>
<td>293</td>
<td>84</td>
<td>4</td>
<td>336</td>
</tr>
<tr>
<td>208</td>
<td>3</td>
<td>624</td>
<td>299</td>
<td>174</td>
<td>3</td>
<td>522</td>
</tr>
<tr>
<td>254</td>
<td>2</td>
<td>508</td>
<td>259</td>
<td>306</td>
<td>2</td>
<td>612</td>
</tr>
<tr>
<td>299</td>
<td>1</td>
<td>299</td>
<td>171</td>
<td>464</td>
<td>1</td>
<td>464</td>
</tr>
</tbody>
</table>

1389 and 370 were in their first pregnancy, and 1079 had lost all their childr.

* In order to account for the difference between the number of the women in these and the preceding tables, it is proper to mention, that this account was not begun until some months after the former one. In these also care has been taken that no woman is reckoned more than once, although many of them had been assisted by the midwives to the Dispensary two, three, or four times. 370, as noted in the table, were in their first pregnancy.

† Of these 5419 children 2747 were boys, and 2672 girls, or nearly as 36 boys to 35 girls. This proportion of the boys to the girls will be found a little different from what is given in the table p. 362.

I have
of the Westminster General Dispensary.

I have placed these two tables together, that we might have an opportunity of observing how exceedingly fertile the women of the poorer classes in this country are; and at the same time how unable to rear any considerable number of children; for, although 321 of the women had borne six children and upwards each, and were all again pregnant, 19 only of them had been able to rear six or more children; and, although 102 of the women had borne nine children and upwards each, only one of them had been able to preserve that number living.

I am inclined to believe, that this great mortality amongst the children does not arise from any natural imbecillity or a constitution vitiated from the birth, many of those victims being born with all the appearances of health and vigour; but that we ought rather to search for the cause of it in the poverty of the parents, which prevents their taking the necessary care of, or even affording sufficient clothing and nourishment to their offspring. Whether this great check to population is in its nature irremediable; and whether an abatement in the parish rates and taxes, but particularly the former, to persons rearing more than a certain number of children, or any other mode of relief and encouragement, would contribute to restrain so melancholy an evil, are inquiries well deserving the attention of government. In order to determine how well my conjectures on this subject are founded, it might be useful, perhaps, to learn what the proportion of deaths is in more opulent families, where the cause just now mentioned can have but little influence. But this must be the result of the united observations of different practitioners.

I shall now from these tables attempt to collect what the chance of life is at different periods, from infancy to twenty-six years of age; but, that I may be understood, it will be necessary
necessary to premise some account of the method I have followed.

I have supposed each of the women to bear a child every two years; this, from the account of those who returned to the Dispensary a second, third, or fourth time, appearing to be the mean term. Upon this principle, when I find that a woman applied at the Dispensary who had had one child before, I conclude, that that child would be two years old, if living; but if the woman had borne two children, I suppose that the first would be four, the second two years old, and so on. And finding, that of 299 children borne by as many women, who were now advanced in their second pregnancy, 171, or seventeen-twelfths only were living, I conclude, that on an average 5 out of 12 die under two years of age: and observing that of 508 children borne by 254 women, who were now advanced in their third pregnancy, 259 only were living, I first deduct 210, which is five-twelfths of the whole number, who died under two years of age; and then find that 39, which is nearly one-twelfth of the whole number, or one-seventh of the survivors, died between two and four years of age.
TABLE of the chance of life from infancy to 26 years of age.

<table>
<thead>
<tr>
<th>Age</th>
<th>Persons living</th>
<th>Decrease of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5400</td>
<td>2250</td>
</tr>
<tr>
<td>2</td>
<td>3150</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>2700</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>2520</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>2313</td>
<td>156</td>
</tr>
<tr>
<td>18</td>
<td>2160</td>
<td>540</td>
</tr>
<tr>
<td>26</td>
<td>1620</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Whether this mode of calculating the chance of life will be admitted by gentlemen who have made speculations of this kind their peculiar study, I know not. I confess, that when I first thought of it, I expected it would have proved more certain and accurate than upon examination I have found it to be: for, although in the first series of years, where the deaths are numerous, the proportions agree tolerably well with the tables of M. Buffon and others, yet as we advance we find ourselves obliged to take longer periods than two years. Thus, for instance, we may observe, that although from 2 to 4, from 4 to 6, and from 6 to 8 years of age, the decrease continues to go on; yet so far is this from being the case between the ages of 8 and 10, or even 12, that there then appears to be some trifling increase. But as the proportion of deaths from 8 to 10 or 12 is probably inconsiderable, a very small deduction from the deaths in the earlier years would rectify this difference. A deviation of this kind, I presume, might be occasioned by the small-pox,
some other epidemic, prevailing amongst children during
two or three years of the time I was making this collection,
which would occasion the decrease in the first and second series
to be greater than usual. If this should prove to be the case, it
is probable, that in a course of years, by comparing this with
a variety of similar tables, the true medium may be found.

A COMPARATIVE TABLE of the population of London, with a
view to shew the proportion of natives to persons born in the
different counties of England and Wales, in Scotland, Ire-
land, or foreign countries.

Of 3236 married persons
324 or one-fourth were born in London.
1870 or four-sevenths in the different counties of England and
Wales.
209 or 1 in 15 in Scotland.
280 or 1 in 11 in Ireland.
53 or 1 in 60 were foreigners.

3236

Of the above number the males and females were in the
following proportions.

<table>
<thead>
<tr>
<th>Men.</th>
<th>Women.</th>
</tr>
</thead>
<tbody>
<tr>
<td>329 were born in London, and</td>
<td>495 or 166 more than men.</td>
</tr>
<tr>
<td>952 in different counties</td>
<td>917 or 35 fewer than men.</td>
</tr>
<tr>
<td>135 in Scotland,</td>
<td>74 or 61 fewer than men.</td>
</tr>
<tr>
<td>162 in Ireland,</td>
<td>119 or 43 fewer than men.</td>
</tr>
<tr>
<td>40 were foreigners,</td>
<td>13 or 27 fewer than men.</td>
</tr>
<tr>
<td>1618</td>
<td>1618 166</td>
</tr>
</tbody>
</table>

2

Thus,
Thus, of 824 married persons born in London, there were one-fifth more women than men. This may be accounted for either by supposing a greater number of males to die or to migrate before they attain a marriageable age than women. It is also to be observed, that of the Scotch and of the foreigners the women are in proportion to the men as about 1 to 3; but of the Irish they are as 3 to 7.

By this table we find at how great an expence to the country this city is maintained; and as we may suppose that the bulk of the Scotch, Irish, and foreigners, who come into the kingdom, reside in the metropolis, we hence may also learn in what proportion they contribute to repair the waste which is incurred by its excessive populousness. A more compleat knowledge of these facts may give rise to regulations which, if the calculations of Dr. Price shall be found to be just, are but too necessary; but I fear I have already intruded upon your patience, and extended this paper beyond its due bounds. I shall only add, that if these inquiries should be favourably received by the illustrious body to whom you have so obligingly undertaken to present them, they will be continued, and their value of course increased by the additional number of objects which each year will supply.

I am, &c.

St. Alban's Street,
March 26, 1781,
XXIII. Account of a Child who had the Small-pox in the Womb.

In a Letter from William Wright, M. D. F. R. S. to John Hunter, Esq. F. R. S.

Read May 21, 1781.

Southampton-buildings, Holborn,
Feb. 27, 1781.

SIR,

I have read with much pleasure and information Mrs. Ford's case, which you published in Phil. Trans. vol. LXX. p. 128. From the facts you have adduced it amounts to a certainty, that her foetus had received the variolous infection in the womb.

This induces me to lay before you a singular case, that fell under my care some years ago. I am sorry I cannot be more particular, having unfortunately lost all my books and my notes of practice of this case and several others, by the capture of the convoy on the 9th of last August.

In 1768 the small-pox was so general in Jamaica that very few people escaped the contagion. About the middle of June Mr. Peterkin, merchant at Martha-brae, in the parish of Trelawney, got about fifty new negroes out of a ship: soon after they landed, several were taken ill of a fever, and the small-pox appeared; the others were immediately inoculated. Amongst the number of those who had the disease in the natural way, was a woman of about twenty-two years of age, and big with child. The eruptive fever was slight, and the small-pox
Small-pox had appeared before I saw her. They were few, distinct and large, and she went through the disease with very little trouble, till on the fourteenth day from the eruption she was attacked with the fever, which lasted only a few hours. She was, however, the same day taken in labour, and delivered of a female child with the small-pox on her whole body, head, and extremities. They were distinct and very large, such as they commonly appear on the eighth or ninth day in favourable cases. The child was small and weakly; she could suck but little; a wet nurse was procured, and every possible care taken of this infant, but she died the third day after she was born. The mother recovered, and is now the property of Alexander Peterkin, Esq. in St. James's Parish.

In the course of many years practice in Jamaica, I have remarked, that where pregnant women had been seized with the natural small-pox, or even by mistake inoculated, that they generally miscarried in the time of, or soon after, the eruptive fever; but I never saw any signs of small-pox on any of their bodies, except on the child's above mentioned.

I am, &c.
XXIV. Natural History of the Insect which produces the Gum Lacca. By Mr. James Kerr, of Patna; communicated by Sir Joseph Banks, P. R. S.

Read May 24, 1781.

COCCUS LACCA.

Head and trunk. THE head and trunk form one uniform, oval, compressed, red body, of the shape and magnitude of a very small louse, consisting of twelve transverse rings. The back is carinate; the belly flat; the antennæ half the length of the body, filiform, truncated, and diverging, sending off two, often three, delicate, diverging hairs, longer than the antennæ. The mouth and eyes could not be seen with the naked eye.

Tail. The tail is a little white point, sending off two horizontal hairs as long as the body.

Feet. It has three pair of limbs, half the length of the insect.

I have often observed the birth of these insects, but never could see any with wings; nor could I find any distinction of sexes, nor observe their connubial rites: nature and analogy seem to point out a deficiency in my observations, possibly owing
owing to the minuteness of the object, and want of proper glasses.

This insect is described in that state in which it falls from the womb of the parent in the months of November and December. They traverse the branches of the trees upon which they were produced for some time, and then fix themselves upon the succulent extremities of the young branches. By the middle of January they are all fixed in their proper situations, they appear as plump as before, but show no other marks of life. The limbs, antennae, and setæ of the tail are no longer to be seen. Around their edges they are environed with a spissid subpellucid liquid, which seems to glue them to the branch: it is the gradual accumulation of this liquid, which forms a complete cell for each insect, and is what is called Gum Lacca. About the middle of March the cells are completely formed, and the insect is in appearance an oval, smooth, red bag, without life, about the size of a small eucanical insect, emarginated at the obtuse end, full of a beautiful red liquid. In October and November we find about twenty or thirty oval eggs, or rather young grubs, within the red fluid of the mother. When this fluid is all expended, the young insects pierce a hole through the back of their mother, and walk off one by one, leaving their exuviae behind, which is that white membranous substance found in the empty cells of the Stick Lac.

Place.
Mr. Kerr's History of the Place.

The insects are the inhabitants of four trees.
3. Plafo Hortus Malabarici. By the natives, Prafo.

The insects generally fix themselves so close together, and in such numbers, that I imagine only one in six can have room to compleat her cell: the others die, and are eat up by various insects. The extreme branches appear as if they were covered with a red dust, and their sap is so much exhausted, that they wither and produce no fruit, the leaves drop off, or turn to a dirty black colour. These insects are transplanted by birds: if they perch upon these branches, they must carry off a number of the insects upon their feet to the next tree they rest upon. It is worth observing, that these fig trees when wounded drop a milky juice, which instantly coagulates into a viscid ropey substance, which, hardened in the open air, is similar to the cell of the Coccus Lacca. The natives boil this milk with oils into a bird-lime, which will catch peacocks or the largest birds.

A red medicinal gum is procured by incision from the Plafo Tree, so similar to the Gum Lacca that it may readily be taken for the same substance.
Insect which produces the Gum Lacca.

Substance. Hence it is probable, that those insects have little trouble in animalizing the sap of these trees in the formation of their cells. The Gum Lacca is rarely seen upon the Rhamnus Jujuba; and it is inferior to what is found upon the other trees. The Gum Lacca of this country is principally found upon the uncultivated mountains on both sides the Ganges, where bountiful nature has produced it in such abundance, that was the consumption ten times greater the markets might be supplied by this minute insect. The only trouble in procuring the Lac is in breaking down the branches, and carrying them to market. The present price in Dacca is about twelve shillings the hundred pounds weight, although it is brought from the distant country of Assam. The best Lac is of a deep red colour. If it is pale, and pierced at top, the value diminishes, because the insects have left their cells, and consequently they can be of no use as a dye or colour, but probably they are better for varnishes.

This insect and its cell has gone under various names of Gum Lacca, Lack, Loc Tree. In Bengal, La; and by the English it is distinguished into four kinds.

1st. Stick Lac, which is the natural state from which all the others are formed.

2. Seed Lac is the cells separated from the sticks.

3d. Lump
Mr. _Reef's_ History of the

3d. Lump Lac is Seed Lac liquified by fire, and formed into cakes.

4th. Shell lac is the cells liquified, strained, and formed into thin transparent laminae in the following manner. Separate the cells from the branches, break them into small pieces, throw them into a tub of water for one day, wash off the red water and dry the cells, and with them fill a cylindrical tube of cotton cloth, two feet long, and one or two inches in diameter; tie both ends, turn the bag above a charcoal fire; as the Lac liquifies twist the bag, and when a sufficient quantity has transfused the pores of the cloth, lay it upon a smooth junk of the Plantain tree (Musca Paradisiaca, Linnæi), and with a strip of the Plantain leaf draw it into a thin lamella; take it off while flexible, for in a minute it will be hard and brittle. The value of Shell Lac is according to its transparency.

Use to the natives.

Ornaments for the ladies.

Sealing wax. Take a stick, and heat one end of it upon a charcoal fire; put upon it a few leaves of the Shell Lac softened above the fire; keep alternately heating and adding more Shell Lac, until you
Infest which produces the Gum Lacca.

you have got a mass of three or four pounds of liquified Shell Lac upon the end of your stick*. Knead this upon a wetted board with three ounces of levigated cinnabar, form it into cylindrical pieces; and, to give them a polish, rub them while hot with a cotton cloth.

Japanning. Take a lump of Shell Lac, prepared in the manner of sealing-wax, with whatever colour you please, fix it upon the end of a stick, heat the polished wood over a charcoal fire, and rub it over with the half-melted Lac, and polish, by rubbing it even with a piece of folded Plantain leaf held in the hand; heating the lacquer, and adding more Lac as occasion requires. Their figures are formed by Lac, charged with various colours in the same manner.

Varnish. In ornamenting their images and religious houses, &c. they make use of very thin beat lead, which they cover with various varnishes, made of Lac charged with colours. The preparation of them is kept a secret. The leaf of lead is laid upon a smooth iron heated by fire below, while they spread the varnish upon it.

Grindstones. Take of river sand three parts, of Seed Lac washed one part, mix them over the fire in a pot, and form the mass into the shape of a grindstone, having a square hole in the center, fix it on an axis with liquified Lac, heat the stone moderately, and by turning the axis it may easily be formed into an exact orbicular shape. Polishing

* In this manner, Lump Lac is formed from Seed Lac.
ing grindstones are made only of such sand as will pass easily through fine muslin, in the proportion of two parts sand to one of Lac. This sand is found at Ragimaul. It is composed of small angular crystalline particles, tinged red with iron, two parts to one of black magnetic sand.

The stone-cutters, instead of sand, use the powder of a very hard granite called Corune.

These grindstones cut very fast. When they want to increase their power they throw sand upon them, or let them occasionally touch the edge of a vitrified brick. The same composition is formed upon sticks, for cutting stones, shells, &c. by the hand.

Painting. Take one gallon of the red liquid from the first washing for Shell Lac, strain it through a cloth, and let it boil for a short time, then add half an ounce of soap earth (fossil alkali); boil an hour more, and add three ounces of powdered load (bark of a tree); boil a short time, let it stand all night, and strain next day. Evaporate three quarts of milk, without cream, to two quarts, upon a slow fire, curdle it with four milk, and let it stand for a day or two; then mix it with the red liquid above mentioned; strain them through a cloth, add to the mixture one ounce and an half of allum, and the juice of eight or ten lemons: mix the whole, and throw it into a cloth-bag strainer. The blood of the insect forms a coagulum with the caseous part of the milk, and remains in the bag, while a limpid acid water
Insect which produces the Gum Lacca.

water drains from it. The coagulum is dried in the shade, and is used as a red colour in painting and colouring.

Dying.

Take one gallon of the red liquid prepared as before without milk, to which add three ounces of allum. Boil three or four ounces of tamarinds in a gallon of water, and strain the liquor. Mix equal parts of the red liquid and tamarind water over a brisk fire. In this mixture dip and wring the silk alternately until it has received a proper quantity of the dye. To increase the colour, increase the proportion of the red liquid, and let the silk boil a few minutes in the mixture. To make the silk hold the colour, they boil a handful of the bark called Lead in water, strain the decoction, and add cold water to it; dip the dried silk into this liquor several times, and then dry it. Cotton cloths are dyed in this manner; but the dye is not so lasting as in silk.

Spanish wool. The Lac colour is preserved by the natives upon flakes of cotton dipped repeatedly into a strong solution of the Lac Insect in water, and then dried.

Use to the Europeans. See European authors.
Explanation of the figures.

α. The Coccus Lacca at its birth, {natural size.
β. Ditto, big with young,
γ. The embryo before birth inclosed in its membrane,
δ. The Coccus, with two hairs from each antenna, {magnified.
ε. Ditto, with three hairs from each antenna,
XXV. Account of a Phenomenon observed upon the Island of Sumatra. By William Marsden, Esq.; communicated by Sir Joseph Banks, P. R. S.

Read May 24, 1781.

SIR,

DURING my residence on the island of Sumatra in the East Indies, I had occasion to observe a phenomenon singular, I believe, in its kind, an account of which may not perhaps be uninteresting to the curious.

In the year 1775 the S.E. or dry monsoon, set in about the middle of June, and continued with very little intermission till the month of March in the following year. So long and severe a drought had not been experienced then in the memory of the oldest man. The verdure of the ground was burnt up, the trees were stripped of their leaves, the springs of water failed, and the earth everywhere gaped in fissures. For some time a copious dew falling in the night supplied the deficiency of rain; but this did not last long: yet a thick fog, which rendered the neighbouring hills invisible for months together, and nearly obscured the sun, never ceased to hang over the land, and add a gloom to the prospect already but too melancholy. The Europeans on the coast suffered extremely by sickness; about a fourth part of the whole number being carried off by fevers...
and other bilious distempers, the depression of spirits which they laboured under not a little contributing to hasten the fatal effects. The natives also died in great numbers.

In the month of November 1775, the dry season having then exceeded its usual period, and the S.E. winds continuing with unremitting violence, the sea was observed to be covered, to the distance of a mile, and in some places a league from shore, with fish floating on the surface. Great quantities of them were at the same time driven on the beach or left there by the tide, some quite alive, others dying, but the greatest part quite dead. The fish thus found were not of one but various species, both large and small, flat and round, the Cat-fish and Mullet being generally the most prevalent. The numbers were prodigious, and overspread the shore to the extent of some degrees; of this I had ocular proof or certain information, and probably they extended a considerable way farther than I had opportunity of making enquiry. Their first appearance was sudden; but though the numbers diminished, they continued to be thrown up, in some parts of the coast, for at least a month, furnishing the inhabitants with food, which, though attended with no immediate ill consequence, probably contributed to the unhealthiness so severely felt. No alteration in the weather had been remarked for many days previous to their appearance. The thermometer stood as usual at the time of year at about 85°.

Various were the conjectures formed as to the cause of this extraordinary phenomenon, and almost as various and contradictory were the consequences deduced by the natives from an omen so portentous; some inferring the continuance, and others, with equal plausibility, a relief from the drought. With respect to the cause, I must confess myself much at a loss.
observed upon the Island of Sumatra.

I was to account for it satisfactorily. If I might hazard a conjecture, and it is not offered as any thing more, I would suppose, that the sea requires the mixture of a due proportion of fresh water to temper its saline quality, and enable certain species of fish to subsist in it. Of this salubrious correction it was deprived for an unusual space of time, not only by the want of rain, but by the ceasing of many rivers to flow into it, whose sources were dried up. I rode across the mouths of several perfectly dry, which I had often before passed in boats. The fish no longer experiencing this refreshment, necessary as it would seem to their existence, sickened and perished as in a corrupted element.

If any thing similar to what I have above described has been noticed in other parts of the world, I should be happy by a comparison of the attendant circumstances, to investigate and ascertain the true causes of so extraordinary an effect. In communicating to you the observations I have made, I pursue the most likely means of obtaining this satisfaction.

I have the honour to be, &c.

Read May 24, 1781.

DEAR SIR,

SOME days of very cold weather, which we had lately in this country, having afforded an opportunity of prosecuting a little farther the experiments and observations begun in the course of last year, I now do myself the pleasure of communicating to you the following particulars, which perhaps may be considered as not unworthy of notice.

The frost set in on Sunday the 21st of January, after a considerable fall of snow on the preceding evening, and about midnight the thermometers were exposed near to the Observatory in the situations mentioned in my former letter. The following register shews the difference of temperature between the snow and the air, till eight o'clock on Monday morning, to which are subjoined some facts which prove very consonant to those described in the former paper.

The sign — prefixed denotes degrees below 0. The sign + degrees above 0 of FAHRENHEIT's thermometer.

Glasgow College,
Feb. 9, 1781.

Monday

<table>
<thead>
<tr>
<th>h.</th>
<th>m.</th>
<th>Thermometer in air</th>
<th>Thermometer on snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>-12</td>
</tr>
<tr>
<td>1:30</td>
<td></td>
<td>+2</td>
<td>-12</td>
</tr>
<tr>
<td>1:45</td>
<td></td>
<td>0</td>
<td>-8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>3:45</td>
<td></td>
<td>0</td>
<td>-8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-1</td>
<td>-12</td>
</tr>
<tr>
<td>4:30</td>
<td></td>
<td>-3</td>
<td>-8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>6:15</td>
<td></td>
<td>-3</td>
<td>-13</td>
</tr>
<tr>
<td>6:45</td>
<td></td>
<td>-2</td>
<td>-10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-3</td>
<td>-13</td>
</tr>
<tr>
<td>7:30</td>
<td></td>
<td>-2</td>
<td>-10</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-4</td>
<td>-11</td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td>-2</td>
<td>-10</td>
</tr>
</tbody>
</table>

From one o'clock till three in the morning the thermometer in air at the balustrade of the east wing of the Observatory pointed from +4 to +6, and on the snow there from -2 to 0. At half an hour after one the thermometer in air, twenty-four feet from the ground, and to the windward of the house, pointed to +7, and at eight o'clock to +1. At three o'clock the snow in the park, three inches below the surface, raised the thermometer to +14, and at six inches below, near the ground, to +24. The barometer stood at 29.8 inches, and there was a perceptible motion of the air from the east and one point south. This night was a very general and lively aurora borealis, most part...
Mr. Wilson's further

part of it of a bright red, which formed a crown near to the zenith; but it mostly vanished about three o'clock, after which time the air became more still. During the whole of this night, as well as of the succeeding times of observing, the air was not nearly so much disposed to give out hoar-frost as it was last year.

On Monday evening the difference of temperature was found to be as in the following register.

Monday evening,

<table>
<thead>
<tr>
<th>h. m.</th>
<th>Therm. in air.</th>
<th>Therm. in snow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>+16 +7</td>
</tr>
<tr>
<td>8 30</td>
<td></td>
<td>+14 +3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>+ 8 +1</td>
</tr>
<tr>
<td>9 30</td>
<td></td>
<td>+ 7 +1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>+ 7 +3</td>
</tr>
<tr>
<td>10 30</td>
<td></td>
<td>+ 6 +0</td>
</tr>
<tr>
<td>11</td>
<td>Ball of therm.</td>
<td>+ 5 +3</td>
</tr>
<tr>
<td></td>
<td>1 inch above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the surface of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the snow,</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ditto,</td>
<td>+ 5 +3</td>
</tr>
</tbody>
</table>

Tuesday morning.

<table>
<thead>
<tr>
<th>h. m.</th>
<th>Therm. in air.</th>
<th>Therm. in snow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ball of therm.</td>
<td>4 6 +3</td>
</tr>
<tr>
<td></td>
<td>as formerly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>half immersed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the snow,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>+ 8 +5</td>
</tr>
<tr>
<td>2 30</td>
<td></td>
<td>+10 +6</td>
</tr>
</tbody>
</table>

No aurora this evening; the air very still and serene till about two o'clock Tuesday morning, when the wind rose remarkably, and clouds formed in the north-east.
Experiments on Cold.

On Thursday, January 25, the difference of temperature was found to be as here set down.

Thursday morning.

<table>
<thead>
<tr>
<th>h. m.</th>
<th>Thermometer in air.</th>
<th>Thermometer in snow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 45</td>
<td>-</td>
<td>+10</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>+10</td>
</tr>
<tr>
<td>10 30</td>
<td>-</td>
<td>+14</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>+14</td>
</tr>
<tr>
<td>11 30</td>
<td>-</td>
<td>+17</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>+20</td>
</tr>
<tr>
<td>12 30</td>
<td>-</td>
<td>+22</td>
</tr>
<tr>
<td>1 afternoon</td>
<td>-</td>
<td>+25</td>
</tr>
<tr>
<td>1 30</td>
<td>-</td>
<td>+27</td>
</tr>
</tbody>
</table>

From ten till eleven o'clock this forenoon the thermometer on the balustrade in air, six inches above the snow, pointed to +14, and when tried upon the snow to +10. About noon this day some clouds were formed, which became quite general by one o'clock.

During the two last times of observing, three experiments were made with a view of discovering whether the snow without doors was gaining any thing from the air; or if any of it was carried off in the way of evaporation? For this purpose, a shallow dish, made of sheet brass, four inches in diameter, was exactly filled with snow, and carefully weighed. In order to defend the outside of the dish from the air, that no hoar-frost might attach itself to the metal, a circular hole was cut in the lid of a paste-board box, so wide as just to let in the dish.

Vol. LXXI.
to the very brim, so that nothing communicated with the external air but the snow itself. The apparatus, in this state, was set without doors for three hours each time, and then brought in to the lobby of the Observatory, where the dish was again weighed: but in none of these trials did it ever appear, that any weight was lost. On the contrary, at the first weighing, which was on Monday night, twelve o'clock, it had gained five grains. In the other two trials the increase of weight was scarce perceivable.

The temperature of the air in the west room of the Observatory remaining very constantly for near two days at +27°, a dish of snow, similar to the other exposed there, was found to lose weight very sensibly, and for the most part at the rate of two grains in an hour. Notwithstanding this, the snow thus wasting or evaporating had no power of sinking the thermometer below +27, the temperature of the surrounding air; though at one time it was fanned for four minutes by a piece of paper fastened to the end of a long stick. Not to disturb the uniform temperature of this room during these experiments, care was taken to stay in it a very short time at every visit, and to keep the door and the window-shutters close.

On Christmas-day we had a frost, which in the morning made the thermometer in air point to +21; and during the preceding night there had been a profuse deposition of hoar-frost. A pound of this was collected, and its capacity for heat compared to that of ice, and found equal as nearly as could be judged. Before making the two mixtures necessary for this experiment, the ice was reduced to a powder, and spread out on a paper beside the hoar-frost till both had acquired the same temperature.

On
Experiments on Cold.

On Monday night, January 22, about twelve o'clock, having occasion to take up a little snow, there was observed a cohesion among its parts rather greater than what might have been expected in a substance, at that time, so much frozen. This circumstance was farther examined by the following experiment. A pane of glass was laid on the surface of the snow till it had acquired the temperature of +3, after which, with a bit of parchment equally cold, some snow was scraped from the very surface, and shaken all over the pane, so as to cover it in most parts lightly. Upon now lifting the pane, and holding it with the snow underneath, the whole of it adhered, and it required some smart raps before the greater part fell away. What remained cleaved to the glass with still a greater adhesion.

The experiments related above afford further reasons against the opinion of the difference of temperature betwixt the snow or hoar-frost and the air depending upon evaporation. It would moreover appear, that this phenomenon depends not either upon the deposition of hoar-frost. What renders this the more probable is, that on last year there was a much more copious deposition at times when the difference of temperature was not more remarkable. But allowing that a deposition had been found a necessary circumstance, and always in proportion to that difference, the experiments on the capacities of hoar-frost and ice seem to shew, that the sensible heat which disappears enters not into the composition of the hoar-frost; otherwise the capacity of this substance for heat, compared to that of ice or common snow, should be very different. It must be confessed, however, that the above mentioned experiment would have been more applicable to this reasoning, had it been made with hoar-frost given out in colder states of the air.
If the air, at low temperatures, had any power of acting upon the snow or hoar-frost, so as to produce a gradual melting, this circumstance, according to the known laws of heat, might occasion the difference of temperature under consideration. And what renders this idea not altogether improbable, is the peculiar cohesion among the parts of the snow above described. Perhaps a gentle melting might take place without much altering the appearance of the snow or hoar-frost at the surface, as the parts, when dissolved, might be gradually sucked downwards, and be afterwards distributed through the whole drier mass. It may also be worthy of an experimental inquiry to determine, how far that sort of concretion, observable all over the surface of snow which has been long frozen, bears any marks of a slow process of this kind. From a hill, a little way to the N.E. of the town, and which was windward during the frost, there were gathered two portions of snow, the one from the surface, and the other seven inches below it. The water produced from the two kinds is preserved in very clean phials, in order to be compared together by some chemical trials, which, perhaps, may throw some light upon the whole of this matter.

At present I shall conclude this letter, perhaps already much too long, with just mentioning one other fact which was new to me; namely, the power of ardent spirits of dissolving snow, and consequently of producing with it a freezing mixture. The alcohol and snow separately were at eight degrees below the freezing point, and when mixed suddenly and intimately, the temperature became in the space of twenty seconds 28° below 0. This is a cold only 12° short of that which Fahrenheit first produced by using spirit of nitre for the experiment; and it
Experiments on Cold.

it is not improbable, had the present experiment been tried with more precaution and address, that the result would have been still more remarkable. There was employed only about a pint of alcohol, but the proportion of snow was not then attended to, and the thaw coming soon afterwards prevented a repetition of the experiment.

I am, &c.

POSTSCRIPT.

I beg leave to add, that the water mentioned as produced from the superficial snow has been examined by several chymical trials, with a view of discovering if it differed in any respect from the water obtained from snow gathered at considerable depths, and near the ground. Had the atmosphere, when the thermometers pointed so low, been disposed to furnish any saline principle, the union of such an ingredient with the snow would have tended to produce an excess of cold at the surface, similar to what was then observed. Or if the snow at these low temperatures had acquired any remarkable power of dephlogisticating the air in contact with it, a cooling process at and near the confines of the snow and air might thereby have been maintained. In either of these cases, some very sensible indications of a saline or of a phlogistic principle might be expected on the water given by the
Mr. Wilson's farther Experiments on Cold.

the snow collected from the surface. But in opposition to both of these views it remains now to be mentioned, that nothing of this kind did appear in the course of the experiments, which indeed were contrived chiefly to detect such circumstances.

If therefore the arguments produced in both papers upon this subject will not allow us to account for so remarkable a cooling process by an evaporation at the surface of the snow, it would appear, that there remains still something unknown with respect to the cause. A proper investigation of this matter, in climates favourable to such experiments, may possibly unfold some farther properties of heat with which at present we may be wholly unacquainted.
XXVII. A general Theory for the Mensuration of the Angle subtended by Two Objects, of which one is observed by Rays after Two Reflections from plane Surfaces, and the other by Rays coming directly to the Spectator's Eye. By George Atwood, M.A. F. R.S.

Read June 21, 1781.

The actual determination of an angle implies two observations, one taken at each extremity of the arc by which that angle is measured. When fixed astronomical quadrants or other sectors are used for the practical estimation of angles, one of these observations is previously made by directing the axis of the telescope or line of collimation to some fixed point in the heavens, the index being then coincident with the initial point on the arc of the sector: after this adjustment, one observation only is necessary to ascertain the angular distance.
distance between that point and any other celestial object in the
plane of the sector. This method, however, is evidently
impracticable, unless the instrument can be steadily fixed; for
which reason astronomical quadrants become useless at sea; and
from the difficulties which attend placing them in their due posi-
tion and adjustment on firm ground, they are almost wholly
confined to regular observatories.

Mr. Hadley*, by an ingenious application of optical prin-
ciples, contrived to bring both extremities of the arc measured
into the field of the spectator's view at the same time; by
which improvement, angles are taken at sea, as well as on land
with an unfixed instrument, to a degree of accuracy sufficient
for nautical and other purposes, when the utmost exactness is
not required.

Mr. Hadley's invention is a particular case of a very
extensive theory, as yet but little attended to. According to
his method, which is well known, the two reflecting surfaces
used in the observation are perpendicular to the plane of mo-
tion; the direction of the telescope, and of the rays passing
between the reflectors being parallel to that plane; whereas the
inclination of the telescope, and of the intermediate rays, as
well as of the reflectors themselves to the plane of motion,
admits of unlimited variety. A general theory to determine
the angle observed by two reflections from the data on which
its magnitude depends, without limitation or restriction, seems
applicable to several useful purposes in practical astronomy. Hav-
ing never seen any geometrical construction or analysis of this
curious problem, I was induced to bestow some considera-

* Phil. Trans. No 420. See also a tract, intituled, The Theory of Hadley's
quadrant, by the Rev. W. Ludlam.
of the Angle subtended by Two Objects, &c. 397

on the subject, and shall be happy if the result of my inquiries appears to merit the attention of the Royal Society.

Art. 1. The manner of taking an observation by two reflections unconfined to any particular case may be described thus. Let C, B (fig. 1.) represent two plane reflecting surfaces, inclined to a plane OPA at any given angle. Through any point of the reflecting surface C draw a line perpendicular to the plane OPA, and with the point where the line meets the plane as a centre (which must here be represented by C) and any distance CP, describe a circle OPA. The reflecting plane B always continuing fixed, let the reflector C be moveable along with the radius CP as it revolves in the plane OPA round the centre C: the angular motion of the speculum C, referred to the circumference OPA, will be measured by the arc which the radius CP describes, the inclination of the plane C to the plane of motion OPA being always the same, and equal to that of the fixed speculum B.

2. The two plane reflectors, B and C, being equally inclined to the plane OPA, it follows, that during the motion of C there must be some point O in the circumference OAP, at which when CP arrives, the reflector C will be parallel to the fixed reflector B.

3. When the moveable radius which carries round the plane C is at any other position CP, let a ray flowing from a distant object T impinge on the speculum C; let it be reflected thence in the direction CB, and being again reflected at B in the direction BG, let it be observed by a spectator's eye at G; the image of T will appear somewhere in the line GBS; suppose that a ray flows from a distant object S situated in the line GB produced, and that this ray SG comes directly to the spectator's eye
eye at G: the object S seen by direct rays, and the image of
the point T seen by rays after two reflections, will appear to
coincide in the line GBS. This is an observation by two
reflections, from which, together with such data as limit the
problem, the true angle subtended by the objects T and S is to
be inferred.

4. The data which limit this problem, being necessary for
the determination of the angle subtended by T and S are in
number four, which are next to be considered. 1st. One of these
data is the arc PO, being the angular distance of the moveable
radius CP, measured on the circumference of the circle OPA,
from that position CO, at which the two reflectors are parallel;
the situation of this arc OP in respect of the point O being
supposed known, that is, it being known on which side of that
point, OP is situated in respect of the ray BG. 2dly, The com-
mon inclination of the reflecting planes B and C to the plane of
motion is another of these data. The third and fourth of
the conditions must be mentioned rather more particularly.
The ray BG is always understood to be given in position in
respect of the plane of motion OPA (considered as immovable)
being either coincident with the line of collimation of a tele-
scope, or directed by sights so as to be invariably fixed: the spe-
culum B also being unmoved, the line or ray BC will never
change its position, from the known principles of reflection.
The angle CBG, therefore, and the half of that angle
being the angle of incidence at which CB impinges on B,
will be always of the same magnitude; whereas the half of
the angle BCT, or the angle of incidence on the moveable
speculum C, is continually changing, while C is carried
round in the plane of motion: this constant angle of in-
cidence or reflection at the fixed speculum B will be
another of the data necessary to determine the problem.
The rays GB, BC, and the speculum B, being fixed in respect of each other, and of the plane OAP, the plane CBG will also be given in position; that is, its inclination to the plane of motion, or to any other fixed plane, will constantly be the same; whereas the inclination of the plane BCT to the plane of motion, or other fixed plane, will be continually changing while the reflector C revolves with the radius CP. The position of the plane GBC constitutes the fourth and last of the data; and it will be immaterial to what fixed plane it is referred. In the ensuing solution the situation of this plane will be defined by its inclination to the fixed secondary of the plane of motion which passes through the point O.

5. The enumeration of these data leads to the construction of the problem, a few observations being previously inserted to prevent repetitions and unnecessary references. 1st, The objects observed are understood to be lucid or illumined points, and so distant, that the rays which flow from either of them may be esteemed parallel without error as far regards these observations: such objects are the fixed stars, any given points in the disks of the sun or planets, &c. 2dly, As in measuring the angular positions of objects which lie in the same plane, these objects are referred to the circumference of a circle, the centre of which is coincident with the spectator’s eye; so in estimating the positions of objects which lie in different planes, and of the inclinations of these planes to each other, the objects, &c. are referred to the circumference of a sphere, of which the centre coincides with the centre of the spectator’s view: applying this to the present case, since the lines CT, CB, SG (fig. 1.) are situated in different planes; in order to estimate their positions, any point may be assumed as the centre of a sphere, and through that point lines are to be drawn parallel to the given lines CT, CB, SG, the points in which
Mr. Atwood's Theory for the Mensuration

which the lines intersect the spheres surface will give their relative situations by the rules of trigonometry. 3dly, There will be no necessity to represent the reflecting planes in the general construction, since the positions of the perpendiculars to the planes will give the situations of the planes themselves.

6. To determine by construction the angle subtended by the objects T, S, from the data which have been described, let APOCQ (fig. 2.) represent a great circle of the sphere to the surface of which the objects observed, and the positions of the incident and reflected rays, &c. are referred; C being the center, CK the axis, and K the pole of this great circle; through K draw any secondary KO, and from the pole K, at the distance of the arc KF, = the measure of the given inclination of the reflecting planes to the plane of motion, describe a parallel or lesser circleFIM: with the pole F, and at a distance equal to a quadrant, describe an arc of a great circle intersecting the secondary KO produced in the point X, and in this arc from X take XY = the measure of the given inclination of the fixed plane of reflection at the speculum B to the secondary which passes through the point O; and draw the quadrant YF, which produce in the direction YF: from F on either side of F set off FD equal to the measure of the given constant angle of incidence at the speculum B, and make FB (taken on that side of F which is opposite to D) equal to FD. Draw the radius CO: from O set off an arc OP in the circumference OPA equal to the measure of the angular distance described by the movable radius CP from that position at which the reflectors are parallel; observing that the arc OP be on that side of the point O which * corresponds with the conditions of the problem (art. 4.): through P describe the secondary KP intersecting the parallel FIM in the point I: through B and I describe

* It is supposed to be known, whether CP beginning its motion from the position CO approaches towards the visual ray BG or recedes from it.
of the Angle subtended by Two Objects, &c.

the arc of a great circle BIE, and in it take EI equal to IB: through D and E draw the arc of a great circle DE: the arc DE will be the measure of the true angle subtended by the objects observed, according to the data of the problem.

Previous to the demonstration of this construction, the application of it to the method of observation by two reflections should be described. Join CP, CI, and CF. To the extremity C of the radius CP let a plane speculum be affixed, CI being always perpendicular to this plane: as PC revolves in the plane of motion, the perpendicular CI will describe the parallel or lesser circle FIM, and when CP coincides with CO, CI will coincide with CF. Through B draw BR parallel to CF, and let a plane speculum be fixed at B perpendicular to BR; CF and BR being parallel when the perpendicular CI coincides with CF, the reflectors at C and B will then be parallel.

Join CD, and produce it to a very distant point S, and through B draw GS parallel to CDS; the reflectors C and B being parallel, and their perpendiculars coinciding with CF and BR, let a ray SC impinge on the reflector C: because FC is the perpendicular to the speculum C and the arc DF = FB by construction, these arcs being in the plane of the same great circle DBQ, it follows, that the ray SC will be reflected from C in the direction CB, impinging on the speculum B at the angle of incidence CBR; and since DC and BG are parallel by construction, and the parallel lines FC BR fall on them, the angles RBG, FCD, will be equal, and FCB or CBR = RBG. CB therefore being the ray incident on the speculum B will be reflected in the direction BG parallel to SC; and a ray SG coming directly from S will be seen coincident with the reflected ray BG. Here we observe, that the planes of reflection at C and B, that is, the planes DCB and CBG coincide; the reflectors being parallel.

Let
Mr. Atwood's Theory for the Menurcation

Let the radius CP move from the position CO, carrying with it the speculum C and its perpendicular CI: then, EI being equal to IB by construction, a ray impinging on C in the direction TEC will be reflected in the plane ECB, and because

ECI = ICB, the reflected ray will coincide with the line CB, and after reflection at B will proceed in the direction BG, being coincident with the ray SG which comes directly from S. When the perpendicular CI leaves CF, the plane of reflection ICB becomes inclined to the plane of reflection DCBG with which it before coincided; but the position of the rays CB, BG, and of the perpendicular BR, remains unaltered; for which reason the plane GBCFD corresponds to the fixed plane of reflection described among the conditions (art. 4.). When CI was coincident with CF, the radius CP was coincident with CO, O being the initial point of the arc OP, described by the radius CP, denoting that when CP coincides with O, the reflectors being then parallel, the inclination of the ray SC observed after two reflections, and SG observed by direct rays parallel to SC, is nothing: the great circle KO, therefore, which passes through O and F, will be the fixed or primitive secondary to which the inclination of the fixed plane of reflection at the speculum B is referred.

The demonstration of the construction will consist of two parts. It must be first shewn, that the conditions or data of the problem are observed in the construction. 2dly, That the magnitude of the arc ED, which measures the angle subtended by the observed objects is limited or determined by them.

Supposing the angle TCS to be of any unknown quantity, it has appeared, that according to the construction, the rays which come from T, and are seen after two reflections at C and B, will be observed to coincide with the rays which come

* Supra.
of the Angle subtended by Two Objects, &c. 403
directly from S. That the conditions of the problem are ful-
filled in the construction is demonstrated thus:

1st. The inclination of the reflectors B and C to the plane of
motion was constructed of the magnitude which is measured by
the arc KF. KC is perpendicular to the plane of motion. CF
is perpendicular to the reflector C, and the inclination of these
two lines CK, CF, is measured by the arc KF; but the incli-
nation of any two planes is the same as the inclination of
two lines which are perpendicular to them; the inclination
therefore of the reflector C to the plane of motion is measured
by the arc KF, and the speculum B is equally inclined to the
plane of motion with C by the construction, the perpendiculars
CF and CI being parallel when both are situated in the plane of
the same great circle DBQ.

2dly. KO being the secondary to which the position of the
fixed plane of reflection DFB at the speculum B was referred,
that given inclination will be equal to the angle OFB, which
is measured by the arc XY according to the construction, FY
being a quadrant.

3dly. Moreover, FD = FB, was constructed equal to the con-
stant angle of incidence at the fixed speculum; CBR is the
angle of incidence at the fixed speculum B, and it is equal to the
angle BCF, because CF and BR are parallel by construction, and
CB falls on them; FB, or its equal FD therefore is truly con-
structed the measure of the given constant angle of incidence at
the fixed speculum B.

4thly. Because it has been shewn that CO is the position of
the radius CP, when the reflectors are parallel, the arc OP is
rightly constructed the measure of the angular distance of the
radius CP from that position.

It remains only to demonstrate that these four given quanti-
ties, KF, OP, XY, and DF, limit the magnitude of the arc
ED:
ED: through I and F draw the arc IF; then the given arc KF or KI, and the angle IKF, measured by the given arc PO, define the triangle IKF, and in it, therefore, the side IF and the angle IFK are determined. If from IFK, the given angle DFK, measured by the arc XY, be subtracted, the remainder IFD; and IFB its supplement to 180° will be defined: the given arc FB, with the angle IFB and the arc IF, determine the angle IBF, and the arc IB, or its double BE: and the given arc BD, the arc BE, with the contained angle DBE before determined, define the arc ED, which is therefore the true measure of the angle subtended by the objects observed under the conditions fulfilled in the construction.

7. The computation of the observed angle DCE being for the present omitted, some consequences which follow from the construction may be inferred in this place, being either corollaries, or such truths as admit of easy geometrical deduction from the general proposition. The line DC will always be the position of the visual ray or line of collimation of the telescope used in the observation, and the inclination of it to the plane of motion will be measured by the complement of the arc DK to a quadrant. The line BC will be the position of the ray which passes between the reflectors B and C, and the inclination of it to the plane of motion will be measured by the complement of the arc BK to a quadrant. These arcs are left out of the figure, that the more material parts of the construction might not be confused by them.

8. Everything else remaining, let the parallel FIM (fig. 3.) be projected on the plane of motion QOP. Through the points F and I draw the arc of a great circle NIFR. The observed* objects T and S, or, which is the same thing, the points of intersection at the sphere's surface E and D will be at equal

* Compare fig. 2.
perpendicular distances from this arc, which may be demonstrated thus. Through the points E, D, and B, draw the arcs EN, DL, and BR, perpendicular to NIFR: then the triangles DFL, FBR, being equal, DL will be equal to BR; moreover, the triangles ENI, IRB, being equal, the arcs EN, RB, will be equal: from whence it follows, that EN = DL, or the perpendicular distances of the points E and D from the arc of a great circle which passes through the points I and F, are equal. It appears also, from the same construction, that the arc NL, intercepted between the two perpendiculars EN, DL, is equal to twice IF: for because the triangles EIN, RIB, are equal, as are the triangles DLF, RFB, it follows, that NI is equal to IR, and LF to FR, wherefore 2IR = NR, and 2RF = LR: whence, by subtracting equals from equals, 2RI - 2RF = NR - LR, or 2IF = NL, which was the equality to be demonstrated.

9. From this last construction and demonstration the following proportion is inferred. As radius : cosine of DL or EN, so is the sine of IF to the sine of half the arc ED, or of half the observed angle: for if the arcs NE, LD (fig. 3.), be continued until they meet in the pole H, the arcs NH, LH, will be quadrants, and the triangle EHD isosceles, which, from a property of spherics too obvious to need demonstrating, gives this proportion: as the chord of NL to the chord of ED, so is radius to the sine of DH, or cosine of DL; but the chord of NL is equal to the chord of 2IF from art. 8. We have, therefore, as radius : cosine DL, so is the chord of 2FI to the chord of ED, or, which is the same proportion, as radius : cosine DL, so is the sine of IF to the sine of half ED.

10. From the last article it appears, that the sine of half the angle between the observed objects, or the sine of half ED,

Vol. LXXI. H h h is
is proportional to the sine of FI and the cosine of DL jointly; consequently the sine of FI being the same, sin. $\frac{1}{2}$ ED is proportional to the cosine of DL; this will lead to the reason why in enumerating (art. 4.) the conditions which limit the magnitude of the observed arc ED, the position of the secondary KP, in respect of the point of intersection Q and of the fixed secondary KO, was annexed: for it will appear, that every thing else being the same, the magnitude of the arc ED will depend on the position of the secondary KP, whether it be on one side of the fixed secondary KO, or on the other, the angles PKO, ρKO, being equal. Having set off $\Omega \rho = OP$ draw the secondary $K\rho$ intersecting the parallel FIMU in the point U; and through B and U draw the arc of a great circle BUW; take UW = BU; and through D and W draw the arc of a great circle DW: then by the construction and demonstration in art. 6. the angle subtended by the observed objects will be measured by the arc DW, and it will be easy to shew, that DW is not equal to DE, except in two extreme cases; that is, when the fixed plane of reflection DFB is either coincident with the primitive secondary KO or perpendicular to it. Through the points F and U draw the arc of a great circle VFU, and from D draw the arc DV perpendicular to VFU: since $+$ the sines of half the arcs DE, DW, are in a proportion compounded of the proportions of the sine of IF to the sine of FU, and of the cosine of DL to the cosine of DV, the sines of IF, FU, being equal by the construction, the sines of half the arcs ED, DW, will be in the same proportion with the cosines of DL and DV, which are evidently unequal; consequently, the sines of half the arcs DE, DW, and therefore the arcs themselves, must be unequal.

11. The angles PKO, OKρ, remaining equal, when the fixed plane of reflection BFD (fig. 4.) is coincident with the secondary

* Compare fig. 2.
† Supra.
of the Angle subtended by Two Objects, &c. 407

 secondary KO, or at right angles to it, the perpendiculars DL, DV, become equal in both cases, which is obvious from the equality of the triangles DVF, DLF; it follows, therefore, (art. 10.) that the sines of FI and FU, and the cosines of DL, DV, being equal, the arcs DE, DW, will be equal in these two extreme cases, but in no other.

12. Since the angle subtended by the observed objects (art. 10.) depends only on the sine of IF and the cosine of DL, it is plain, that if the points D and B be interchanged, (fig. 2, 3, 4.) the angle observed will not be altered, every thing else remaining the same; because neither the sine of IF, nor the cosine of DL, is affected by this change. For this reason in any construction for measuring angles by two reflections, the position of the * visual ray may be altered into that of the ray BC passing between the reflectors, which will become in that case the situation of the visual ray, this alteration noways affecting the observed angles.

13. While the perpendicular CI (fig. 2. and 5.) describes the parallel FIM, the angle of incidence on the moveable speculum C, that is, the angle ECI or ICB, measured by the arc BI, continually increases until it arrives at a certain limit. This limit is determined by drawing through the points B and K the arc of a great circle BKM. When the perpendicular CI arrives at M, the arc BM is the greatest possible, which will therefore be the measure of the greatest angle of incidence on the moveable speculum, according to this construction, the radius CP having then described from O an arc which is the measure of the angle FKM. Now it is plain, that if the arc MB should be greater than a quadrant, there can be no vision by two reflections, when the perpendicular CI coincides with M (supposing the moveable speculum to reflect on one side only) because the angles of incidence and reflection on any speculum

* The position of the ray DC is the same with that of the ray BG parallel to it, when referred to distant objects.
Mr. Arwood's Theory for the Mensuration

must be less than 90°. If BM be less than a quadrant, an observation by two reflections may be taken when the radius CP is directed to any point in the circumference of the plane of motion. When the arc BM is greater than a quadrant, two other limits will be produced in the circumference of the plane OCP; while the radius CP is between these limits, no observation by two reflections can be taken: these limits are constructed thus (fig. 6.). BM being greater than a quadrant, with the pole B and distance BI equal to a quadrant, describe the arc of a great circle Ii intersecting the parallel FIM in the points I and i: through I and i draw the secondaries KY, KZ: while the radius CP is between Z, and Y no observation can be taken by two reflections. If BIE, BIÉ, be drawn equal to a semi-circle, and DE joined, then DE will be the measure of the limiting angle which can be observed by this construction, either on one side of KO or on the other; and because; by the principles of trigonometry, the arcs BD and DE are in the same great circle, BDE being a semi-circle, we shall derive from the construction this conclusion: the difference between 180° and double the angle of incidence on the fixed speculum, will be a limit which terminates the angle observed by two reflections in every case, when the arc BM is greater than a quadrant.

14. In any given example formed on the principles which have been demonstrated (fig. 2.) for the estimation of angles by two reflections, three of the four quantities necessary to determine the result must constantly be the same, while the fourth, that is, the arc OP, varies with the magnitude of the angle subtended by the objects observed: the different magnitudes of these three given quantities will cause a great variety of properties in constructions which depend on the general

This termination of the angle which can be observed by two reflections may happen while the observed angle is increasing or decreasing during the revolution of the index in the plane of motion.
theory. If the angle DFK (fig. 2.), being the inclination of the fixed plane of reflection to the primitive secondary be = 90°, and the arc KF, or the inclination of the reflectors to the plane of motion, be = 90° also, the construction will become that of HADLEY’s instrument (fig. 7.), whatever be the magnitude of the arc DF, that is, of the angle of incidence on the fixed speculum B: in this case the points F and O, and the points I and P, coincide. Here IF or PO measures the inclination of the reflectors to each other; and because BF = FD, and BI = IE, by construction, it follows, that DE = 2PO, that is, the angle subtended by the observed objects is double to the angle at which the reflectors are inclined to each other. This is a known property of HADLEY’s instrument, in which the visual ray, and the ray intermediate between the reflectors, are in the plane of motion, which is also expressed in the construction, DC and BC coinciding with the plane POC.

15. Bisect KO in F; then will KF = 45° (fig. 8.). The visual ray CD being coincident with the plane of motion, let the inclination of the reflectors to that plane be equal to 45°; moreover, let the angle * DFK = 180°; so shall D coincide with O; and B with K: this will afford a good example to the general theory. Let the radius CP move into any given position, carrying with it the speculum C and its perpendicular CI: here the observed object E and the point B are always equi-distant from I; and because BI is half a quadrant, by construction, it follows, that HE will be of the same magnitude; BE therefore will be a quadrant, and consequently E will coincide with P, being always in the plane of motion. The following properties are also derived from this construction:

1st. The arc DE subtended by the observed objects is equal to the arc described by the index or moveable radius CP from O;

* Compare fig. 2.
differing in this from Mr. Hadley's construction, in which the angle observed is equal to double the angle described by the moveable radius from the initial point of the arc O. While therefore the moveable speculum C is carried round by the radius CP in the plane of motion according to the new construction just described, the image of E moves with an angular velocity just equal to that of the radius, the motion of the image being, according to Mr. Hadley's invention, always greater than that of the radius in the proportion of 2 to 1. 2dly, The angles of incidence and reflexion on both surfaces are constantly the same, being equal to 45°. 3dly, BI (art. 13.) being always less than 90°, observations by two reflexions may be taken all round the circle, that is, angles of any magnitude may be measured by this construction. It will not be difficult in practice to regulate the inclination of the plane reflectors to the plane of motion, with the other given quantities to their true magnitude. Let the reflectors B and C be brought parallel when the index or radius CP is directed to O, being the initial point of the arc OP: in order to examine whether the fixed plane of reflection BFD be coincident with the primitive secondary KO, it is only necessary to observe the angle subtended by two given objects when the index CP is on the different sides of the initial point O: if the index be directed to unequal distances from that point at the times of observation, a correction is required (art. 11.). To examine whether the inclination of the reflectors to the plane of motion be exactly 45°, let the index CP be directed to 180°: if the inclination of the reflectors to each other be not then = 90°, a correction must be applied. It will be known whether the inclination of the reflectors to each other be = 90°, by observing the two opposite horizons at sea, and at land by various obvious methods. These examinations are
are wholly independent of the inclination of the telescope to the
plane of motion, which is regulated to its true situation parallel
to the plane OPA, by making the plane OPA fixed in regard to
distant objects, and by observing if the images of objects E, seen
after two reflections of the rays, describe the arc of a great circle
while C is carried round the plane of motion. Any three fixed ob-
jects, at a sufficient distance, and situated in the same plane with
the observer’s eye, will be sufficient for making this adjustment.

Fig. 9, 10, and 11. represent the progress of the rays, and
the position of the reflectors according to this construction. TC
is a ray issuing from any object T in a direction parallel to the
plane of the motion, and impinging on the speculum C, which
is inclined to that plane at an angle of 45°: from hence it is
reflected in the direction CB perpendicular to the plane OCA,
and being there reflected by the speculum B proceeds in the given
or constant direction BG parallel to the plane of motion OPA.

16. There is another construction which follows from the
general theory, the description of which should not be
omitted. This will require some little explanation. As be-
fore (fig. 12.) let OPA represent the plane of motion, K its
pole, FIM a parallel or lesser circle projected on it, the distance
of this parallel from the pole K being measured by the arc FK;
let KO be the primitive secondary, and BFD the fixed plane of
reflection on the speculum B coincident with it. The other
parts of the construction * remaining, it has been demonstrated
(art. 10.), that the sine of half the observed angle, that is,
the sine of half ED, is proportional to the sine of IF, and
the cosine of DL jointly. Every thing else being the same,
it is manifest, that the sine of half ED will be proportional to
the sine of IF: as therefore the arc KF, that is, the inclina-
tion of the reflecting planes to the plane of motion, is decreased,

* Compare fig. 2. and 3.
the angle measured or arc ED will become smaller at the same
time, because FI decreases with KF, the angle IKF remaining.
This property seems applicable to good purpose in measuring
small angles, not only from the great extent of scale, which
is here obtained, but from various advantageous circumstances,
which will appear in the subsequent article, and from the com-
putations annexed to those which follow.

In this construction, the fixed plane of reflection is made
coincident with the primitive secondary for various reasons:
there are only two positions of that fixed plane which admit of
easy and exact adjustments; these are when the fixed plane of
reflection is either perpendicular (art. 11.) to the primitive se-
condary or coincident with it. The latter position is preferred
exclusive of the advantages it possesses in common with the
other, because it affords means for a very precise adjustment of
the inclination of the reflecting planes to the plane of motion,
that is, of the arc KF; for if the primitive secondary OKMD
(fig. 12.) be produced, and in it DG be taken equal to four times
KF, it is manifest that, when the perpendicular CI coincides with
M, or, which is the same thing, when the radius CP is directed
to 180°, the object E observed by two reflections will coincide
with G, because BF = FD and BM = MG by construction. If
then two given objects be observed when the index points to 180°,
the inclination of the plane reflectors to the plane of motion
will be one fourth part of the angle subtended by these objects.

Concerning the magnitude of the arc FB, being the measure of
the angle of incidence on the fixed speculum, and of KF = the in-
clination of the reflectors to the plane of motion, it will appear,
by the computations*, that the smaller they are both taken, every
thing else being the same, the more exact will be the result of
the observation; but both are limited by circumstances which

* Infra.
should next be described; these will be more obvious if an outline be annexed, representing this particular case of the theory adapted to the mensuration of small angles when reduced to practice. OAPC (fig. 13.) is the plane of motion, C the moveable speculum carried round in the plane of motion by the radius CP; a ray coming from any distant object T impinges on the speculum C, and being reflected in the direction CB, is there again reflected in the direction BG, passing along the axis of a telescope. A ray coming from another distant object S, inclined to the ray TC at a small angle enters the telescope parallel to the direction of its axis, which is coincident with BG, and consequently the images of the two objects S and T will be seen to coincide in the middle of the field of the telescope, the angle subtended by them being BGT, which must be determined by the subsequent computations.

17. By this figure (fig. 13.), without further argument, it is plain, that the magnitude of the reflecting speculum C limits the constant angle of incidence on B; for were that angle $= \alpha$, the lines CB, BG, would coincide, by which means the ray BG and others adjacent to it would be intercepted from entering the telescope. The magnitude of the reflecting plane depends on the quantity of light required; if a circle of about 1 2 inches diameter be sufficient, and the perpendicular distance of the reflecting planes be made equal to five inches, the least angle of incidence, consistent with these conditions, will be about 7°. It is however to be remembered, that the magnitude of the reflectors should be adapted to the aperture of the telescope used in the observation. As the area of the speculum increases, the light admitted into the same telescope decreases, and these areas should be so proportioned as to afford equal quantities of light, so that the objects seen by two reflections, and by direct rays, may be nearly of equal brightness; but for the
fake of constructing an example to this theory, the magnitude of the reflecting planes and the angle of incidence on the fixed speculum B depending on it may be assumed of the value mentioned in this article.

18. The magnitude of the arc KF, or of the inclination of the reflecting planes to the plane of motion is limited by the angles which the observed objects subtend (art. 16.). Fig. 12. Because the greatest angle observable will be measured by four times the arc KF, it follows, that the arc KF must not be less than one fourth part of the greatest angle intended to be observed by this construction; if the inclination denoted by the arc KF be fixed at 10°, four times that angle being 40° will be greater than the apparent diameters of the sun or any of the planets.

19. It remains to infer from the preceding construction (fig. 2), the actual measure of the angle subtended by the objects observed. This must be effected by computation, which will not only serve as an illustration of the theory, but afford means of estimating and comparing the errors in the angle deduced, occasioned by the unavoidable errors in observation and practical construction; an examination extremely useful in astronomical subjects: next to removing errors entirely from observations, which is scarcely to be hoped for, the lessening, circumscribing, and reducing them within known limits is an object of principal consequence.

20. The construction of fig. 2. remaining, through the points F and I (fig. 14.) draw the great circle FI. Bisect FI in Q, and through the points K and Q draw the arc KQ, which will be perpendicular to IF. To determine by computation the arc ED which measures the angle subtended by the observed objects, three spherical triangles, KQF or KIF, IFB, and DBE, must be solved, for which the data are evidently sufficient;
or the value of ED may be obtained from the solution of two triangles KQF and DFL, with the proportion demonstrated in art. 9.

21. To proceed with the computation, through D draw the arc DL perpendicular to FI, and let the sine of QKF = \(p \), being the sine of half the arc OP, the measure of IKF: put the sine of KF = \(s \), the sine of DF = \(m \), the sine of DFK = \(n \), radius = 1. In the right-angled spherical triangle KQF, the properties of spheric s give this proportion: as radius to the sine of KF so is the sine of QKF to sine of QF; wherefore sine QF = \(s p \); cos. QF = \(\sqrt{1 - s^2 p^2} \); and sine FI (FI being double to QF) = \(2 s p \times \sqrt{1 - s^2 p^2} \). Moreover, because as rad. to cos. QK so is cos. QF to cos. KF, we have cos. KQ = \(\sqrt{1 - p^2} \); and sine KQ = \(\sqrt{s^2 - s^2 p^2} \). And since as rad. : sine QFK so is sine KF to sine KQ; this proportion gives sine QFK = \(\sqrt{1 - p^2} \); and because the sine of the angle LFD is the sine of the difference (or sum) of the angles QFK, DFK, of which the sines are, sine QFK = \(\sqrt{1 - p^2} \) just found, and sine DFK = \(n \) by the data, we have from the rules of trigonometry,

\[
\text{sine } * DFL = \frac{\sqrt{1 - p^2} \times \sqrt{1 - n^2} + \sqrt{p^2 n^2 - n^2 s^2 p^4}}{\sqrt{1 - s^2 p^2}},
\]

and since in the right-angled triangle LDF, as rad. : sine DFL :: sine DFL : sine DL, and by the problem sine DF = \(m \) it appears, that

* If the points P and Q be on different sides of the point O as they are represented in the construction, the last term will be affected with the sign — : if P and Q be on the same side of O, the sign of the last term will be +. It may be here observed, concerning the geometrical construction (fig. 2. and 3.) that when P and Q are on different sides of O, the angle observed ED will be greater than when those points are on the same side of the initial point O, the area OP, OP, being equal.

* Compare fig. 2.
Mr. ATWOOD's Theory for the Mensuration.

\[\text{fin. } DL = \frac{\sqrt{1 - \rho^2} \times \sqrt{m^2 - m^2 n^2} - \rho^2 m^2 n^2 - \rho^2 n^2 s^2}{\sqrt{1 - \rho^2}}, \text{ and} \]

\[\text{fin. } DL^2 = \frac{m^2 - n^2 m^2 - \rho^2 m^2 + 2 \rho^2 m^2 n^2 - n^2 \rho^2 s^2}{1 - \rho^2} = 2m^2 \rho n \times \sqrt{1 - \rho^2} \times \sqrt{1 - s^2} \times \sqrt{1 - n^2} \]

and the square of the cosine of \(DL \)

\[= \frac{1 - s^2 \rho^2 - n^2 + n^2 \rho^2 + \rho^2 m^2 - 2 \rho^2 m^2 n^2 + m^2 n^2 \rho^2 + 2 m^2 \rho n \times \sqrt{1 - \rho^2} \times \sqrt{1 - s^2} \times \sqrt{1 - n^2}}{1 - s^2 \rho^2} \]

The sine of \(IF \) was shown to be \(2 \rho \times \sqrt{1 - s^2 \rho^2} \), and its square is \(4 \rho^4 \times \sqrt{1 - s^2 \rho^2} \). Moreover, it was demonstrated in art. 9. that as \(\frac{\text{rad.}}{\text{col. } DL} = \frac{\text{fin. } \text{IF}^2}{\text{fin. } \frac{1}{4} \text{ED}^2} \), which gives, by substituting the values of \(\text{col. } DL^2 \) and \(\text{fin. } \text{IF}^2 \), and multiplying the \(\text{col. } DL^2 \) into \(\text{fin. } \text{IF}^2 \), \(\text{fin. } \frac{1}{4} \text{ED}^2 = \)

\[\frac{4 \rho^4 \times \sqrt{1 - s^2 \rho^2 - n^2 + n^2 \rho^2 + \rho^2 m^2 - 2 \rho^2 m^2 n^2 + m^2 n^2 \rho^2 + 2 m^2 \rho n \times \sqrt{1 - s^2} \times \sqrt{1 - \rho^2} \times \sqrt{1 - n^2}}{1 - 4 \rho^4 \times \sqrt{1 - s^2 \rho^2 - n^2 + n^2 \rho^2 + \rho^2 m^2 - 2 \rho^2 m^2 n^2 + m^2 n^2 \rho^2 + 2 m^2 \rho n \times \sqrt{1 - s^2} \times \sqrt{1 - \rho^2} \times \sqrt{1 - n^2}} \]

and the cosine of \(\frac{1}{4} \text{ED}^2 = \)

\[\frac{1 - 8 \rho^4 \times \sqrt{1 - s^2 \rho^2 - n^2 + n^2 \rho^2 + \rho^2 m^2 - 2 \rho^2 m^2 n^2 + m^2 n^2 \rho^2 + 2 m^2 \rho n \times \sqrt{1 - s^2} \times \sqrt{1 - \rho^2} \times \sqrt{1 - n^2}}{1 - 8 \rho^4 \times \sqrt{1 - s^2 \rho^2 - n^2 + n^2 \rho^2 + \rho^2 m^2 - 2 \rho^2 m^2 n^2 + m^2 n^2 \rho^2 + 2 m^2 \rho n \times \sqrt{1 - s^2} \times \sqrt{1 - \rho^2} \times \sqrt{1 - n^2}} \]

Finally the cosine of \(ED \) is therefore

22. The particular cases inferred from the geometrical construction may be compared with this analytical value of the cosine of \(ED \), or of the angle subtended by the observed objects. If \(s = 1 \) and \(n = 1 \), by substituting \(1 \) for \(s \) and \(n \) in the expression just found, we shall have the cosine of \(ED = 1 - 8 \rho^4 + 8 \rho^4 \), which is the cosine of an arc four times greater than that of which the sine is \(\rho \). This answers to the properties of HADLEY's instrument, in which KF or the inclination of the reflecting planes to the plane of motion is \(90^\circ \), and its sine \(= 1 = s \); moreover, in HADLEY's instrument, the fixed plane of reflection at the unmoved speculum is parallel to the plane of motion, and therefore perpendicular to any secondary of that plane; its inclination to any secondary
of the Angle subtended by Two Objects, &c. 417

condary therefore will be 90°, and the sine of this inclination $= i = n$ by the problem. And since p is the sign of half the inclination of the reflectors, the angle of which the cosine is $1 - 8p^2 + 8p^4$ will be twice the inclination of the reflecting planes, which is a property of Hadley's instrument. In the analytical value of the cosine of ED, the last term is affected by two signs; these depend on the position of the secondary KP and the intersection Q in respect of the point O. If the secondary KP or the index CP be on the same side of O with the intersection Q (fig. 2.), the sign of the last term is negative: if CP and Q be on opposite sides of O, the sign of the last term will be positive; and when $DFK = 0$ or 180°, the whole term vanishes, because in that case $n = 0$. Also, if $m = 0$, $n = 1$, $s = 1$, or if $p = 1$, the last term vanishes. When $m = s = \frac{1}{\sqrt{2}}$

$KF = 45^\circ$: in this case, if $n = 0$ the construction will be that described in art. 15. and the cosine of the observed angle ED will equal $1 - 2p^2$, the other terms vanishing; and because $1 - 2p^2$ is the cosine of an arc double to that of which the sine $= p$, it follows, that the angle observed will be equal to the arc described by the index from o, of which the sine of one half is by the problem $= p$. In every case, when $n = 0$, that is, when the fixed plane of reflection at the unmoved speculum coincides with the primitive secondary KO (fig. 2. and 12.), the cosine of $ED = 1 - 8s^2p^2 \times \frac{1}{1 - s^2p^2 - m^2 + p^2m^2}$.

23. The sine of ED will be necessary (art. 27.) to ascertain the variation of ED from the truth occasioned by errors in the data; to obtain sin. ED let

$1 - s^2p^2 - m^2 + m^2n^2 + n^2p^2 - 2p^2m^2n^2 + m^2n^2s^2p^2 + 2m^2n^2p^2 \times \sqrt{1 - s^2} \times \sqrt{1 - p^2} \times \sqrt{1 - n^2} = d$; then (art. 21.) from the value of $\cos. \overline{4ED}$ we have sin. $ED = 4s^2p \times \sqrt{d} \times \sqrt{1 - 4s^2p^2d}$. When s is very small, and
and \(n = 0 \), \(d = 1 - m^2 + m^2p^2 \) nearly, which gives

\[
\sin \text{ ED} = 4sp \times \sqrt{1 - m^2 + m^2p^2} \text{ nearly.}
\]

24. The cosine of the observed angle represented by ED (fig. 2. and 14.) in the construction, being computed from the four given quantities \(p \), \(s \), \(m \), and \(n \), if either of these should deviate from its true value, the angle deduced will be erroneous; and from the general expression for the cosine of ED, an estimation of this error will be obtained. In the investigation, however, it must be observed, that although the small increments or decrements of arcs or lines are assumed proportional to the fluxions of these quantities, which is strictly true only in the nascent state of the increments or decrements, yet when the given variations are in a practical sense very small, the estimation of corresponding variations will be in general sufficiently exact for practical purposes.

25. Small increments and decrements, that is, small variations, being assumed proportional to the fluxions of arcs and of their lines and cosines, if the variation of the sine or cosine of any given arc be known, the contemporary variation of the arc will be for the most part inferred from the following proportions: as \(\text{fin.} : \text{rad.} :: \cos \text{ : arc} \); and as \(\cos \text{ : rad. : } \text{fin.} : \text{arc} \). But these proportions must be used under restrictions very necessary to be inferred in this place, being true when applied to the intermediate parts of the quadrant only and failing at the extremities; for example, at the very beginning of the quadrant, or at the very end of the semi-circle, the variation of the cosine is the versed sine of the arcs increment or decrement, which gives the proportion as \(\text{fin.} : 2 \times \text{rad.} :: \cos \text{ : arc} \), being wholly different from the former: in like manner, at the very extremity of the quad-
of the Angle subtended by Two Objects, &c.

Drant, the increment of the sine becomes the versed sine of the arcs last increment, which gives this proportion: as
\[\text{cof.} : 2 \times \text{rad.} :: \frac{\text{fin.}}{\text{arc.}}. \]
And since in this case \(\text{arc} = \text{cof} \), we shall have
\[\text{arc} = \sqrt{2 \times \text{fin.}}. \]
Radius being = 1. In the other parts of the quadrant which are not very near its extremity,
\[\text{arc} = \frac{\text{fin.}}{\text{cof.}}; \]
having given, therefore, the variation of the sine or cofine of any arc, the sine or cofine being known, the cotemporary variation of the arc itself may be obtained, when it is either at the very extremities of the quadrant, or at some distance from those extremities. The difficulty lies in ascertaining in what part of the quadrant the value of the
\[\text{arc} = \frac{\text{fin.}}{\text{cof.}} = -\frac{\text{cof.}}{\text{fin.}} \]
begin to fail, and the value expressed by
\[\text{arc} = \sqrt{2 \times \text{fin.}} \text{ or } -\sqrt{2 \times \text{cof.}} \text{ to take place. This leads to a general proposition comprehending both these values for the arc's variation, extended to every part of the quadrant.} \]

The proposition is this: the difference of the cofines is to the chord of the difference of any two arcs, as the sine of an arithmetical mean between them to radius; and the difference of the fines is to the chord of the difference, as the cofine of the same arithmetical mean to radius. Let \(AB, AF \) (fig. 15.) be the given arcs; \(BF \) their difference; \(BL, FH \), the fines; \(CL, CH \), the cofines of the arcs \(AB, AF \), respectively; join \(CA, CB, CF \), and \(FB \); \(FB \) will be the chord of the difference of the arcs \(AF, AB \). Through \(B \) draw \(BG \) parallel to \(CA \); then \(HL = BG \) will be the difference of the cofines, and \(FG \) the difference of the fines. Bisect \(FB \) in \(D \), so shall \(DA \) be an arithmetical mean between the arcs \(FA, BA \); join \(DC \), which will intersect \(FB \) at right angles in \(E \): through \(D \) and \(E \) draw \(DK, EI \), perpendicular to
Mr. Atwood's Theory for the Mensuration

to CA: DK will be the fine, and CK the cosine of the mean arithmetical DA: the similar triangles CEI, CDK, FGB, give the following proportions:

\[\text{HL or GB} : \text{FB} :: \text{DK} : \text{DC}, \text{ and} \]
\[\text{GF} : \text{FB} :: \text{CK} : \text{DC}, \text{ which was the proposition to be demonstrated}. \]

* When FB (fig. 15) is so small in comparison of FA, that FG shall be evanescent in comparison of FH, FH and BL will be in the ratio of equality, and consequently the ratio FH : FC equal to the ratio BL : BC, or to the ratio DK : DC; for this reason, and because it has been proved, that as HL : FB :: DK : DC, it follows, that as HL : FB :: FH or BL : BC, that is, as the variation of the cosine is to cotemporary variation of the arc, so is the fine of the varying arc to radius; and, for similar reasons, as the variation of the fine is to the cotemporary variation of the arc, so is the cosine to radius.

If BA be so diminished that FG shall bear a finite proportion to FH, and too great to be neglected, BL will not be either to FH or to DK in a ratio of equality: consequently, FH or BL must no longer be substituted for DK: as BA becomes less, FB being still supposed evanescent, DK approaches to the fine of \(\frac{1}{2}\)FB to which it is ultimately equal when B and F are coinciding with A (fig. 16.). In which case the proportion will become as HL or HA : FB or FA :: \(\frac{1}{2}\)FA : to CA, that is, as the versed sine of FA is to the arc FA so is half the arc FA to radius, or so is the arc FA to diameter.

The propositions which have been demonstrated, comprehend the variation of the arc expressed in terms of the cotemporary variation of the fine or cosine in every part of the quadrant without limitation, it being only allowed to substitute the arc FB instead of its chord, these quantities approximating the more nearly to equality as FB is smaller, and being ultimately equal in their evanescent state. Moreover, it will be easy from what has preceded to construct a plane right-lined triangle, which shall be similar to the mixtilinear triangle contained under an arc, its fine and versed fine when they are diminished sine limite. Let FA (fig. 16.) be any arc, FA the chord, FH the fine, CH the cosine of the arc FA. Bisect FA in D, join CD, and draw the right sine DK: then will the plane right-lined triangle KDC continually approximate to similarity with the mixtilinear triangle FDAH as FA becomes smaller, and the two triangles will be ultimately similar when FA is vanishing.

By
From these geometrical proportions, having given any arc and the variation of its sine or cosine, the cotemporary variation of the arc may be estimated by computation in general for any part of the quadrant. Let the sine of any arc be \(s \), the cosine \(c \), the chord of the arc’s variation \(x \), the given variation of the cosine \(d \), or the given variation of the sine \(b \), radius \(r \); then if the cosine of the arc increases by the difference \(d \), the chord of the cotemporary decrease of the arc, or

\[
-x = \sqrt{2s^2 - 2dc} = \sqrt{2s^2 - 2dc^2 - 4d^2}
\]

and if the sine of the given arc increases by the difference \(b \)

\[
+x = \sqrt{2c^2 - 2bs} = \sqrt{2c^2 - 2bs^2 - 4b^2},
\]

which are the mathematically true values of the chord \(FB \), and will approximate to the magnitude of the arc \(FB \) as that arc is continually diminished. The following expressions for the chord of the variation \(x \) are more compendious, and will be sufficiently near the truth when \(FB \) is very small.

\[
-x = \frac{s}{c} - \sqrt{\frac{s^2}{c^2} - \frac{2d}{c}}
\]

\[
+x = \frac{c}{s} - \sqrt{\frac{s^2}{c^2} - \frac{2b}{s}}.
\]

In these four expressions it must be observed, that the sine and cosine are supposed to vary by increase: should the variation be a decrement, the sign of \(x \) and of \(b \) or \(d \) must be changed.

26. Let the quantities \(\dot{p}, \dot{s}, \dot{m}, \dot{n} \), vary by small increments \(\dot{p}, \dot{s}, \dot{m}, \dot{n} \), respectively, then to obtain the cotemporary variation of \(\cos ED \), because (art. 21.)

\[
\cos ED = 1 - 8s^2p^2 \times \frac{1 - s^2p^2 - m^2 + m^2n^2 + m^2p^2 - 2p^2m^2n^2 + m^2n^2s^2p^2}{m^2n^2s^2p^2} = 2mnsp \times \sqrt{1 - p^2} \times \sqrt{1 - n^2} \times \sqrt{1 - s^2},
\]

by taking the fluxion of the equation we have
Mr. Atwood's Theory for the Mensuration

\[\text{col. } ED = -16 s^2 p \rho \times 1 - 2 s^2 p^2 - m^2 + n^2 + n \rho^2 - 2 m^2 n^2 + 2 m^2 n \rho^2 + 2 n^2 \rho^2 \times \frac{m n p \sqrt{1 - n^2} \sqrt{1 - s^2} \times 3 - 4 \rho^2}{\sqrt{1 - p^2}} \]

\[-16 \gamma^2 m^2 n \rho \times 1 - 2 s^2 \mu^2 - m^2 + n m^2 + n p^2 m^2 - 2 p^2 m^2 n^2 + 2 p^2 m^2 n^3 \]

\[= \frac{m^2 n p \sqrt{1 - n^2} \sqrt{1 - p^2} \times 2 - 3 \sqrt{1 - p^2}}{\sqrt{1 - s^2}} \]

\[+ 16 s^2 p^2 m n^2 \times 1 - n^2 - p^2 + 2 p^2 n^2 - 2 p^2 n^2 \times 2 p n \sqrt{1 - n^2} \sqrt{1 - \gamma^2} \sqrt{1 - \mu^2} \]

\[+ 16 s^2 p^2 m n^2 \times n - 2 p^2 n - s^2 \rho^2 \times 1 - \sqrt{1 - s^2} \sqrt{1 - p} \sqrt{1 - 2 \gamma} \sqrt{1 - n^2}. \]

27. This value of \(\text{col. } ED \) is expressed in terms of the variation of the sines of the given quantities: if it be necessary to express \(\text{col. } ED \) in terms of the variation of the arcs themselves, it must first be considered to what part of the quadrant they belong: for example, if \(s \) be a sine of an arc \(b \), not very near the extremity of the quadrant, and the variation be \(s \), the cotemporary variation of the arc \(b \) will be \(\frac{s}{\sqrt{1 - s^2}} \); but if the variable arc be nearly \(= 90^\circ \), and becomes exactly equal to it ultimately having varied by a small arc \(\delta \) of which the versed sine \(= v \); then will \(\delta = s \) the versed sine of \(b \) and \(\delta = \sqrt{2v} \). Lastly, if the variable angle approximates to \(90^\circ \), but is not equal to it, and the variation of its sine should be \(= s \), the cotemporary variation of the arc must be obtained from the general theorem in art 25. When either of the two latter cases happen, the variation of the arc must be determined for each particular case; but it will be necessary to give a general expression for \(\text{col. } ED \) in terms of the variations of the given arcs, of which \(p, s, m, n \), are the respective sines when these arcs are at some distance from \(90^\circ \); this is contained in the next article.

28. Let
28. Let the angle $\theta_{KF} = a$ (fig. 14.); the arc $KF = b$; the arc $DF = c$, and the angle $DFK = d$; their respective increments being \dot{a}, \dot{b}, \dot{c}, and \dot{d}, their sines \dot{p}, \dot{s}, \dot{m}, and \dot{n}, and the contemporary increments of their sines \dot{p}, \dot{s}, \dot{m}, and \dot{n}; from the proportion contained in art. 24. we shall have $\dot{p} = \dot{a} \times \sqrt{1 - \dot{p}^2}$,
$\dot{s} = \dot{b} \times \sqrt{1 - \dot{s}^2}$,
$\dot{m} = \dot{c} \times \sqrt{1 - \dot{m}^2}$, and $\dot{n} = \dot{d} \times \sqrt{1 - \dot{n}^2}$, which being substituted in the value of $\text{col. } \overline{ED}$ last found will give

\[
\text{Col. } \overline{ED} = -16s^2 \times \sqrt{1 - p^2} \times \dot{p} \times 4s^2 \times p^2 - s^4 + 2s^2 m^2 - 4s^2 n^2 + 2s^2 m^2 n^2 + 2s^2 m^2 p^2 \\
+ 16s^2 m^2 \times \sqrt{1 - n^2} \times \sqrt{1 - p^2} \times 2 - 3s^2 \\
+ 16s^2 p^2 \times \sqrt{1 - m^2} \times 1 - n^2 - p^2 + 2s^2 n^2 - 4s^2 m^2 + 2s^2 m^2 n^2 + 2s^2 m^2 p^2 \\
+ 16s^2 m^2 \times \sqrt{1 - n^2} \times \sqrt{1 - p^2} \times 2 - 3s^2 \\
+ 16s^2 p^2 \times \sqrt{1 - m^2} \times 1 - n^2 - p^2 + 2s^2 n^2 - 4s^2 m^2 + 2s^2 m^2 n^2 + 2s^2 m^2 p^2 \\
+ 16s^2 m^2 \times \sqrt{1 - n^2} \times \sqrt{1 - p^2} \times 2 - 3s^2 \\
\]

This quantity (art. 23.) being divided by the sine of the observed angle, the variation of that angle or \overline{ED} will be the quotient.

29. In the expression for $\text{col. } \overline{ED}$ contained in art. 26. the variations \dot{p}, \dot{s}, \dot{m}, and \dot{n}, are arbitrary, as are \dot{a}, \dot{b}, \dot{c}, and \dot{d}, in the last article. If a condition be annexed to the variation of any of them, two or more may become dependant on each other; and their relation must be determined by the nature of the case. Moreover, if one or more of the given arcs and their sines should be correct, the variations corresponding and all the terms multiplied into them will vanish. To give an example of the use of these expressions before they are applied to the immediate purpose of examining the new constructions described.
described in art. 15. and 16. let it be required to assign what error is occasioned in observing a given angle with a HADLEY's sectant, in which the telescope is parallel to the plane of motion, but the two reflectors deviate from their perpendicular to that plane by a small angle \hat{b}. Suppose the error of half the arc pointed to by the index to be \hat{a}, and consequently the error of the sine of half that arc $= \hat{a} \times \sqrt{1 - \hat{a}^2} = \hat{p}$: in this case, because the inclination of the reflectors to the plane of motion is nearly equal to 90°, the variation of the sine will be equal to the versed sine of the small arc \hat{b}, by which the inclination deviates from 90°; let ν be the versed sine of \hat{b}, then will $\nu = \nu$ (ν varying by a decrement of ν). Moreover, because a condition is annexed, which is, that the line of observation is parallel to the plane of motion, the variations \hat{s}, \hat{m}, and \hat{n}, will be dependent on each other. To investigate their relation let $FO = \hat{b}$ (fig. 7.) be the small arc which measures the deviation of the reflectors from the perpendicular to the plane of motion: then, because $\sin DO = \hat{m}$, and $\sin DO - \sin DO = (\hat{n}$ being a decrement); but, by the properties of spheric, $\cot DO = \frac{\sqrt{2\nu} \times \cot DF \times \frac{DF}{\sin DF}}{m}$: and FO being very small, the

* \hat{p} here, as in the general solution, denotes the sine of half the arc to which the index on the plane of motion is directed, that is, $\hat{p} = \sin$ of one-fourth of the angle observed in Mr. HADLEY's construction.

† Fig. 7, as rad. : cotang. $DF ::$ tang. $FO ::$ cot. DF, that is, FO being very small, and therefore $\frac{FO}{\sin FO} = a \times$ versed sine of FO, as rad. : cotang. $DF :: \sqrt{2\nu} :$ cot. DF: by the problem $\sin DF = \hat{m}$, and $\cot DF = \sqrt{1 - \hat{m}^2}$, therefore $\cot DF = \sqrt{\frac{1 - \hat{m}^2}{m}}$, which gives cot. $DF = \sqrt{\frac{1 - \hat{m}^2}{m}}$.

fine
fine of $DFO = 1 - \frac{v \times 1 - m^2}{m^2}$, from which $i = \sin DOF$ being sub-
tracted leaves $\dot{n} = - \frac{v \times 1 - m^2}{m^2}$; or because $\dot{s} = -v$, $\dot{n} = + \frac{s \times 1 - m^2}{m^2}$.

Moreover, the quantity $\frac{1 - s^2}{1 - n^2}$ in the nascent state of $1 - s^2$ and
$1 - n^2 = \frac{m^2}{1 - m^2}$; and $\sqrt{\frac{1 - s^2}{1 - n^2}} = \frac{m}{\sqrt{1 - m^2}}$. Making therefore in the
general expression contained in art. 26, $- \frac{v \times 1 - m^2}{m^2} = \dot{s}$,
$-v = \dot{s}$, \hspace{1cm} \dot{a} \times \sqrt{1 - \dot{p}^2} = \dot{p}$, and $\frac{m}{\sqrt{1 - m^2}} = \sqrt{\frac{1 - i^2}{1 - n^2}}$, $n = s = i$, we shall have

\[\text{Cof.} ED = -16p\dot{a} \times \sqrt{1 - \dot{p}^2 \times 1 - 2p^2 + \dot{p}^2 \times m^2 + mp \times \sqrt{1 - m^2 \times \sqrt{1 - \dot{p}^2 + \dot{p}^2 \times 1 - \dot{p}^2}} + 16 \dot{p}^2 v \times 1 - 3p^2 - m^2 + 2p^2 m^2 = 2mp \times \sqrt{1 - m^2 \times \sqrt{1 - \dot{p}^2}}. \]

And because the sine of the observed angle is $4p \times \sqrt{1 - \dot{p}^2 \times 1 - 2p^2}$,
the error of the observation itself, that is,

\[\frac{\dot{a}}{\sqrt{1 - \dot{p}^2 \times 1 - 2p^2}}. \]

In this example the position of the telescope has been sup-
poved exactly in the plane of motion; should it be in-
clined to that plane at a small angle, of which the versed
sine $= v$, the position of the reflectors and the arc pointed to
by the index being correct, the general value of \text{Cof.} ED will
give the error of the observation, or $\frac{\dot{a}}{\sqrt{1 - \dot{p}^2 \times 1 - 2p^2}}$.

30. To

* The nascent value of $\frac{1 - s^2}{1 - n^2} = \frac{-2ss}{2m^2}$, but $\dot{n} = - \frac{v \times 1 - m^2}{m^2} = + \frac{s \times 1 - m^2}{m^2}$;

wherefore $\frac{1 - s^2}{1 - n^2} = \frac{m^2}{1 - m^2}$, when s and n are nearly $= i$.

‡ When the position of the telescope only is erroneous, the points F and O'
coincide.
30. To examine in what degree an observation taken by the new construction described in art. 15. is affected by known errors in the given quantities, let the reflectors B and C deviate by excess from their true angle of inclination to the plane of motion by a small angle \(\hat{b} \): let the angle of incidence on the fixed speculum be too great by the increment \(c \): let the fixed plane of reflection deviate from the secondary KO with which it should coincide by a small angle \(\hat{d} \); and lastly, let the error of the arc pointed to by the index be \(2 \hat{a} \); then these variations are arbitrary, no condition being annexed. Moreover, by the construction \(m = s = \frac{1}{\sqrt{2}} \), and \(n = o \), which values being substituted in the general expression contained in art. 48. we shall have:

\[
\text{Cof.ED} = -4 \hat{a} \times \sqrt{1 - \hat{p}^2} - 4\hat{b}^2 \times 1 - \hat{p}^2 + 4\hat{c}^2 \times 1 - \hat{p}^2 = 2\sqrt{2}\hat{a} \times \hat{b} \times \sqrt{1 - \hat{p}^2};
\]

and because the sine of the angle measured = \(2\hat{p} \times \sqrt{1 - \hat{p}^2} \), the error of the observation required, or coincide (fig. 7.) let the inclination of the telescope to the plane of motion with which it should coincide, be measured by the small arc \(Dd \); then the corresponding variation of the angle DOK will be \(DOD \). Let \(Dd = \epsilon \), and its versed sine = \(v \); since the sine of \(DO = m \), and the sine of \(DOK = \epsilon = n \) by the problem, \(\epsilon = \) the versed sine of \(DOD \); but \(DOD = \frac{\epsilon}{m} \), and the versed sine of \(DOD = \frac{v}{2m} \): wherefore \(n = \frac{-v}{m} \). This being premised, it appears from art. 26. when \(\hat{p} \) and \(\hat{s} \), \(\) are \(= 0 \), that \(\text{Cof. ED} = +16 \hat{p}^2 \times m \times s \times -n + 2\hat{p}^2 \times s^2 \times n \times \sqrt{1 - \hat{p}^2} \times \sqrt{1 - \hat{s}^2} \times \sqrt{1 - \hat{n}^2} \)

\[
+16 \hat{p}^2 \times m \times s \times 1 - n^2 - p^2 + 2\hat{p}^2 \times s^2 - s^2 \times n^2 = 2 \hat{p} n \times \sqrt{1 - n^2} \times \sqrt{1 - s^2} \times \sqrt{1 - p^2};
\]

in which quantity, substituting \(1 \) for \(s \), \(1 \) for \(n \), and \(-\frac{v}{m^2} \) for \(n \), we shall have

\[
\text{Cof. ED} = +16 \hat{p}^2 \times s \times (1 - p^2),
\]

which being divided by the sine of the observed angle \(= 4\hat{p} \times \sqrt{1 - \hat{p}^2} \times 1 - \hat{p} \), the quotient will be the variation of that angle or \(\frac{\text{ED}}{1 - 2\hat{p}^2} \).

\[
\text{ED} = \]

\[
\]
of the Angle subtended by Two Objects, &c.

$$\vec{ED} = 2a + 2pb \times \sqrt{1 - p^2} - 2pc \times \sqrt{1 - p^2} \pm \sqrt{2p^2 \cdot d}.$$

It appears from the first term $2a$, that an error in the arc pointed to by the index, causes an equal error in the observed angle; whereas a double error is caused by it in HADLEY's sextant, which gives the new construction considerable advantages: to counter-balance these the errors in HADLEY's construction, caused by a wrong position of the reflecting planes, &c. are almost evanescent; whereas the three last terms in the value of \(\vec{ED} \) just found, may become considerable, unless great care be taken in making the adjustments: the separation also of the images, when in contact, caused by any unsteadiness of the instrument will be greater than in Mr. HADLEY's construction*; but

* The variation of the observed angle \(\vec{ED} \) will shew how much the images seen in contact in the field of the telescope will appear to diverge on any motion of the entire construction. For example, while the images of the observed objects are coincident in the field of the telescope, suppose that Mr. HADLEY's instrument were turned round in its own plane through a small angle: here \(s, \eta, \) and \(\rho, \) not being affected by this motion, it follows, that \(s, \eta, \) and \(\rho = 0, m \) is the sine of the angle of incidence on the fixed speculum, being the only quantity which suffers alteration: let its variation be \(m', \) which will give from art. 26. the corresponding variation in the cosine of the observed angle, or

$$\text{Cof.} \vec{ED} = 16s'p'mn \times \sqrt{1 - \eta^2 - p^2} + 2p^2 \eta^2 - 2p^2 m^2 \mp 2pm \times \sqrt{1 - \eta^2} \times \sqrt{1 - s^2} \times \sqrt{1 - p^2} \approx 0, \text{ because } n = s = 1. \text{ Wherefore any motion of the images in the plane of the instrument will not cause the least separation of them. Now suppose the whole to be turned on an axis situated in the plane of motion, and perpendicular to the telescope's axis: if the angular motion be measured by an arc of which the verified sine is } v, \text{ the points in contact will be separated through an angle } \frac{4np \times \sqrt{1 - p^2}}{1 - 2p^2}, \text{ \(p \) being the sine of one quarter of the angle observed; but the quantity } v \text{ being very small, when the angular motion does not exceed } 30', \text{ the divarication of the images will be inconsiderable. All oblique motions of the telescope's axis, and consequently of the image seen by direct rays, may be resolved into those that have}$$
but in measuring the smaller angles, this separation of the images, as well as the errors expressed by the three last terms will be greatly diminished while that which is denoted by $2\dot{a}$ contained in the first term is not increased. On the whole, from the properties which have been demonstrated to belong to this construction described in Art. 15. it may seem worthy of attention in practice, for some astrononical as well as other uses.

31. By the same way of examination it may be judged, whether the method of observing by two reflections from plane surfaces be applicable to the mensuration of small angles, according to the construction described in art. 16. Let the errors of the four given quantities (as in the last article) be $2\dot{a} = \text{the error of the arc}$

have been considered, which are perpendicular to each other: and from hence the reason appears, why the motion of a ship at sea does not much disturb the observation of angles by Mr. Hadley's instrument.

The new construction described in Art. 15. is not so well adapted for observation where it cannot be steadily fixed. When the images are in contact, if the instrument be turned in its own plane through a small angle ε'' the separation of the images will be $= 2\varepsilon''p^2$ (because $d'' = \sqrt{2}\varepsilon''$, vid. p. 426.) p signifying the sine of half the observed angle: this it is evident will most affect the observation of the larger angles; but in measuring those that are small, the divarication will become inconsiderable. Moreover, if the angular motion of the instrument be ε'', when it turns round an axis in the plane of motion, and perpendicular to the telescope's axis, the separation of the images will be $= 2\varepsilon''p \times \sqrt{1-p^2}$, p. 426. which it is plain will most disturb the observations of angles about 90°, but will scarcely alter the contact of the images, when the angles measured are very small, or near 180°.

The objects observed and their images are here understood to be physical points: thus, when the two images of the sun are seen by direct and reflected rays, and the limbs appear precisely in contact, if by any motion of the instrument the contact is disturbed, the points which before touched, being the observed objects, are said to be separated, whether the centres of the solar images approach or recede from each other, the separation being estimated in the direction of an arc which passes through the centers of the two solar images.

Experience must determine in what degree this separation of the images will disturb observations taken at sea with the new construction.
pointed to by the index; \(b \) = the error of the inclination of the reflectors to the plane of motion; \(c \) = the error in the angle of incidence on the fixed speculum; and \(d \) = the inclination of the fixed plane of reflection to the primitive secondary with which it should coincide. Referring to the general value of \(\overline{LE} \) (art. 28.) and making \(n = o \) we shall have

\[
\overline{LE} = -1(\sqrt{1 - p^2} \sqrt{1 - 2^2 p^2 - m^2 + 2m^2 v^2 - 161^2 s^2} \times \sqrt{1 - 2^2 s^2 - m^2 + m^2 i^2} + 16^2 p^2 m^2) \times \sqrt{1 - m^2} \times 1 - p^2 + 16^2 m^2 p^2 \times d \times \sqrt{1 - s^2} \times \sqrt{1 - p^2},
\]

and because \(s \) being very small, the sine of \(LE \) (art 23.) approximates to \(4p^2 \sqrt{1 - m^2 + p^2 m^2} \), the error of the observation itself, or \(\overline{ED} = \frac{4n s \times \sqrt{1 - p^2} \times 1 - 2^2 p^2 - m^2 + 2m^2 v^2}{1 - p^2 m^2} \times \sqrt{1 - m^2 + p^2 m^2} \)

\[
+ \frac{4p^2 \times \sqrt{1 - s^2} \times 1 - 2^2 s^2 - m^2 + m^2 p^2}{1 - m^2 + p^2 m^2} \times \sqrt{1 - m^2 + p^2 m^2} \times \sqrt{1 - p^2}
\]

\[
- \frac{4p^2 m^2 \times \sqrt{1 - m^2} \times 1 - p^2}{1 - m^2 + p^2 m^2} \times \sqrt{1 - m^2 + p^2 m^2} \times \sqrt{1 - p^2}.
\]

The first term of this expression gives the relation between any small variation in the arc pointed to by the index, and the corresponding alteration in the angle observed; if therefore the variation on the divided arc be any small angle \(\pm 2a \), + or - the first term will express the variation by which the observed angle is increased or diminished. According to the magnitude of \(m \) and \(s \) assumed for this construction \(m \) being the sine of \(7^\circ \), and \(s = \) the sine of \(10^\circ \), it appears, that at the very beginning of the scale one second of a degree in the angle observed corresponds to somewhat less than three minutes on the divided arc \(OP \); that is, when \(2a \) = about \(173'' \), \(\overline{ED} = \overline{1''} \), \(c \), \(b \), and \(d \), not being here considered. When \(p = \frac{1}{2} \), the index then pointing to \(60^\circ \), one second in the observed angle cor-

Vol. LXXI. L 1 1

responds
Mr. Atwood's Theory for the Mensuration

responds to about 199'' in the divided arc OP: when \(p \) is nearly = 1, the index being then directed to almost 180°, it must describe above 2 degrees to make an alteration of 1'' in the observed angle. The second term expresses the variation in the observation occasioned by an error \(b \) in adjusting the inclination of the reflecting planes to the plane of motion; but \(b \) (art. 18.) cannot exceed \(\frac{1}{4} \) of the least angle visible in the telescope, consequently the utmost value of the second term cannot be so great as that least angle, being at its limit when \(p = 1 \): it is manifest when \(p \) is small, that the second term is so much diminished, as to be in a physical sense evanescent. The same may be said of the fourth term, containing the error of the optical adjustment \(d \), which besides is multiplied into \(s \) the sine of 10'.

The third term is occasioned by the error \(c \), for which, considerable latitude must be allowed, suppose 3': to estimate the effect of this error on the observation, let a case be assumed: let the index be directed to 90° when an observation is taken for determining the angle subtended between two objects: then will \(p = \frac{1}{\sqrt{2}} \); by substituting \(\frac{1}{\sqrt{2}} \) for \(p \), the sine of 7° for \(m \), the sine of 10' for \(s \), and 180'' for \(c \) in the third term, we shall have, by computation, the value of that term, or the error in the observation occasioned by this deviation of the angle of incidence from its true magnitude = .''090 not the tenth part of a second. This is rather an unfavourable case, the variation being not much less than at its maximum when \(p = \frac{1}{\sqrt{2}} \): if \(p \) is small, or nearly = 1, the variation will be wholly insensible.

* The variation is a maximum when \(p = \) the sine of 35° 12'; and consequently the arc pointed to by the index = 70° 24'. Substituting therefore the sine of 35° 12' for

431
32. From contemplating the value of the error $= \bar{ED}$, as expressed by the four terms just referred to, some further observations are suggested. It appears, that setting aside the error of the scale expressed by the first term (the angles measured being here supposed less than $22'56''33'''$) all the others become smaller as the quantity ρ, and consequently the angle measured is diminished, ρ being multiplied into each of the three last terms. This is a material circumstance: for the same given error would affect the mensuration of the smaller angles in a greater proportion than the larger. Moreover, if $\rho = 1$, or approximates to that quantity, the index then pointing to an angle nearly $= 180^\circ$, the first term and the two last terms become almost evanescent, not only from the circumstances that have been considered, but from the quantities $1 - \rho^2$, $\sqrt{1 - \rho^2}$, which are multiplied into them. This also the observer may avail himself of: for supposing he should know, that the angle of incidence on the fixed speculum, and the fixed plane of reflection, are imperfectly adjusted, and even that the divided arc is incorrect, he may almost wholly avoid the errors which they would occasion, by so adjusting the inclination of the reflectors to the plane of motion, in respect of the angle measured, that for ρ in the third term, (p. 429.) every thing else remaining, the maximum of variation in the observed angle on account of $3'$ difference in the angle of incidence on the fixed speculum will appear to be $= 0.098$.

The error of an observation occasioned by a variation ϵ in the angle of incidence on the fixed speculum, can never exceed the $\frac{1}{1000}$ part of ϵ, which is the maximum of error, the angle measured being $= 22'56''33'''$, the index then pointing to $70^\circ 24'$. The error, caused by a small angle \hat{d}, at which the fixed plane of reflection is inclined to the primitive secondary with which it should coincide, cannot exceed the $\frac{1}{10000}$ part of \hat{d}, which is its maximum when the angle measured is $32'33''3'''$, the index then being directed to $109^\circ 20'$.
the index shall point to some degree near to 180°, which is
done by making that inclination very little more than one-
fourth of the angle to be observed.

33. The tables i. and ii. are calculated for taking the
diameters of the sun and planets: the construction being formed
on the principles which have been explained (art. 16. 17. 18.
31. 32. fig. 12. 13.). The fixed plane of reflection is coinci-
dent with the primitive secondary, and consequently n = 0:
the common inclination of the reflectors to the plane of mo-
tion = 10°; and the constant angle of incidence on the fixed
speculum = 7°.

<table>
<thead>
<tr>
<th>TABLE I.</th>
<th></th>
<th>TABLE II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc</td>
<td>Observed angle.</td>
<td>Arc</td>
</tr>
<tr>
<td>pointed to</td>
<td></td>
<td>angle.</td>
</tr>
<tr>
<td>by the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>index.</td>
<td></td>
<td>Diff.</td>
</tr>
<tr>
<td>1°</td>
<td>20 47</td>
<td>100°</td>
</tr>
<tr>
<td>2°</td>
<td>41 34</td>
<td>100°</td>
</tr>
<tr>
<td>3°</td>
<td>2 21</td>
<td>100°</td>
</tr>
<tr>
<td>4°</td>
<td>23 8</td>
<td>100°</td>
</tr>
<tr>
<td>5°</td>
<td>43 54</td>
<td>100°</td>
</tr>
<tr>
<td>6°</td>
<td>4 40</td>
<td>100°</td>
</tr>
<tr>
<td>7°</td>
<td>25 25</td>
<td>100°</td>
</tr>
<tr>
<td>8°</td>
<td>2 46 10</td>
<td>100°</td>
</tr>
<tr>
<td>9°</td>
<td>3 6 54</td>
<td>100°</td>
</tr>
<tr>
<td>10°</td>
<td>27 37</td>
<td>100°</td>
</tr>
</tbody>
</table>
of the Angle subtended by Two Objects, &c. 433

The divarication of the images while they traverse the field of the telescope during the time of an observation, and the errors of the observed angle in consequence of any change in the quantities *m* and *n* (p. 429) should they appear to be of sensible magnitude, may be diminished until they are in physical sense evanescent, by altering the values of *s* and *m* (art. 31.) for this purpose it will be requisite to use two separate constructions; the one for observing very small angles, those, for example, which do not exceed 2': and the other, for measuring such angles as are subtended by the sun and moon. In the former of these *s* may be assumed = the sine of 30'', *m* = sin. 7', and *n* = 0. From these data tab. III. is calculated. In the other construction, because very small reflecting surfaces are necessary to observe the sun by two reflections (art. 17.) *m* may be assumed = sin. 1°, *s* being = sin. 10', and *n* = 0: from which conditions the fourth table is calculated. These tables may be easily extended, by calculating from the value of cot. ED or sin. ½ED² contained in art. 21. or 22.

* Let the telescope with the entire construction be steadily fixed: then if the objects observed be in contact while the touching points occupy the center of the field, the angle of incidence on the fixed speculum will be of its true magnitude; that is, its sine or *m* will = sin. 7° in tables I., II. and III.; and *m* = sin. 1° in table IV. The fixed plane of reflection also will be coincident with the primitive secondary in all the constructions corresponding to tables I., II., III., and IV. The telescope continuing unmoved, the diurnal motion of the heavens will cause the points in contact to leave the center of the field; this will occasion no alteration in the quantities *s* and *p*, but will affect *m* and *n* only: therefore, *s* and *p* = 0. To estimate the effects of this change in the values of *m* and *n*, let *m* = *c* × √(1- *m*²), and *n* = *d* × √(1- *n*²), as in art. 28. and suppose a line to be drawn through the centre of the field in a plane, perpendicular to the plane of motion: this line will be in the fixed plane of reflection; and any deviation of the points in contact through a small angular space *z* from the center of the field will cause an equal variation *c* in the
Mr. Atwood's Theory for the Measurement

the angle of incidence on the fixed speculum; the corresponding separation of
the images will be \[\frac{4pmc \times \sqrt{1 - m^2 \times 1 - \rho^2}}{\sqrt{1 - m^2 + m^2 \rho^2}} \] (p. 429.) which is the greatest possible
when \(\rho = \sqrt{9 - 8m^2 - 3 - 4m^2} \) = sine of \(35^\circ 11' 47'' \) (if \(m = \sin 7^\circ \),
and \(s = \sin 10' \), as in tab. I. and II.) being then \(\frac{\epsilon}{1837} \); but if \(s = \sin 30'' \), as in
tab. III. the greatest separation will be only \(\frac{\epsilon}{36740} \), corresponding to les than one-
third of a degree for the images motion through \(10' \) in the field of the telescope.
In like manner let a line be drawn through the center of the field perpendicular to the
line before described; any deviation of the points in contact through a small angle
\(\epsilon \) in the direction of this line will cause the plane of reflection at the fixed speculum
to be inclined to the primitive secondary with which it should coincide at an angle \(\frac{\epsilon}{m} \); this will occasion a separation of the images \[\frac{4m \rho^2 \epsilon}{\sqrt{1 - \epsilon^2} \times \sqrt{1 - \rho^2}} \]
(page 429. \(\frac{\epsilon}{m} \) being there substituted for \(\frac{\epsilon}{a} \) which is the greatest possible when
\(\rho = \sqrt{9 - 8m^2 - 3 - 4m^2} \). If \(m = \sin 7^\circ \) and \(s = \sin 10' \), as in tab. I. and II.
the greatest separation of the images will be \(\frac{\epsilon}{1828} = \frac{\epsilon}{14996} \); but if \(s = \sin 30'' \)
and \(m = \sin 7^\circ \), as in tab. III. it will only \(\frac{\epsilon}{36560} = \frac{\epsilon}{299920} \), which answers to
a divarication of less than \(1'' \) for the images motion through \(10' \) in the field
of the telescope, in the direction of the line above described, which is drawn
through the center of the field, and perpendicular to the fixed plane of reflection.
It must be remembered, that the separations of the images here estimated are
greater than can possibly happen in these constructions, when the index is
directed to any other points of the circumference of the plane of motion (the
distance of the images from the center the field not exceeding \(10' \)) and are,
even in this case, phasically speaking, evanescent.

Table

\(\epsilon \)}
TABLE III.

<table>
<thead>
<tr>
<th>Arc pointed to by the index.</th>
<th>Observed angle</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°</td>
<td>31 39</td>
<td>40</td>
</tr>
<tr>
<td>101°</td>
<td>32 19</td>
<td>40</td>
</tr>
<tr>
<td>102°</td>
<td>32 59</td>
<td>40</td>
</tr>
<tr>
<td>103°</td>
<td>33 39</td>
<td>39</td>
</tr>
<tr>
<td>104°</td>
<td>34 18</td>
<td>38</td>
</tr>
<tr>
<td>105°</td>
<td>34 56</td>
<td>38</td>
</tr>
<tr>
<td>106°</td>
<td>35 34</td>
<td>38</td>
</tr>
<tr>
<td>107°</td>
<td>36 12</td>
<td>38</td>
</tr>
<tr>
<td>108°</td>
<td>36 50</td>
<td>37</td>
</tr>
<tr>
<td>109°</td>
<td>37 27</td>
<td>36</td>
</tr>
<tr>
<td>110°</td>
<td>38 3</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV.

<table>
<thead>
<tr>
<th>Arc pointed to by the index.</th>
<th>Observed angle</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°</td>
<td>30 38 23</td>
<td>13 24</td>
</tr>
<tr>
<td>101°</td>
<td>30 51 47</td>
<td>13 15</td>
</tr>
<tr>
<td>102°</td>
<td>31 5</td>
<td>13 7</td>
</tr>
<tr>
<td>103°</td>
<td>31 18 9</td>
<td>12 58</td>
</tr>
<tr>
<td>104°</td>
<td>31 31 7</td>
<td>12 49</td>
</tr>
<tr>
<td>105°</td>
<td>31 43 56</td>
<td>12 41</td>
</tr>
<tr>
<td>106°</td>
<td>31 56 37</td>
<td>12 32</td>
</tr>
<tr>
<td>107°</td>
<td>32 9</td>
<td>12 23</td>
</tr>
<tr>
<td>108°</td>
<td>32 21 32</td>
<td>12 14</td>
</tr>
<tr>
<td>109°</td>
<td>32 33 46</td>
<td>12 6</td>
</tr>
</tbody>
</table>
XXVII. An Account of the Ophidium barbatum LINNEI. By P. M. Augustus Broussonet, M. D.; communicated by Sir Joseph Banks, Bart. P. R. S.

Read July 5, 1781.

This species of fish seems not to have been unknown to the ancients, though probably they confounded it with the Conger, to which it bears some resemblance. Perhaps the early Greek and Latin writers on natural history have mentioned it under the name of Tragus, or Callarias; but for want of descriptions, they left us much in the dark concerning it. Pliny indeed speaks of a fish which appears to be of this species: he calls it Ophidion*, and as that is the name given to it by all the modern writers, we are obliged to accept his synonymy without further inquiry.

The first author to whom we are indebted for a description and figure of the Ophidium is BELLONIUS; yet it appears, that he was not certain of the name of this fish, since he calls it Gryllus, falsus congrus, tragus, aselli species: nor was he left doubtful of the class to which he should refer it, and therefore placed it among the Aselli, or Gadi, though very different from the species of that family. RONDELETIUS, who wrote soon after BELLONIUS, has given us a better description, and a more accurate figure of this fish, which he calls Ophidion,

* Ophidion or Ophidium, though the best is Ophidium, is not a good generic name, since it is a diminutive from opis,
Dr. Broussonet's Account of, &c.

with a reference to Pliny. In the figure of Bellonius the cirri are very ill represented, and the whole fish appears without any spots, whereas in the plate of Rondeletius it is covered with oblong spots. This remarkable difference between the figures of these authors was sufficient to determine Gesnerus, and others who have written since their time, and who are to be considered rather as compilers than authors, to take the fish described by Bellonius to be a different species from that of Rondeletius.

Willoughby, who is the first ichthyologist who has given us any good description of fish, treats largely of the Ophidium; and in his account describes the scales, which are, as we shall hereafter explain, oblong, distinct, and disposed without any regular order. This description was sufficient to ascertain, that the difference between the figures arose from Rondeletius having drawn the scales omitted by Bellonius: yet the authors who wrote immediately after Willoughby, and particularly Ray in his Synopsis, follow Gesnerus, in maintaining two different species of cirrata Ophidia, one with, the other without, spots.

Arctedi did not take notice of the spots; he describes the fish in a genus to which he gives the name of Ophidion, and places that genus among the Malacopterygii. After him Kleinius once more took notice of the spots; but at the same time introduced another confusion concerning this fish, arising from Rondeletius having said, that it has two cirri, while Willoughby affirms it has four; but it is easy to reconcile these authors, for though the Ophidium has only two cirri, yet each of these being divided in two, they appear as four; so that Willoughby might justly say, that it is quadri-cirratus. The same author places the Ophidium in a genus which he calls

Vol. LXXI. M m m Enchelyopus,
Dr. Broussonet's Account of

Enchelyopus, which is indeed not a good family, since it comprehends the genera of Gymnotus, Anarrhichas, Cepola, Blennius, Cobitis, &c.

Linne, in his description of the Ophidium barbatum says, that its whole body is covered with oblong spots, without any regular direction. Dr. Gouan, in his description of the genus of the Ophidium, does not mention the scales; but gives the spots as a generic character. The last author who has mentioned these spots, and given a description of this fish, is Mr. Brunniche in his Ichthyologia Maffilienis.

Having adduced the various opinions of the writers on the Ophidium, and endeavoured to reconcile their sentiments, we now proceed to give the description of this fish, which is so very remarkable for its singularities. The genus of Ophidium has the following principal characters, viz. the body long; the fins of the back, tail, and anus, confounded in one; no fin on the under part of the body; and the eyes covered by the common skin. There are besides many other characters which it is needless to observe here, since I intend not to describe all the species of the genus, but only to mention them. The first species (which is the species of which we are treating) is distinguished by its cirri. The second differs from the former not only by the absence of the cirri, but also by many other marks. Artedi, in his account of this species, has adopted the synonymy of Schonevelde, who describes a fish under the name of Ophidion imberbe flavum; but this fish, which is the Blennius gunnellus Linn. is certainly very different from the Ophidion imberbe, Linn. the rays of its dorval fin being prickly; which circumstance perhaps induced Linne to place the Ophidium among the Acanthopterygii in the first editions of his Systema, in which he followed the classification of Artedi. Perhaps, for the
sake reason, that author has placed among the jugulares in his Fauna Suecica, the species of which we are now speaking. This fifth is also very different from the Sea snail described by Willoughby and Petiver, which is the Cyclopterus lipparis Linn. though the synonymy of Petiver has been accepted by Gronovius as being the Ophidium imberbe.*

LINNE, in the tenth edition of his Systema, mentions a third species of Ophidium, which he calls Macrophthalium; but afterwards discovered that this species belonged to the genus of Cepola. It is another species of this genus which Otho Fabricius has lately described in his Fauna Grænlandica, under the denomination of Ophidium viride. There are two other fishes, of which Gronovius made a new genus, assigning to it the name of Mastacembelus, which comes near to the genus of Ophidium, though I am persuaded it constitutes a different one by the presence of the aculei on the back. I shall now proceed to give a description of that species of which I am particularly treating, which I have written in Latin for the sake of perspicuity.

DESCRIPATIO

OPHIDIIBARBATILINN.

CAPUT compressum, sub-acutum, nudum, cute communi laxe tectum.

Rictus amplus.

Mandibula superior duplicata, inferiore paulo longior.

* The 6th mentioned by Mr. Pennant, in the British Zoology, tom. III. append. p. 346. and engraved in the tab. 93. tom. II. under the name of Ophidium imberbe LINN. is a species of Murana.

Mvm2

Labia
Labia cutacea, tenuia.

Dentes in utrinque maxillae margine, in aream angustam antice latiusculam dispositi, minuti, acuti, conferti, anteriores paululum majores.

Lingua subobtusa, glabra.

Palatum medio glabrum, antice areis tribus denticulorum exasperatum, quarum duae laterales lineares, intermedia subtriangularis.

Fauces superne exasperatae duabus areis longitudinalibus denticulorum.

Narium foramina utrinque bina, ante oculos posita, distantia; foramine anteriore minore, posteriore nudo.

Oculi supremi, vicini, magni, corte communi tecti: iris argentea; pupilla luteo-brunnea.

Opercula branchiarum corte communi tecta, rotundata polyphylla, mollia.

Membrana branchiospeciosa, corte communi tecta, radiis subaequalibus.

Branchiae quaternae; tres interiores parte concava gereunt tubercula aspera, separata, in duas series disposita; quarta caeteris longior, latere interno gerit tubercula aspera, externo radiis uno latere laviter ferratos.

Cirri duo ad apicem maxillae, inferioris, bipartiti; lacinia altera longiore.

Tuberculum subacutum, seu apophysis ossis tectae, recumbens, ante oculos in fronte posita.

CORPUS. Compressum, versus caudam attenuatum.

Linea lateralis suprema, lavis, dorsi parallela, vitta argentea subitus ornata.

Squamae obovatae, tectae, umbonatae, separatae.

Pinna
Pinna dorsalis longa * anali longior sed angustior, cum caudali continuata, basi foride albelescens, margine nigra et punctis plurimis nigris: Radii simplices, flexiles, molles.

Pinna pectorales obovatae, pellucidae, membrana punctis minutiissimis irrorata.

Pinna analis caudali unita, basi albelescens, margine nigra, radiis simplicibus.

Pinna caudalis nigra, apice obtusa.

Color capitis et corporis carneus-argentens.

Lc. A : 85 : 35
Lc. PL : 85 : 15
Lc. DI : 85 : 27
Lc. PI : 85 : 22
Lc. DFCFAP : 85 : 87
Lc. AI : 85 : 37
R. 5° 1'. P. 2. D. 2. 3. 4. 5. 6. A. 3. 4. 5. 6.

Before I proceed, I think it necessary to explain the proportions which I employed in the foregoing description. Aristotle considered the measurement of fishes as necessary to render the description of them perfect; and therefore in the species which he described most completely, we find, he did not fail to express, with the greatest accuracy, the distances between the several parts. He has been followed in this by the best authors who have written upon fishes, as Cnemovius and Pelias. The like practice has been followed by some writers in describing animals of other classes; and particularly by Messrs. Daubenton, who has, with extraordinary exactness, expressed the measurements of quadrupeds. The use of this measurement, however, can only ascertain that such or such individuals is larger or less than another described by an author: for it is impossible by such means to determine a species, and therefore a single measurement, taken from the head to the tail, or in

* Pinna mihi audit longa, cujus basis longitudine excidit radium altiorum.
Dr. Broussonet's Account of

short from any one part to another, would answer the same purpose; but if you take the terms of the measures, and compare them one with another, or all of them to a single one, a method may be deduced for determining the species, and describing each with accuracy, and that is the method which I used.

There is no doubt that fishes have a regular growth, and that all their parts have a proportional increase: it is therefore of no consequence whether the measure be taken from an old or a young subject, it will be always of the same use for determining the species. The term to which I refer all the rest, is taken from the distance between the apex of the upper jaw, and the basis of the fin of the tail. The extremity of the upper jaw is the point from which I take the distance to all the other parts. To determine with more accuracy the junction of the fin to the tail, I incline the fin so as to form an angle with the tail; I take the distances with a pair of compasses, to avoid the irregularities of the surface of the body, which are infinitely various. When I have taken the distance with the compasses, I make a reference to a rule, which is divided in English inches, each of them sub-divided in tenths. To exemplify my practice in a fish of the supposed length of 40 lines from the upper jaw to the tail, and from the same point to the anus of 20 lines, I say, that the distance from the head to the tail compared with the distance from the head to the anus is in this species as 40 to 20, which I express in this manner: Lc. : A :: 40 : 20, which I thus reduce, Lc. : A :: 10 : 5. I then take the length from the upper jaw to the beginning of the dorsal fin, and to its end: next from

* I measure the dorsal and anal fins at their basis, never in their margin.
the same point to the basis of the pectoral, to its extremity; and in the like manner for the ventral, anal, and tail fins; all which measures I refer to the common term 40. Admitting then the dorsal fin is distant from the upper jaw as ten, I write as before LC : DI :: 40 : 10, which I reduce, if I chuse so, LC : DI :: 20 : 5.

I take the measures in length only, and never in breadth or depth, because such measures, on many accounts, for instance, from the quantity of spawn, from that of food in the ventricle, &c. would be uncertain; besides there are terms enough afforded by the situation of the anus and the fins. I pay no regard to the measure of the nostrils, of the eyes, &c. as these parts lie too near the extremity of the upper jaw to admit of a sufficient accuracy in their measure. All these distances are written in the shortest manner possible; I therefore do not go into the inquiry what class of the LINNÆAN system the fish described may belong to; or whether the anal fin is before or behind the region of the dorsal; whether the pectoral are extended beyond the ventral; or the tail is forked or not; and many other particulars which could not be expressed but by a very long description, tedious both to the writer and reader.

To make an application of the proportional measurements, I suppose a fish, of a species described, to be in length 40 lines, and from the upper jaw to the anus 10: I take a specimen which I suspect to be of the same species, but which I wish to determine with certainty: the length of it is 20 lines; then I say 40 is to 10 as 20 is to another term, which I discover by multiplying 20 by 10, and dividing the product by 40, which will produce 5, the number of the lines comprehended between the upper jaw and the anus, if the fish be of the species it:
it is thought to be. I proceed in the like manner, in comparing the terms of the measures of the other parts; but the utility of these measures is very apparent in the distinguishing of the species of some genera which are so natural as that of Cyprinus, Clupea, and many others, of which the species could not be otherwise easily distinguished. I shall instance a species of Perca described in the Commentarii Petropolitani under the name of Perca acerina, by Mr. Gueldenstaedt, which could not have been distinguished from the Perca cernua but by the proportional measures; since the Cernua has the body about three times longer than the head, whereas the Acerina has it but twice as long, though by the other characters they are almost indistinguishable.

To express the position of the fins briefly, and with all possible accuracy, which, however, I think may be very well understood by the described measures, I take the distance from the upper jaw to the basis of the pectoral fin, and then see into how many equal parts the whole body may be divided, and to these parts I apply the name of regions; I measure them to the extremity of the middle of the fin of the tail, and I express the position of the fins as follow: D. 3. 4. A. 3. V. 2. P. 2. the letters being the initials of the fins, and the numbers of the regions, the first being from the head to the pectoral fin *.

The scales of the Ophidium, which have been figured by Rondeletius, but overlooked by many other writers, have

* I beg pardon for the digression; but I thought it would not be improper in this place to observe, that the utility of this method of measurement will appear not only in distinguishing fishes, but also animals of other classes, and particularly snakes, which cannot be well determined otherwise. Besides, I do not know any author on subjects of natural history, who has adopted that method.
been mentioned by Willoughby, but without any particular description. They are very different from those on the skin of the Ophidium imberbe, which are shortly described by Gronovius. Their position, as may be seen in the figure, is irregular. They are dispersed over the whole body. Their form is sometimes round, sometimes nearly oval. They are larger near the head, and in the lower part of the body; but are hardly to be distinguished near the tail. They adhere to the body by means of a particular transparent skin, which is in general very thin, but somewhat thicker near the neck, and extended loosely over the whole head: this skin is very easily destroyed, after which the scales falling, the body appears spotted (fig. 1.). These scales are of the same sort as those that LEEUWENHOEK has described on the eel, like those I have seen on the Anarrhichas lupus, the Blennius viviparus, and many other fishes, which are commonly thought to be without scales. When you look at them with the naked eye (fig. 2.) they appear as covered with very small grains; but viewed through a microscope (fig. 3.) the middle of them appears more elevated than the margin; and from the center to the margin, close by each other, there are many lines or rays, formed by small scales placed one upon another, like tiles upon a roof, the superior being always the nearer to the center. This sort of scales, which may be called umbonata, are fastened to the body by very small vessels which are inserted in their middle; they are to be seen on the body only, not on the head nor the fins.

I shall now proceed to the anatomy of this fish, which certainly comprehends some very remarkable circumstances, which, I believe, have not yet been observed in any other species. When we have drawn off the skin there appears a thin membrane of a silver colour, which covers the muscles. The
muscles being removed, we find the peritoneum, which lines the abdominal cavity, and is adherent to the swimming bladder by some elongations. It is of a silver hue, with some very small black points. The ventricle is not to be distinguished from the intestines by any other mark but by its size: its form is oblong; it is extended almost to the anus, from whence the intestinal duct has a retrograde course, and then descends again, having a little dilatation near the anus. On the vertebra next the anus on the outside of the peritoneum is a kind of cavity of an oblong form, containing a reddish viscus, which I take to be the kidney.

The first vertebra from the head has nothing very remarkable in its structure. The second has on each side an elongated and sharp apophysis, to the apex of which is annexed a small ligament. The third is very flat, and has on each side a kind of triangular and sharp apophysis, to which adheres a ligament as to the second. The fourth is remarkable in having a sharp apophysis on each side, articulated with the body of the vertebra, and under each of them, is another articulated apophysis, flattish, thick, roundish at its extremities, and forked at its basis (fig. 5). The fifth, which is strongly adherent to the former, has in its middle a bifid process. The sixth has in its middle a flattish elevation, sharp on each side. Between the extremity of the larger apophysis of the fourth vertebra, is a bone, or rather a hard cartilage, which bears the figure of a kidney (fig. 6) its convexity being turned towards the body of the vertebra: its position is parallel to the bodies of the vertebrae; its motion is half circular; one of its parts, viz. the lowest, being in the cavity of the swimming bladder, to which it adheres by a thin membrane, so that no air can escape at that part. It is covered by membranes, which adhere strongly to its middle, in this part are fastened the two ligaments
ments of the apophyses of the second and third vertebrae, of which we spoke before, and which are of a great tenacity. In the same point are fastened also two ligaments each of which belongs to an oblong muscle parallel to each other, and fixed to the bones of the lowest and posterior part of the head (fig. 4.).

All this apparatus is certainly subservient to the purpose of swimming, I suppose, by the cavity of the bladder being made larger or less by the motions of the cartilaginous bone; but it is very remarkable, that if these parts are necessary to some animal function, they should not be found in all the individuals; for I have seen two, of which the vertebrae were not different from the vertebrae of the other species: which difference depends, perhaps, on the difference of sex. I am inclined to believe so; but the generation in this fish seems to be no less mysterious than that of the eel: I could never distinguish a male from a female in this species. I do not know if the other species of Ophidium have the same structure; I could not perceive it in some specimens of Mastacembelus. Willoughby mentions that singular structure, but without any particular description.

This fish commonly grows to the size of eight or nine inches. It is to be found in all the Mediterranean Sea, and in great plenty in the Adriatic. It is taken by nets in Provence and Languedoc, together with many other small species, which are not esteemed, that is, what they call Rauillā. It is often confounded with the Cepola by the fishermen, though they have different names for each species. In Languedoc the Ophidium is called Donzella, and the Cepola, flamā. In Provence the former has the name of Corrugia, and the latter that of Rougeollā. But the name of Donzella, very common on all the coast of the Mediterranean, is also applied to the Cepola, and the Sparus julis.
Dr. Broussonet's Account of, &c.

Linn. which, however, is commonly called girellä. In summer the ophidium is more common: its flesh is not of a good taste, rather coarse, as that of all the species of fishes, which having no ventral fins, are obliged to make great efforts in swimming, and have consequently the muscles harder. The want of ventral fins induces me to believe, that it is not a migratory species. It feeds upon small crabs and fishes.
XXIX. A further Account of the Usefulness of washing the Stems of Trees. By Mr. Robert Marsham, of Stratton, F. R. S.

Read May 31, 1781.

The following account is a kind of postscript to my letter to Dr. Moss, Lord Bishop of Bath and Wells, in 1775, which the Royal Society did me the honour to publish in the Philosophical Transactions in 1777. In that I shewed how much a Beech increased upon its stem being cleaned and washed*; and in this I shall shew, that the benefit of cleaning the stem continues several years: for the Beech which I washed in 1775 has increased in the five years since the washing eight inches and six-tenths, or above an inch and seven-tenths yearly; and the aggregate of nine unwashed Beeches of the same age does not amount to one inch and three-tenths yearly to each tree. In 1776 I washed another Beech (of the same age, viz. feed in 1741); and the increase in four years since the washing is nine inches and two-tenths, or two inches and three-tenths yearly, when the aggregate of nine unwashed Beeches amounted to but one inch and three-tenths and a half. In 1776 I washed an Oak which I planted in 1720, which has increased in the four years since washing seven inches and two-tenths, and the

* Vide Phil. Trans. vol. LXVII. for the year 1777, part I. p. 12.
Mr. Marsham's further Account of the aggregate of three Oaks planted the same year (viz. all I measured) amounted to but one inch yearly to each tree. In 1779 I washed another Beech of the same age, and the increase in 1780 was threescores, when the aggregate of sixteen unwashed Beeches was not full fifteen inches and six-tenths, or not one inch and half a tenth to each tree; yet most of these trees grew on better land than that which was washed. But I apprehend the whole of the extraordinary increase in the two last experiments should not be attributed to washing: for in the autumn of 1778 I had great pond-mud spread round some favourite trees, as far as I supposed their roots extended, and although some trees did not show to have received any benefit from the mud, yet others did, that is, an Oak increased half an inch, and a Beech three-tenths, above their ordinary growth. Now though the Beech gained but three-tenths, yet, perhaps, that may not be enough to allow for the mud; for the summer of 1779 was the most ungenial to the growth of trees of any since I have measured them, some not gaining half their ordinary growth, and the aggregate increase of all the unwashed and unmudded trees that I measured (ninety-three in number of various kinds) was in 1779 but six feet five inches and seven tenths, or seventy-seven inches and seven-tenths, which gives but eight-tenths and about one-third to each tree; when in 1778 (a very dry summer in Norfolk) they increased seven feet and nine-tenths, or near eighty-five inches, which gives above nine-tenths to each tree; and this summer of 1780 being also very dry, yet the aggregate increase was above half an inch more than in 1778. But the best increase of these three years is low, as there are but twenty of the ninety-three trees that were not planted by me, and greater increase is reasonably expected in young than old trees; yet
yet I have an Oak now two hundred years old* (1780) which is sixteen feet and five inches in circumference, or one hundred and ninety-seven inches in two hundred years. But this Oak cannot properly be called old. The annual increase of very old trees is hardly measurable, with a string, as the slightest change of the air will affect the string more than a year's growth. The largest trees that I have measured are so far from me, that I have had no opportunity of measuring them a second time, except the Oak near the honourable Mr. Legge's Lodge in Holt Forest, which does not show to be hollow. In 1759 I found it was at seven feet (for a large swelling rendered it unfair to measure at five or six feet) a trifle above thirty-four feet in circumference, and in 1778 I found it had not increased above half an inch in nineteen years. This more entire remain of longevity merits some regard from the lovers of trees, as well as the hollow Oak at Cowthorp in Yorkshire, which Dr. Hunter gives an account of in his edition of Evelyn's Silva, and calls at forty-eight feet round at three feet. I did not measure it so low; but in 1768 I found it at four feet, forty feet, and six inches; and at five feet, thirty-six feet and six inches; and at six feet, thirty-two feet and one inch. Now, although this Oak is larger near the earth than that in Hampshire, yet it diminishes much more suddenly in girth, viz. eight feet and five inches in two feet of height (I reckon by my own measures as I took pains to be exact). Suppose the diminution continues about this rate (for I did not measure so high) then at seven feet it will be about twenty-eight feet in circumference, and the bottom.

* I cannot mistake in the age of this Oak, as I have the deed between my ancestor Robert Marsham and the Copyhold Tenants of his Manor of Stratton, dated May 40, 1560, wherein the premises sold are in part of his wood; and the abutal bears fourteen.
Mr. Marsham's further Account of the

fourteen feet contain six hundred and eighty-six feet round or buyers measure, or seventeen ton and six feet; and fourteen feet length of the Hampshire Oak is one thousand and seven feet, or twenty-five ton and seven feet, that is, three hundred and twenty-one feet more than the Yorkshire Oak, though that is supposed by many people the greatest Oak in England.

I am unwilling to conclude this account of washing the stems of trees without observing, that all the ingredients of vegetation united, which are received from the roots, stem, branches, and leaves of a mossy and dirty tree, do not produce half the increase that another gains whose stem is clean to the head only, and that not ten feet in height. Is it not clear that this greater share of nourishment cannot come from rain? for the dirty stem will retain the moisture longer than when clean, and the nourishment drawn from the roots, and imbibed by the branches and leaves, must be the same to both trees. Then must not the great share of vegetative ingredients be conveyed in dew? May not the moss and dirt absorb the finest parts of the dew? and may they not act as a kind of screen, and deprive the tree of that share of air and sun which it requires? To develope this mysterious operation of nature would be an honor to the most ingenious, and the plain fact may afford pleasure to the owners of young trees; for if their growth may be increased by cleaning their stems once in five or six years (and perhaps they will not require it so often) if the increase is but half an inch yearly above the ordinary growth, it will greatly over-pay for the trouble, besides the pleasure of seeing the tree more flourishing. Although the extra increase of my first washed Beech was but four-tenths of an inch, the second was nine-tenths and a half, and the third near two inches, so the aggregate extra increase is above one inch and one-
Usefulness of washing the Stems of Trees.

one tenth yearly; and the increase of the oak is eight-tenths. But calling it only half an inch, then six years will produce above five cubic feet of timber, as the oak is eight feet round, and above twenty feet long, and six pence will pay for the washing, so there remains nine shillings and six pence clear gain in six years.

Stratton,
Oct. 29, 1780.
XXX. Hints relating to the Use which may be made of the Tables of natural and logarithmic Sines, Tangents, &c. in the numerical Resolution of affected Equations. By William Wales, F. R. S. and Master of the Royal Mathematical School in Christ's Hospital.

Read June 14, 1781.

The first intimation that I can meet with relating to the use which may be made of the tables of sines, tangents, and secants, in resolving affected equations, is in the latter part of the second volume of Professor Saunderson's Elements of Algebra, printed in 1741, after his decease. The professor there shews how to resolve those two cases which make the first and second of the following examples, by means of the tables; but it appears, from many circumstances, he was not aware that the third case could be resolved in the same manner. All the three forms were, however, resolved by the late Mr. Anthony Thacker, a very ingenious man, who died in the beginning of the year 1744, by the help of a set of tables, of his own invention; different from, but in some measure analogous to, the tables of sines and tangents. These tables were finished and published, together with several papers concerning them, after his death, by a Mr. Brown of Cleobury. In these papers, beside explaining fully the use of the tables in resolving cubic equations, Mr. Thacker shews that his method comprehends the resolution of all biquadratic equations, if they be first
Mr. Wales on the Resolution, &c. 455

First reduced to cubic ones in the manner which has been explained by Descartes and others; and the second term then taken away.

Since that time M. Mauduit has shewn how to find the roots of all the three forms of cubic equations, by means of the tables of sines, &c. in his excellent Treatise of Trigonometry. But none of these authors have attempted to resolve equations of more dimensions than three, by these means, without first reducing them to that number; nor even these, before the second term, or that which involves the square of the unknown quantity, is taken away: whereas such reductions will generally take up more time than is required to bring out the value of the unknown quantity by the following method; and, after all, frequently serve no other purpose but that of rendering the operation more intricate and troublesome.

The truly ingenious Mr. Landen, in his lucubrations, published in 1755, has given a general method of resolving that case of cubic equations, by means of the tables of sines, where all the roots are real, without the trouble of taking away the second term of the equation: and Mr. Simpson has shewn how to resolve equations of any dimensions, by the same means, provided those equations involve only the odd powers of the unknown quantity, and that the coefficients observe such a law as will restrain the equation to that form which is expressive of the cosine of the multiple of an arc, of which the unknown quantity is the cosine. This was first done, I believe, by John Bernoulli, and afterwards by Mr. Euler, in his Introduct. ad Analyt. Infinit. and Mr. De Moivre, in his Miscell. Analyt. 5; but the resolution of all equations of this form, as well as many others, is comprehended in the first of the following observations.

O 0 0 2: The
The first thought of extending the use of the tables of sines, tangents, and secants, farther than to the cases which have been already mentioned, occurred to me while I was considering the problem which produced the equation given in this paper as the fourth example. And it is remarkable, that the very same thought occurred to Dr. Hutton about the same time, and in the resolution of the same problem; and we were not a little surprized, on comparing our solutions together, to find that our ideas had taken so exactly the same turn; and that both should have stumbled on a thought, which, as far as either of us knew, had never presented itself to any one before. Having since examined farther into the matter, I have the satisfaction to find, that the principle is very extensive, and that a great number of equations, especially such as arise in the practice of geometry, astronomy, and optics, may be resolved by it with great ease and expedition.

But beside the facility with which the value of the unknown quantity is brought out by means of the tables of sines, tangents, and secants, this method of resolution has another considerable advantage over most others which have been proposed, inasmuch as the first state of the equation, without any previous reduction, is generally the best it can be in for resolution; and from which it may most readily be discovered, how to separate it into such parts as express the sine, or the tangent, or the secant of the arc of a circle; or into the sine, tangent, or secant of some multiple of that arc, or of a part of it; and in the doing of which consists the principal part of the business in question. It will also be of some advantage to preserve the original substitutions as distinct as possible, by using only the signs of the several operations which it may be necessary to go through
of adjusted Equations.

through in bringing the solution of a problem to an equation, instead of performing the operations themselves.

Besides the advantages which this method of procedure affords to the mode of resolution now more particularly under consideration, it has to many others over that which is commonly made use of, that I am much surprized the latter should ever have been adopted. By preserving thus the original substitutions distinct, all the way through an operation, every expression, even to the final equation, will exhibit the whole process up to that step; and it will appear as clearly, how every expression has been derived, as it does in that mode of analysis which was used by the ancient geometers: whereas, when the several original expressions are melted down into one mass by the multitude of actual additions, subtractions, multiplications, and divisions, which they generally undergo, in a long algebraical process, conducted in the usual manner, it is impossible to trace the smallest vestige of the original quantities in the final equation, except such as are represented by a single letter.

Of course, however obvious the several steps might be at the time when they were taken, every idea of them must be totally lost in the result; and it will be utterly impossible to trace them back again, in the manner they are done in the composition of a problem, the solution of which has been investigated by the geometrical analysis*. Let me add, that it is to this cause

* This subject, if ever I am blessed with more leisure than is at present my lot, shall be pursued farther in another paper: in which I shall endeavour to shew, that, notwithstanding the great difference which there appears to be between algebra and geometry, they are really but one science, differently treated; and that the operations of the former may be rendered as clear and perspicuous as those of the latter are allowed to be. A disquisition of this nature will at least have the merit of rescuing a very useful and expeditious mode of investigation from
cause we must attribute all that obscurity which the algebraic mode of investigation has been so frequently charged with.

I shall endeavour to verify this doctrine, in some measure, by the expressions which are put down in the following tables for the sines, cosines, and tangents of arcs of circles, and of the multiples of those arcs; which tables will be found very useful in the prosecution of the design which I am now upon, and are absolutely necessary in the explanation of it.

from an unmerited stigma: and if I never be happy enough to have an opportunity of doing it myself, what I have here said may be the means of putting some other person, who has, upon it.
Observations on the foregoing tables.

Each of the formulæ in these tables may be considered as one side of an equation, involving the unknown quantity \(x \) to different dimensions. In some of the formulæ the odd powers of \(x \) are only found, in others the even ones alone, and in others both; but they are all equally useful in finding the value of the unknown quantity in affected equations which contain all the powers of that quantity, as will plainly appear from the following considerations.

I. If, on bringing the solution of any problem to an equation with some known quantity, it be found to correspond with any of the formula in these tables; or, if by any means it can be reduced to any of them, it is manifest, that nothing remains to be done but to divide the known side of the equation by the value of the quantity which is here denoted by \(r \), and to seek for the quotient in the tables of sines, cosines, or tangents, as the case may require, and the value of the unknown quantity will be the sine, tangent, secant, or versed sine, of a given part of that arc (according as the expression is found in the first, second, third, or fourth table) multiplied by the value of \(r \).

II. If, as will more frequently happen, the final equation of an operation be found equivalent to the sum, difference, product, or quotient, of some two or more of these formula; or to the sum, difference, product, or quotient, of some two or more of them multiplied or divided, increased or lessened, by some known quantity or quantities; then, having taken away
the known quantities by the common algebraic rules, observe the following ones.

1st. When the equation is found to correspond with the sum or difference of two formula in these tables, which are the fine and tangent, fine and cosine, or cosine and tangent, of the same arc, by running the eye along the tables of natural fines and tangents, find these two arcs, immediately following one another, the sum or difference of the fine and tangent, fine and cosine, or cosine and tangent, of which are one of them greater, and the other less than the number which constitutes the known side of the equation. Take the excess of one of these sums or differences above, and what the other sum or difference wants of the said given number, add these two errors together, and say, as the sum of them is to 60′, so is that error which belongs to the less arc to a number of seconds; which being added to the less arc will give one, the sum or difference of whose fine and tangent, fine and cosine, or cosine and tangent, is exactly equal to the number which constitutes the known side of the equation. Of the arc, thus found, let such a part be taken as the table in which the formula are found direct, and the natural fine, tangent, secant, or versed sine (as the case may require) of this part, being multiplied by the value of \(r \), if \(r \) be found in the equation, will be the value of \(x \) sought.

2d. When the equation happens to be the product or quotient of two formulae which express the fine and cosine, fine and tangent, or cosine and tangent, of the same arc, take the logarithm of the number which constitutes the known side of the equation, and then follow exactly the directions given in the first case, using the tables of logarithmic fines and tangents instead of the tables of natural ones.
3d. If the equation, finally resulting from the resolution of any problem, present itself in an expression which is composed of the sum or difference of the sine, cosine, or tangent, of an arc, of which the unknown quantity is the sine, cosine, tangent, or versed sine, and the sine, cosine, or tangent, of some multiple of that arc, it will then be convenient to have two tables of sines and tangents; and in running the eye along them to find the two arcs immediately following one another, of which the sum or difference of the sine, cosine, or tangent, of one of them, and the sine, cosine, or tangent, of some multiple of it, may be less, and the sum or difference of the sine, cosine, or tangent, of the other, and the sine, cosine, or tangent, of the same multiple of it, may be greater than the number which constitutes the known side of the equation, for every minute of a degree that the finger is moved over in one, it must be moved over a number of minutes in the other, which is equal to the number of times that the single arc is contained in the multiple one. When these two arcs are found, the operation will not differ so materially from that which is pointed out in the first rule as to merit repetition.

4th. If, instead of the sum or difference of the sine, cosine, or tangent, of an arc, and the sine, cosine, or tangent, of some multiple of it, the form of the equation be such as to be constituted of the product of them; or the quotient of one divided by the other, the last rule will still hold good, using only the logarithmic sines and tangents instead of the natural ones, and comparing the sum or difference of them, according as the equation is composed of the product or quotient of the two factors, with the logarithm of the number which constitutes the known side of the equation, instead of that number itself.
5th. Sometimes the final equation will come out in expressions which are constituted of the sum, difference, product, or quotient, of the sine, cosine, or tangent, of some multiple of an arc, of which the unknown quantity is the sine, tangent, secant, or versed sine, and the sine, cosine, or tangent, of some other multiple of the same arc. And in any of these cases it is manifest, that the method of proceeding, in order to obtain one of the multiple arcs, and from thence the single one, of which the unknown quantity is the sine, tangent, &c. will not be greatly different from those which have been described in the third and fourth rules. The most material difference consists in this, that instead of proceeding minute by minute, according to the directions in the third rule to find the single arc, it will now be most convenient to proceed in each table by as many minutes at each step as are equal in number to the number of times which the single arc is contained in the multiple ones respectively.

6th. Equations will frequently make their appearance in formulae which express the square, cube, &c. of the sine, cosine, or tangent, of the multiple of some arc, of which the unknown quantity is the sine, tangent, secant, or versed sine; or in formulae which are expressive of the sum, difference, product, &c. of the sine, cosine, or tangent, of an arc, and some power of the sine, cosine, or tangent, of the same arc; or of some multiple of it, the unknown quantity being some other trigonometrical line belonging to that arc. Or the equation may be compounded of the sum, difference, product, &c. of the same, or different powers of the sines, tangents, or cosines, of different multiples of an arc, the unknown quantity being the sine, tangent, secant, or versed sine, of that arc. In every one of these cases the tables will give the value of the unknown quantity,
of affected Equations.

quantity, and in most of them with great ease and expedition. The method which is to be pursued in each case will readily present itself to a skilful analyst, who attends carefully to what has been already said, and to the examples which follow.

IV. The formula in the four preceding tables may be greatly varied by supposing \(x\), the unknown quantity, to be some part or parts of the sine, tangent, \&c. as \(\frac{1}{2}, \frac{3}{4} \text{, } 1, \&c.\) or some multiple of it, as twice, thrice, \&c. Or \(x\) may be the square, or the square root, or any other power of the sine, tangent, secant, or versed sine, of an arc; in every one of which cases the formula will put on different appearances, either with respect to the powers or co-efficients of the unknown quantity, and yet admit of the same kind of application.

V. The tables may be rendered yet more extensively useful by inserting expressions for the sines, cosines, and tangents, of half the arc which has \(x\) for its sine, tangent, secant, or versed sine; and also for the sines, cosines, and tangents, of the odd multiples of this half arc, which expressions, together with those already inserted, may be considered as the sines, cosines, and tangents, of the multiples of an arc, the unknown quantity, being the sine, tangent, \&c. of twice that arc. And this consideration may sometimes be applied to very useful purposes.

VI. In order to render the formula in the tables more general, I have put \(r\) for the radius of the circle; whereas it will frequently happen, that the equation, finally resulting from the resolution of a problem, especially those which relate to the doctrine of the sphere, will present itself in a form where the radius must be taken equal to unity: what these forms are will readily appear by substituting unity for \(r\) and its powers everywhere in the expression.

\[PPp2\] It
It would be endless were I to undertake to enumerate all the various circumstances and cases in which this method of bringing out the unknown quantity may be applied with success: what has already been said will be sufficient to explain the nature of it, and to enable the analyst to apply it in other instances as they occur to him, I shall therefore only add a few examples to illustrate it.

Example I.

Let it be required to find the value of \(x \) in an equation of the form \(x^2 - r^2x = a \).

If \(r^2 \) be expounded by 50, and \(a \) by 120 (see Phil. Trans. vol. LXVIII. p. 937.) the equation may be reduced to \(\sqrt{x} \times \sqrt{x^2 - 50} = \sqrt{120} \); and, consequently, by tab. III. if \(x \) be considered as the secant of an arc, of which the radius is \(\sqrt{50} \), \(\sqrt{x^2 - 50} \) will be the tangent of it, and we shall have to find an arc, such that the tangent multiplied by the square root of the secant may be equal to \(\sqrt{120} \); or, which amounts to the same thing, such an arc that the log. tang. together with half the log. secant may be equal to half the log. of 120. But because the tangent and secant, here required, are to the radius of the \(\sqrt{50} \), the log. tangents and secants in the tables must be increased by the logarithm of that number, and therefore log. tang. + \(\frac{1}{2} \log. 50 + \frac{1}{2} \log. \secant + \frac{1}{4} \log. 50 = \frac{1}{4} \log. 120 \); or log. tang. + \(\frac{1}{4} \log. \secant = \frac{1}{4} \log. 120 - \frac{3}{4} \log. \text{of} \ 50 \). Hence, having taken \(\frac{1}{4} \) the log. of 50 from \(\frac{1}{4} \) the log. of 120, run the eye along the tables of logarithmic tangents and secants until an arc be found of which the sum of the log. tangent and half the log. secant is equal to 19.7653631, the remainder.
of affected Equations.

In this manner it will be readily found, that the sum of the log. tangent and half the log. secant of $28^\circ 37'$ is less than that difference by 2012, and that the sum of the log. tangent and half the log. secant of $28^\circ 38'$ is greater than it by 1337; therefore $3349 \ (2012 + 1337) : 60'' :: 2012 : 56''$. The exact arc, therefore, of which the sum of the log. tangent and half the log. secant is equal to 19.7653631 is $28^\circ 37' 36''$, and the log. secant of it is 10.0566242, which being increased by 0.8494850, the log. of $\sqrt{50}$ gives 0.9061092, which is the logarithm of 8.055810, the value of x sought, and which is true to seven places of figures.

Example II.

To find the value of x in an equation of the form $x^2 - r^2x = -a$.

If r be expounded by 3, and a by 10, as they are in the example, given at p. 433. of the Phil. Trans. vol. LXX. the equation will be $x^2 - 9x = -10$, and may be transformed to $\sqrt{x} \times \sqrt{9-x^2} = \sqrt{10}$; and, therefore, by tab. I. the square root of the sine into the cosine of an arc, of which the radius is 3, is equal to the square root of 10. Consequently, an arc must be found, such that the sum of the log. cosine and half the log. tangent is equal to half the log. of 10. But because the radius of this arc must be 3, the log. sines and cosines must be increased by the log. of 3; and, therefore, log. cos. + log. of $3 + \frac{1}{2}$ log. fine + $\frac{1}{2}$ log. of 3 must be equal to half the log. of 10; or, an arc must be found of which the sum of the tabular log. cosine and half the log. sine is equal to the difference between half the log. of 10 and $\frac{1}{2}$ the log. of 3. Hence, having subtracted $\frac{1}{2}$ log. of 3 from half the log. of 10, run the eye along
along Gardiner's tables of logarithmic sines, by which means it will be readily found, that the sum of the log. cosine and half the log. sines of $28^\circ 53' 30''$ is less than 19.7843181, the excess of half the log. of 10 above $1\frac{1}{4}$ log. 3, by 15, and that the sum of the log. cosine and half the log. sines of $28^\circ 53' 40''$ is greater than that difference by 60. Consequently $75 (15 + 60) : 10'' :: 15 : 2''$. The exact arc, therefore, of which the sum of the log. cosine and half the log. sines is equal to 19.7843181, is $28^\circ 53' 32''$; and the log. sines of this arc, increased by the log. of 3, is 0.1612153, the logarithm of 1.44949, the value of x required, true to the last place.

But many equations of this form, and this example among the rest, admit of two positive values of the unknown quantity; and by carrying the eye farther along the tables it will be found also, that the sum of the log. cosine and half the log. sines of $41^\circ 48' 30''$ is greater than 19.7843181 by 50, and that the sum of the log. cosine and half the log. sines of $41^\circ 48' 40''$ is too little by 21. Consequently, $71 (50 + 21) : 10'' :: 50 : 7''$: of course, $41^\circ 48' 37''$ is another arc, of which the sum of the log. cosine and half the log. sines is equal to 19.7843181, and the log. sines of this arc, increased by the log. of 3, is the logarithm of 1.999999, another value of x, and which errs but by unity in the seventh place.

The third root, as it is generally called, of this equation, which is necessarily negative, and equal to the sum of the other two, belongs properly to the equation which is given as the first example, of which it is the affirmative root, and may be found by the directions which are there given.

Example
EXAMPLE III.

To find the value of x in an equation of the form $x'^2 + r^2x = a$.

Let us take as examples of this equation $x'^2 + 3x = .04$, $x'^2 + 3x = .08$, and $x'^2 + 3x = .12$, which are three of the instances given by Dr. Halley, in his Synopsis of the Astronomy of Comets, to illustrate the mode of computation that he pursued in constructing his general table for calculating the place of a comet in a parabolic orbit: and it is obvious, a being put for the known side of the equation, that it may be transformed to $\sqrt{r^2 - x} \cdot \sqrt{3 + x} = \sqrt{a}$: where, if x be considered as the tangent of an arc, the radius of which is $\sqrt{3}$, $\sqrt{3 + x^2}$ will be the secant of that arc; and, consequently, by what is shewn in the first example, an arc must be found, such, that the sum of the tabular log. secant and half the tabular log. tangent may be equal to the excess of half the log. of a above $\frac{1}{2}$ of the log. of 3. In the first of the above three instances this excess will be found, 18.9431891, in the second 19.0937041, and in the third 19.1817497; and by running the eye along Gardiner's Tables of Logarithmic Sines and Tangents, it will be found, that the first falls between $0^\circ 26' 20''$ and $0^\circ 26' 30''$, the second between $0^\circ 52' 50''$ and $0^\circ 53' 0''$, and the third between $1^\circ 19' 20''$ and $1^\circ 19' 30''$; and, by pursuing the mode which has been described in the two former examples, the exact arcs will be found $0^\circ 26' 27''7$, $0^\circ 54' 51''7$, and $1^\circ 19' 20''1$, and their respective tangents, to the radius $\sqrt{3}$, .01333248, .0266611, and .0399787, the three values of x sought. And in this manner Dr. Halley's table may be extended to any length with the utmost ease, expedition, and accuracy.

Thus
Thus far this matter has been carried by former writers; but those who may be at the trouble of consulting them will find that I have not copied their methods: on the contrary, these which are given here are more plain and obvious than theirs are, and the operations considerably shorter. What follows has not, I believe, been adverted to by any before me.

Example IV.

Let the equation arising from the proportion \(a : b + x \cdot \sqrt{1 - c^2} = c \sqrt{1 - x^2} : c'x \) be taken, which is the result of an inquiry into the situation of that place on the surface of the earth, considered as a spheroid, which is at the greatest distance from a given one, suppose London. In this inquiry \(a \) and \(b \) were put to represent the sine and cosine of the latitude of the given place (in the spheroid); \(c \) for \(\frac{229}{230} \), the ratio of the axes; and \(x \) for the sine of the distance of the required place from the opposite pole (in the spheroid also). The equation, which is of four dimensions with all the terms, is manifestly \(\frac{a c x}{b + x \cdot \sqrt{1 - c^2}} = \frac{\sqrt{1 - x^2} \cdot \sqrt{1 - c^2}}{\sqrt{1 - x^2}} \), or \(\frac{x}{\sqrt{1 - x^2}} = \frac{1 - c^2}{ac} = \frac{b}{ac} \); in which it is evident from tab. I. that the difference between the tangent and the product of the sine into a given quantity is known.

In order, therefore, to find the value of \(x \), compute \(\frac{b}{ac} \), and \(\frac{1 - c^2}{ac} \), and find the logarithm of the latter. Now, because the elliptic meridian differs but little from a circle, the place sought will not be far from the antipodes of the given one, and its distance from the opposite pole may therefore be estimated at 39° 5'.
39° 5′; and, having taken out the natural tangent, and logarithmic sine of this arc, add the logarithm of \(\frac{1-c^2}{ac} \) to the latter, and find the number corresponding to the sum, which will be less than the natural tangent of 39° 5′ by 2869. As this assumption is so near, take 39° 6′ for the next, repeat the operation, and the result will be 1935 too great. Then 4804 (2869 + 1935) : 60′′ :: 2869 : 36′′; which being added to 39° 5′, gives 39° 5′ 36′′, for the co-latitude of the place sought, and the natural sine of this arc, or .6305856 is the value of \(x \) in this equation.

Example V.

Let the equation \(x^3 + \frac{b^2 - 2a^2}{4a} x^2 + \frac{2a^2 - b^2}{2} x - \frac{ab^2}{4} = 0 \), be taken, which results from a solution of one case of the problem *de inclinationibus* of *Apollonius*; but which, as it naturally rises to a solid problem, was not, I conceive, considered by that celebrated author. The result of the analysis, before any reduction takes place, is this proportion, \(x + a : x - a :: 2\sqrt{ax} : b \); and hence, \(\frac{x-a}{x+a} \sqrt{ax} = \frac{1}{2}b \). But it is here manifest, that if \(a \) be taken for the tangent of an arc, of which the radius is \(\sqrt{ax} \), \(x \) will be the cotangent of it, and \(\frac{x-a}{x+a} \sqrt{ax}(= \frac{1}{2}b) \) the co-sine of twice that arc. Consequently, we have to find an arc, the tangent of which is to the co-sine of twice that arc as \(a \) is to \(\frac{1}{2}b \); and this being done, the natural co-tangent of that arc, to the proper radius, will be the value of \(x \).
Thus, let \(a \) be 10, and \(b \) 24; and the difference of the logarithms of \(a \) and \(\frac{1}{2} b \) will be 0.0791812. Now, by running the eye along Gardiner's Tables of logarithmic Sines and Tangents, it will be readily seen, that the log. tangent of 26° 33' 50'', when increased by 0.0791812, is less than the cosine of 53° 7' 40'' twice that arc; and that the log. tangent of 26° 34' 0'', when increased by the same quantity, is too great. And, by actually taking out the logarithms, and making the additions, the former will be found too small by 455, and the latter too great by 632. Then, 1087 \((455 + 632) : 10'' :: 455 : 4''\); which being added to 26° 33' 50'' gives 26° 33' 54'' for the arc of which \(x \) is the co-tangent. And if to twice the log. co-tangent of this arc the logarithm of \(a \) (10) be added, the sum (1.6020600) is the log. of 40, the value of \(x \) sought.

Example VI.

The equation resulting from a solution of the famous problem of Alhazen may be given as another example of the use of this method. Many solutions of this celebrated problem, by Huygens, Slusius, and others, may be met with in the Philosophical Transactions. Solutions to it may also be found at the end of Dr. Robert Simpson's Conic Sections, in Dr. Smith's Optics, Mr. Robin's Mathematical Tracts, and other places; but the most direct and obvious method is, perhaps, that which follows.

Put \(a = DC, b = dC, r = CI; x = CB \) and \(y = CE \), the cosines of the arcs IA, IH, to the radius \(r \); then will the lines of those arcs, \(BA, EH \), be expressed by \(\sqrt{r^2 - x^2} \) and \(\sqrt{r^2 - y^2} \); and,
and, because of the similar triangles
\(\triangle ABC \) and \(\triangle BFC, \) \(\triangle HEC \) and \(\triangle dGC, \)
\[r : x :: a : \frac{ax}{r} = CE, \quad r : \sqrt{r^2 - x^2} :: a : \frac{a\sqrt{r^2 - x^2}}{r} = DF; \]
\[r : y :: b : \frac{by}{r} = CG, \quad \text{and} \]
\[r : \sqrt{r^2 - y^2} :: b : \frac{b\sqrt{r^2 - y^2}}{r} = dG; \]
consequently, \(\frac{ax}{r} - r = FI, \frac{by}{r} - r = GI; \) and
because the angles \(DIF, dIG, \) are equal by the nature of the problem, and the
angles \(DFI \) and \(dGI \) both right angles, the triangles \(DFI \) and \(dGI \) are also similar, and consequently
\[\frac{a\sqrt{r^2 - x^2}}{r} : \frac{ax}{r} - r :: \frac{b\sqrt{r^2 - y^2}}{r} : \frac{by}{r} - r; \]
and
\[\frac{x}{\sqrt{r^2 - x^2}} - \frac{r^2}{a\sqrt{r^2 - x^2}} = \frac{y}{\sqrt{r^2 - y^2}} - \frac{r^2}{b\sqrt{r^2 - y^2}}; \]
or
\[\frac{r^2}{b\sqrt{r^2 - y^2}} - \frac{r^2}{a\sqrt{r^2 - x^2}} = \frac{y}{\sqrt{r^2 - y^2}} - \frac{x}{\sqrt{r^2 - x^2}}; \]
or, the co-scent of the
arc \(HI = b - \text{co-scent of } AI + a = \text{the co-tangent } HI + r = \text{co-tangent } AI - r; \) or, lastly, the co-tangent of \(HI = \text{co-tangent of } AI \times \frac{r}{b} - \text{co-scent } AI \times \frac{r}{a}. \)
Consequently, we have to find two arcs, the sum of which is given, and such
that the difference of their co-tangents may be equal to the difference of the products of their co-scents into given quantities.

To do this assume the angle \(DCF \) as near as possible; and, because the sum of the two angles is given, the angle \(dCG \) will
be known also. Take the difference of the logarithms of \(r \) and \(a, \) \(b \) and \(r, \) which will be constant, also the difference of the
co-tangents of the two assumed arcs, and having taken out the
log. co-scents, add to them respectively the two logarithmic
\[\text{differences.} \]
differences. Find the numbers corresponding to these two sums, and if the difference of these two numbers be equal to the difference of the co-tangents, the angle DCF was rightly assumed; but as that will seldom happen, take the difference, or error; assume the angle DCF again, repeat the operation, and find the error as before. Then, as the sum of the errors, if one of them was too great, and the other too little, or their difference, if both were too great, or both too little, is to the difference of these assumptions, so is the less error to a number of minutes and seconds, which must be added to that assumption to which the least error belongs, if that assumption was too small; or subtracted from it, if the assumption was too great: and, unless the first assumption was made very wide of the truth, which may always be avoided, the two angles will generally be obtained within a few seconds of the truth, and, by repeating the operation once more, to the utmost exactness.

Suppose DC (a) be taken equal to 72, dC (b) = 48, and the radius CI (r) = 40, the angle DCd being 82° 45’: then the whole operation will stand as follows:

\[
\begin{align*}
 r &= 40 \log. \quad 11.6020600 \\
 a &= 72 \log. \quad 1.8573325 \\
 b &= 48 \log. \quad 1.6812412 \\
 \text{Constant log.} &= 9.7446275 \\
\end{align*}
\]

Now, in the two triangles DCI, dCI, the angles DIC and dIC being equal, and CI common, but dC considerably less than DC, it is manifest, that the angle dCI will be considerably less than the angle DCI: let them be assumed in the proportion that DC bears to its excess above dC; in which case the angle dCI will be 27° 35’ and DCI 55° 10’. The co-tangent of the former will be 1.9141795, of the latter .6958813; and the difference of them 1.2182982. The log. co-secants of those two
two angles are \(10.3343832\) and \(10.0857536\), which being respectively increased by \(9.9238188\) and \(9.7446275\), the two constant logarithms, make \(0.2552020\) and \(9.8304811\), which are the logarithms of \(1.7997079\) and \(0.6768323\); and the difference of these two numbers is \(1.1228756\), which is less than the difference of the log. co-tangents by \(0.0954226\).

I next assume the angles \(30^\circ\) and \(52^\circ\ 45'\); and by pursuing the same steps which have been described above, I find the difference of their co-tangents exceeds the difference of the products by \(0.0028987\). Then, as \(925239\) (the difference of the errors) is to \(145'\) (the difference of suppositions), so is the latter error \(28987\) to \(4'\ 33''\), which being added to \(30^\circ\), gives \(30^\circ\ 4'\ 33''\) for the next assumption of the angle \(dCI\); but for ease in the computation, I shall take \(30^\circ\ 5'\); in which case the angle \(DCI\) will be \(52^\circ\ 40'\); and by repeating the operation the difference of the co-tangents will be found less than the difference of the products by \(0.002425\). And \(31412\) (the sum of the two last errors) is to \(5'\) (the difference of the suppositions) as \(2425\) (the last error) is to \(23''\); which being taken from \(30^\circ\ 5'\), the last supposition, because it was too great, leaves \(30^\circ\ 4'\ 37''\) for the exact value of the angle \(dCI\).

This equation, like that in the fourth example, when the value of \(y\) is properly substituted, and the equation reduced in the usual manner, will rise to four dimensions with all the inferior ones; and it does not appear, that either HUYGENS, SLUSIUS, MR. ROBINS, DR. WILLSON, or Professor SINSON, with all their artifice, have been able to deprefs it: but by this method of resolution the point of reflection is found, with the greatest exactness, in much less time than this substitution and reduction can be made. And this example farther suggests to us, that when the answer is sought by the method now under consi-
Mr. Wales on the Resolution

consideration, it is not always necessary to exterminate all the unknown quantities but one.

Example VII.

Suppose the equation to be resolved were \(a = .375 = 16y' = 4y' - 20y' = 4y^2 + 5y \): and, first, let the upper signs have place, and it is manifest, that the latter side of the equation may be divided into two parts; namely, \(4y' - 4y' = 4y^2 \cdot 1 + y \cdot 1 - y \), and \(16y' - 20y' + 5y = y' - 10y' \cdot 1 + y \cdot 1 - y \)

But the former part is (by tab. I.) the square of the sine of twice the arc which has \(y \) for its sine (radius being = 1) and the latter part the sine of five times the same arc. Hence, therefore, the given quantity \(a (= .375) \) is equal to the sum of the sine of five times the arc (A) which has \(y \) for its sine, and the square of the sine of twice the same arc. Now, as the square of the sine of twice the arc (A) must necessarily in this instance be very small in comparison of the sine of five times the same arc (A), it is manifest, that the sine of five times the arc which has \(y \) for its sine will be very little less than .375, and of course that arc (5A) can be but very little less than 22° 2', the sine of which is next greater than that number. Assume it 21°, and the fifth part of it, or that arc which has \(y \) for its sine, will be 4° 12', the double of which is 8° 24'. Now the log. sine of 8° 24' is 9.1645998, which being doubled is 8.3291996, the logarithm of .0213403, and this number being taken from .375 leaves .3536597, which ought to have been .3583679, the sine of 21°, and of course is too small by .0047082: the arc has, therefore, been assumed too great.

Let
Let 20° 45′ be next assumed; the fifth part of which is 4° 9′, and twice this last number is 8° 18′, of which the log. fine is 9.1594354; and this being doubled is 8.3188708, the log. of .0208387; and this being taken from .375 will leave .3541613: less still than the fine of 20° 45′ by .0001297.

Take now 20° 44′, the fifth of which is 4° 8′ 48″, and two-fifths is 8° 17′ 36″; and the log. fine of this is 9.1590889, which being doubled gives 8.3181778, the logarithm of .0208055; and this being taken from .375, leaves .3541945; more than the fine 20° 44′ by .0000795. Now 2092 (the sum of the last two last errors) is to 60″ as 795 (the last error) is to 23″. Which being added to 20° 44′, the last assumption, gives 20° 44′ 23″ for five times the arc of which y is the fine: y is therefore the fine of 4° 8′ 52″.6, or .07233202.

When the lower signs in the equation have place, the given quantity a will be equal to the excess of the fine of five times an arc above the square of the fine of twice that arc: and the operation, after assuming, from the circumstances of the question, or equation, an arc which is nearly five times that having y for its fine, is this. Find the logarithmic fine of two-fifths of that arc, double it, find the number corresponding to this logarithm, and add to it the value of a, which should then be equal to the fine of the arc first assumed; and if it is not, to repeat the operation until an error is obtained on each side, and not very distant from the truth, as is done above, and which may always be done with three assumptions.

A multitude of examples might be added from the writings of different authors, who have either left their conclusions.
unexhibited in numbers, for want of some such easy method as this, or have done it by means of a long and laborious series of difficult computations; which, beside the labour attending them, are always subject to a variety of errors, which cannot be detected, in many cases, without repeating the operation.
XXXI. Experiments on the Power that Animals, when placed in certain Circumstances, possess of producing Cold. By Adair Crawford, M. D.; communicated by Sir Joseph Banks, Bart. P. R. S.

Read June 14, 1781.

In the following paper I shall lay before the Society the result of some experiments, which I made in the course of the last summer, on the power that animals, when placed in certain circumstances, possess of producing cold, having premised a few remarks on the progressive improvements which have been made in the knowledge of heat in general.

The opinions of the ancients, respecting the nature and properties of fire, consisted of bold conjectures, which seem rather to have been the offspring of a lively and vigorous imagination, than of a just and correct judgement: their ideas on this subject being evidently derived, not so much from an accurate observation of facts, as from those sentiments of admiration and awe which many of the phenomena of fire are calculated to excite. Thus, this element was supposed, on the original formation of the universe, to have ascended to the highest place, and to have occupied the region of the heavens: it was conceived to be the principle which first communicated life and activity to the animal kingdom: it was considered as constituting the essence of inferior intellectual beings; and, by many of the ancient nations, it was reverenced as the supreme Deity. Indeed the profound veneration with which the element of fire
fire was contemplated, for a long succession of ages, by a great part of mankind, appears to be one of the most curious circumstances in the history of antient opinions. To account for this we may observe, that there is no principle in nature, obvious to the senses, which produces such important effects in the material system, and which, at the same time, in the mode of its operation, is so obscure and incomprehensible.

It appears to be accumulated in an immense quantity in the sun and fixed stars, from whence its beneficial influence seems to be continually diffused over the universe: it is the great instrument by means of which the changes of the seasons are effected; the diversity of climates is chiefly owing to the various proportions in which it is distributed throughout the earth. If we add to this the mighty alterations which have been produced in human affairs by the introduction of artificial fire, by its employment in the separation of metals from their ores, and in the various arts which are subservient to the comfort, the ornament, and the preservation, of the species, it will not appear surprizing, that in a rude and ignorant age, this wonderful principle should have been considered as endowed with life and intelligence, and that it should have become the object of religious veneration.

In the dark ages the alchemists regarded pure fire as the residence of the Deity: they conceived it to be uncreated and immense, and attributed to its influence most of the phenomena of nature. Indeed, it is not wonderful that they should have assigned it a high rank in the scale of being, as it was the great agent which they employed in the chymical analysis of bodies, and was the instrument of those discoveries that attracted such universal admiration, and that enabled them so successfully to impose upon the ignorance and credulity of the times.

Upon
Upon the revival of literature, the importance of this branch of science began very soon to engage the attention of philosophers. It could not escape the general observation, in a penetrating and inquisitive age, when the powers of the human mind were employed with so much ardour and success in exploring the operations of nature, that the element of fire acts a principal part in the system of the world; that by the influence of this element those motions are begun and supported in the animal and vegetable kingdoms, which are essential to the production and preservation of life; and that it is the great agent in those successive combinations and decompositions, by which all things on the surface of the earth, and probably throughout the universe, are kept in a continual fluctuation.

But though the utility of this branch of science was perceived, yet the progress that was made in the cultivation of it did not keep pace with the opinion which men entertained of its importance. Our senses inform us, that heat has a real existence, but they give us no direct information with regard to its nature and properties: it is endowed with such infinite subtility, that it has been called, by a very eminent philosopher, an occult quality: by some it has even been considered as an immaterial being. It is, therefore, with great difficulty that it can be made the subject of philosophical investigation; and hence the opinions of men concerning it have been fluctuating and various, and the words which express it vague and ambiguous.

The first step that was taken with a view to the cultivation of this branch of science was the construction of a machine for measuring the variations of sensible heat; observing, that heat has the power of expanding bodies, and considering.

R r r 2 the
the degree of expansion as proportional to the increase of heat; philosophers have endeavoured by means of the former to render the latter obvious to the senses.

To this important invention, the author of which cannot be distinctly traced, we are indebted for all the succeeding improvements in the philosophy of heat. By means of it men were enabled to establish a variety of interesting facts, and to bring some of the most obscure and intricate phenomena of nature to the test of experiment. The opinion, that the heats inherent in various heterogeneous substances differed from each other in kind, as well as in degree, was now exploded, since all were found to produce similar effects upon the thermometer. The increase and diminution of temperature in the different seasons and climates, the laws which nature observes in the heating and cooling of bodies, the melting, the vaporific, and freezing points, and the degrees of heat in the animal, the mineral, and the vegetable kingdoms, were accurately determined. In consequence of the attention that was paid to this subject, many curious questions arose, which have long exercised the ingenuity of philosophers. That property of heat by which it is capable of expanding the densest and hardest bodies; its power in producing fluidity; its tendency to an equilibrium; and the causes of its various distribution throughout the different substances in nature, have become the objects of philosophical enquiry. It was observed, that some bodies on exposure to heat, become red and luminous, but are incapable of producing flame, or of maintaining fire: that, on the contrary, others, by the application of fire, and the contact of fresh air, kindle into flame, and continue to emit light and heat, apparently from a source within themselves, till they are consumed. Hence arose the questions concerning the pabu-
Animals possess of producing Cold. 483

Sum of fire, the use of the air in inflammation, and the distinction of bodies into combustible and incombustible.

From the first dawnings of philosophy it must have been perceived, that most animals have a higher temperature than the medium in which they live; and that a constant succession of fresh air is necessary to the support of animal life. The causes of these phenomena have afforded matter for much speculation in ancient as well as modern times: but the discovery that animals have, in certain circumstances, the power of keeping themselves at a lower temperature than the surrounding medium, was reserved for the industry of the present age.

This discovery seems originally to have arisen from observations on the heat of the human body in warm climates. It was mentioned by Governor Ellis in 1758; it was taught by Dr. Cullen before the year 1765; and at length it was completely established by the experiments of Dr. Fordyce in heated rooms, which were laid before the Society in 1774.

In the course of these experiments the doctor remained in a moist air heated to 130° for the space of fifteen minutes, during which time the thermometer under his tongue stood at 100°, his pulse made 139 beats in a minute, his respiration was but little affected, and streams of water ran down over his whole body, proceeding from the condensation of vapour, as evidently appeared from a similar condensation on the side of a Florentine flask that had been filled with water at 100°.

He found, however, that he could bear a much greater degree of heat when the air was dry. In this situation, he frequently supported, naked, for a considerable time, without much inconvenience; the heat of 260°, his body preserving very nearly its proper temperature, being never raised more than 2° above the natural standard.
Various opinions have been entertained with regard to the causes of the facts which were established by these experiments. Some have attributed the cold solely to evaporation, and have conceived that the same degree of refrigeration would have been produced by an equal mass of dead matter, containing an equal quantity of moisture. Others have affirmed, that the cold did not arise solely from this cause; but have maintained, that it depended partly upon the energy of the vital principle, being greater than what would have been produced by an equal mass of inanimate matter.

The ingenious Dr. Munro, of Edinburgh, ascribes the cold in the above mentioned experiments to the circulation of the blood, in consequence of which the warmer fluids are continually propelled from the surface towards the center, where they are mixed with blood at a lower temperature, and hence the animal is slowly heated, in the same manner as the water in a deep lake, during the winter, is slowly cooled, and not without a long continuance of frost congealed, no part of it becoming solid till the whole is brought down to the freezing point.

The following experiments were made with a view to determine with greater certainty the causes of the refrigeration in the above instances.

To discover whether the cold produced by a living animal, placed in air hotter than its body, be not greater than what would be produced by an equal mass of inanimate matter, I took a living and a dead frog, equally moist, and of nearly the same bulk, the former of which was at 67°, the latter at 68°, and laid them upon flannel in air which had been raised to 106°. In the course of twenty-five minutes the order of heating was as follows*.

* In the two following experiments the thermometers were placed in contact with the skin of the animals under the axilla.
Animals possess of producing Cold.

<table>
<thead>
<tr>
<th>Air.</th>
<th>Dead frog</th>
<th>Living frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>0</td>
<td>70½</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>72½</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>81½</td>
</tr>
</tbody>
</table>

The thermometer being introduced into the stomach, the internal heat of the animals was found to be the same with that at the surface.

From hence it appears, that the living frog acquired heat more slowly than the dead one. Its vital powers must, therefore, have been active in the generation of cold.

To determine whether the cold produced in this instance depended solely upon the evaporation from the surface, increased by the energy of the vital principle, a living and dead frog were taken at 75°, and were immersed in water at 93°, the living frog being placed in such a situation as not to interrupt respiration.

<table>
<thead>
<tr>
<th>Dead frog</th>
<th>Living frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1:</td>
<td>85:</td>
</tr>
<tr>
<td>2</td>
<td>88½</td>
</tr>
<tr>
<td>3</td>
<td>90½</td>
</tr>
<tr>
<td>5</td>
<td>91¼</td>
</tr>
<tr>
<td>6</td>
<td>91½</td>
</tr>
<tr>
<td>8</td>
<td>91½</td>
</tr>
</tbody>
</table>

These experiments prove, that living frogs have the faculty of resisting heat, or producing cold, when immersed in warm water: and the experiments of Dr. Fordyce prove, that the human body has the same power in a moist as well as in a dry air.

* In the above experiment the water, by the cold frogs and by the agitation which it suffered during their immersion, was reduced nearly to 91½°.
air: it is therefore highly probable, that this power does not depend solely upon evaporation.

It may not be improper here to observe, that healthy frogs, in an atmosphere above 70°, keep themselves at a lower temperature than the external air, but are warmer internally than at the surface of their bodies: for when the air was 77°, a frog was found to be 68°, the thermometer being placed in contact with the skin; but when the thermometer was introduced into the stomach, it rose to 70⁴.

It may likewise be proper to mention, that an animal of the same species placed in water at 61°, was found to be nearly 61⁴ at the surface, and internally it was 66⁴. These observations are meant to extend only to frogs living in air or water at the common temperature of the atmosphere in summer. They do not hold with respect to those animals, when plunged suddenly into a warm medium, as in the preceding experiments.

To determine whether other animals also have the power of producing cold, when surrounded with water above the standard of their natural heat, a dog at 102° was immersed in water at 114°, the thermometer being closely applied to the skin under the axilla, and so much of his head being uncovered as to allow him a free respiration.

In 5 minutes the dog was 108°, water 112°

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>109</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>108</td>
<td>112</td>
</tr>
</tbody>
</table>

the respiration having become very rapid.

In thirteen minutes the dog was 108°, water 112°, the respiration being still more rapid.

In about half an hour the dog was 109°, water 112°; the animal was then in a very languid state.

Small
Animals possefs of producing Cold.

Small quantities of blood being drawn from the femoral artery, and from a contiguous vein, the temperature did not seem to be much increased above the natural standard, and the sensible heat of the former appeared to be nearly the same with that of the latter.

In this experiment a remarkable change was produced in the appearance of the venous blood: for it is well known, that in the natural state, the colour of the venous blood is a dark red, that of the arterial being light and florid; but after the animal, in the experiment in question, had been immersed in warm water for half an hour, the venous blood assumed very nearly the hue of the arterial, and resembled it so much in appearance, that it was difficult to distinguish between them. It is proper to observe, that the animal which was the subject of this experiment, had been previously weakened by losing a considerable quantity of blood a few days before. When the experiment was repeated with dogs which had not suffered a similar evacuation, the change in the colour of the venous blood was more gradual; but in every instance in which the trial was made, and it was repeated six times, the alteration was so remarkable, that the blood which was taken in the warm bath could readily be distinguished from that which had been taken from the same vein before immersion, by those who were unacquainted with the motives or circumstances of the experiment.

To discover whether a similar change would be produced in the colour of the venous blood in hot air, a dog at 102° was placed in air at 134°.

In ten minutes the temperature of the dog was 104°, that of the air being 130. In fifteen minutes the dog was 106°, the air 130°. A small quantity of blood was then taken from the jugular

Vol. LXXI. S 1 S
jugular vein, the colour of which was sensibly altered, being much lighter than in the natural state.

The effect which is produced by external heat upon the colour of the venous blood, seems to confirm the following opinion, which was first suggested by my worthy and ingenious friend Mr. Wilson, of Glasgow. Admitting that the sensible heat of animals depends upon the separation of absolute heat from the blood by means of its union with the phlogistic principle in the minute vessels, may there not be a certain temperature at which that fluid is no longer capable of combining with phlogiston, and at which it must of course cease to give off heat? It was partly with a view to investigate the truth of this opinion that I was led to make the experiments recited above.

I shall now endeavour, from the preceding facts, to explain what appear to me to be the true causes of the cold produced by animals when placed in a medium, the temperature of which is above the standard of their natural heat.

In a work which I some time ago laid before the public, having attempted to prove, that animal heat depends upon the separation of elementary fire from the air in the process of respiration, I observed, that when an animal is placed in a warm medium, if the evaporation from the lungs be increased to a certain degree, the whole of the heat separated from the air will be absorbed by the aqueous vapour.

From the experiments on venous and arterial blood, recited in the third section of that work, it appears, that the capacity of the blood for containing heat is so much augmented in the lungs, that, if its temperature were not supported by the heat which is separated from the air, in the process of respiration, it would sink 30°. Hence, if the evaporation from the lungs be so much increased as to carry off the whole of the heat that is detached
Animals possess of producing Cold.

detached from the air, the arterial blood when it returns by the pulmonary vein will have its sensible heat greatly diminished, and will consequently absorb heat from the vessels which are in contact with it, and from the parts adjacent. The heat which is thus absorbed in the greater vessels will again be extricated in the capillaries, where the blood receives a fresh addition of phlogiston. If, in these circumstances, the blood during each revolution were to be equally impregnated with this latter principle, it is manifest, that the whole effect of the above process would be to cool the system at the center, and to heat it at the surface; or to convey the heat to that part of the body where it is capable of being instantly carried off by evaporation. But it appears, from the experiments which have been last recited, that, when an animal is placed in a heated medium, the sanguineous mass, during each revolution, is left impregnated with phlogiston; for we have seen, that the venous blood, in these circumstances, becomes gradually paler and paler in its colour till at length it acquires very nearly the appearance of the arterial: and it is rendered highly probable by the experiments of Dr. Priestley, that the dark and livid colour of the blood in the veins depends upon its combination with phlogiston in the minute vessels. Since, therefore, in a heated medium, this fluid does not assume the same livid hue, we may conclude, that it does not attract an equal quantity of the phlogistic principle *

* It is of no consequence in the above argument, whether we suppose, with Dr. Priestley, that the alteration of colour in the blood depends upon its combination with phlogiston in the capillary arteries, or maintain with some other philosophers that this alteration arises from a change produced in the blood itself by the action of the vessels; it is sufficient for our purpose to assume it as a fact, which, I think, has been proved by direct experiment, that, in the natural state of the animal, the blood undergoes a change in the capillaries, by which its capacity for containing heat diminished; and that in a heated medium it does not undergo a similar change.

It
It follows, that the quantity of heat given off by the blood in the capillaries will not be equal to that which it had absorbed in the greater vessels, or positive cold will be produced. If the blood, for example, in its passage to the capillaries, absorb from the greater vessels a quantity of heat as 30°, and if in consequence of its receiving a less impregnation of phlogiston than formerly, it give off at the extreme vessels a quantity of heat only as 20°, it is manifest, that upon the whole a degree of refrigeration will be produced as 10°, and this cause of refrigeration will continue to act while the venous blood is gradually assuming the hue of the arterial, till the difference between them is obliterated; after which it will cease to operate. Thus it appears, that when animals are placed in a warm medium, the same process which formerly supplied them with heat becomes for a time the instrument of producing cold, and probably preserves them from such rapid alterations of temperature as might be fatal to life.

Upon the whole, the increased evaporation, the diminution of that power by which the blood in the natural state is impregnated with phlogiston, and the constant reflux of the heated fluids towards the internal parts, seem to be the great causes upon which the refrigeration depends. Having found that the attraction of the blood to phlogiston was diminished by heat, it appeared probable, on the other hand, that it would be increased by cold. To determine this, a dog at 100° was immersed in water nearly at 45°. In about a quarter of an hour a small quantity of blood was taken from the jugular vein, which was evidently much deeper in its colour than that which had been taken in the warm bath, and appeared to me, as well as to several other gentlemen, to be the darkest venous blood we had ever seen.
Animals possess of producing Cold.

From this experiment, compared with those which have been recited above, we may perceive the reason why animals preserve an equal temperature, notwithstanding the great variations in the heat of the atmosphere, arising from the vicissitudes of the weather, and the difference of season and climate: for, as soon as by exposure to external cold, an unusual dissipation of the vital heat is produced, the blood, in the course of the circulation, begins to be more deeply impregnated with the phlogistic principle. It will therefore furnish a more copious supply of this principle to the air in the lungs, and will imbibe a greater quantity of fire in return.

In summer, on the contrary, the reverse of this will take place, less phlogiston will be attracted in the minute vessels, and less fire will be absorbed from the air.

And hence the power of generating heat is in all cases proportioned to the demand. It is increased by the winter colds, diminished by the summer heats: it is totally suspended or converted into a contrary power, according as the exigencies of the animal may require.

From the changes which are produced in the colour of the venous blood by heat and cold, we may likewise perceive the reason why the temperature of the body is frequently increased by plunging suddenly into cold water, and why the warm bath has such powerful effects in cooling the system, and in removing a general or partial tendency to inflammation.
XXXII. Account of a Comet. By Mr. Herschel, F. R. S.; communicated by Dr. Watson, Jun. of Bath, F. R. S.

Read April 26, 1781.

On Tuesday the 13th of March, between ten and eleven in the evening, while I was examining the small stars in the neighbourhood of H Geminorum, I perceived one that appeared visibly larger than the rest: being struck with its uncommon magnitude, I compared it to H Geminorum and the small star in the quartile between Auriga and Gemini, and finding it so much larger than either of them, suspected it to be a comet.

I was then engaged in a series of observations on the parallax of the fixed stars, which I hope soon to have the honour of laying before the Royal Society; and those observations requiring very high powers, I had ready at hand the several magnifiers of 227, 460, 932, 1536, 2010, &c. all which I have successfully used upon that occasion. The power I had on when I first saw the comet was 227. From experience I knew that the diameters of the fixed stars are not proportionally magnified with higher powers, as the planets are; therefore I now put on the powers of 460 and 932, and found the diameter of the comet increased in proportion to the power, as it ought to be, on a supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in
Mr. Herschel's Account of a Comet.

in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustrous and distinctness which from many thousand observations I knew they would retain. The sequel has shewn that my surmises were well founded, this proving to be the Comet we have lately observed.

I have reduced all my observations upon this Comet to the following tables. The first contains the measures of the gradual increase of the Comet's diameter. The micrometers I used, when every circumstance is favourable, will measure extremely small angles, such as do not exceed a few seconds, true to 6, 8, or 10 thirds at most; and in the worst situations true to 20 or 30 thirds: I have therefore given the measures of the Comet's diameter in seconds and thirds. And the parts of my micrometer being thus reduced, I have also given all the rest of the measures in the same manner; though in large distances, such as one, two, or three minutes, so great an exactness, for several reasons, is not pretended to.

Table
Having measured the diameter of the Comet with such high power as 932 and 460, it may not be amiss to make one observation on this subject, lest it should be misapprehended that I pretend to a distinct power of such magnitude upon all celestial objects in general. By experience I have found, that the aberration or indistinctness occasioned by magnifying much, provided the object be still left sufficiently distinct, is rather to be put up with, than the power to be reduced, when the angles to be measured are extremely small. The reason of this may, perhaps, be that a small error of judgement, to which we are always liable, is of great consequence with a low power, as bearing a considerable proportion to the diameter of the object;

There are several optical deceptions which may affect the measures of objects that subtend extremely small angles. Thus I have found, by experience, that a very small object will appear something less in a telescope when we see it first than when we become familiar with it. There is also a deflection of light upon the wires when they are nearly shut; but as none of these deceptions are well understood to apply a correction, I leave them affected with them, whereas
whereas with a higher power the proportion of this error to
the whole becomes much less, and the measure more exact, even
after we have made allowance for a small additional error occa-
sioned by the want of that perfect distinctness which is required
for other purposes. However, to enter deeply into an expla-
nation of this would lead me to speak of the causes of the
aberration of rays in the focus of an object speculum, of
which there are some that are seldom taken into consideration
by opticians, and indeed are such as cannot be calculated; but
this not being my present purpose, suffice it to observe, that
the method is justified by experience.

When the diameter of the Comet was increased to about 4′,
I thought it advisable to lessen the power with which I mea-
sured; and, as I made use of two different micrometers, as
well as eye-glasses, I took a measure with both of them. The
agreement of the micrometers to 9″″ is no small proof of the
goodness of the observations of the 28th of March, and very
properly connects the measures of the high powers with those
that were made with 227.
<table>
<thead>
<tr>
<th>D. H. M.</th>
<th>Distance from (\alpha) (Mar. 13) to (\beta) (Mar. 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 13</td>
<td>2 h 48 m 0 s by pretty exact estimation true to 20 s.</td>
</tr>
<tr>
<td>17</td>
<td>0 h 41 m 58 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>18</td>
<td>1 h 0 m 35 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>19</td>
<td>1 h 6 m 39 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>21</td>
<td>1 h 10 m 40 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>22</td>
<td>1 h 46 m 40 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>24</td>
<td>1 h 51 m 23 s by the micrometer and power 227.</td>
</tr>
<tr>
<td>25</td>
<td>3 h 39 m 46 s by the micrometer and power 227.</td>
</tr>
</tbody>
</table>

- The figures are drawn upon a scale of 80 seconds to one inch.
TABLE III. Angle of position of the Comet with regard to the parallel of declination of the same telescopic fixed stars measured by a micrometer, of which I have given the description, and a magnifying power of 278. See fig. 1, 2, 3, 4.

<table>
<thead>
<tr>
<th>D. H. M.</th>
<th>Bα Comet,</th>
<th>Aα Comet,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 13</td>
<td>10 30 0</td>
<td>80 36 0</td>
</tr>
<tr>
<td>17 11 0</td>
<td>18 8 20</td>
<td>36 8 10</td>
</tr>
<tr>
<td>9 24</td>
<td>39 7 23</td>
<td>11 4 6</td>
</tr>
<tr>
<td>21 10 10</td>
<td>11 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 8 23</td>
<td>Bβ Comet,</td>
</tr>
<tr>
<td></td>
<td>11 44</td>
<td>fig. 2</td>
</tr>
<tr>
<td></td>
<td>25 7 33</td>
<td>36 39 true to 2 or 3°.</td>
</tr>
<tr>
<td></td>
<td>9 55</td>
<td>36 14 true to 3 or 4°, air very tremulous.</td>
</tr>
<tr>
<td></td>
<td>26 10 55</td>
<td>56 32 liable to a considerable error.</td>
</tr>
<tr>
<td></td>
<td>28 7 58</td>
<td>Aβ Comet,</td>
</tr>
<tr>
<td></td>
<td>29 9 25</td>
<td>Bγ Comet,</td>
</tr>
<tr>
<td></td>
<td>30 8 25</td>
<td>fig. 3</td>
</tr>
<tr>
<td></td>
<td>7 55</td>
<td>32 19 true to 1 or 2°.</td>
</tr>
<tr>
<td></td>
<td>28 51</td>
<td>62 51 true to 3 or 4°.</td>
</tr>
<tr>
<td></td>
<td>4 42</td>
<td>Bα Comet,</td>
</tr>
<tr>
<td></td>
<td>6 8 28</td>
<td>fig. 4</td>
</tr>
<tr>
<td></td>
<td>15 10 27</td>
<td>29 9 true to 2 or 3°.</td>
</tr>
<tr>
<td></td>
<td>16 8 1</td>
<td>49 11 true to 1°.</td>
</tr>
<tr>
<td></td>
<td>10 55</td>
<td>50 47 true to 1½ or 2½°.</td>
</tr>
<tr>
<td></td>
<td>18 8 31</td>
<td>Aε Comet,</td>
</tr>
<tr>
<td></td>
<td>47 9</td>
<td>46 35 pretty well.</td>
</tr>
<tr>
<td></td>
<td>40 35</td>
<td>47 9 very well taken,</td>
</tr>
<tr>
<td></td>
<td>27 14</td>
<td>47° 46', true to 1°.</td>
</tr>
</tbody>
</table>

* The angles are drawn true to the measure, without allowing for errors.
Miscellaneous observations and remarks.

March 19. The Comet's apparent motion is at present 24 seconds per hour. It moves according to the order of the signs, and its orbit declines but very little from the ecliptic.

March 25. The apparent motion of the Comet is accelerating, and its apparent diameter seems to be increasing.

March 28. The diameter is certainly increased, from which we may conclude that the Comet approaches to us.

April 2. This evening at 8 h. 15' the Comet was a little above the line drawn from 7 to 0 in fig. 7. This figure is only delineated by the eye, so that no very great exactness in the distances of the stars is to be expected; but I shall take the first opportunity of measuring their respective situations by the micrometer.

April 6. With a magnifying power of 278 times the Comet appeared perfectly sharp upon the edges, and extremely well defined, without the least appearance of any beard or tail.

April 16. Fig. 8. represents the situation of the Comet this evening about nine o'clock, and is only an eye-draught of the telescopic stars.

Remarks on the path of the Comet.

We may observe, that the method of tracing out the path of a celestial body by taking its distance from certain stars, and the angle of position, with regard to them, cannot be expected to give us a compleatly just representation of the tract it describes, since even the most careful observations are liable to little errors, both from the remaining imperfections of instruments, though they
they should be the most accurate that can be had, and from the
difficulty of taking angles and positions of objects in motion.
Add to this a third cause of error, namely, the obscurity of
very small telescopic stars that will not permit the field of view
to be well to be enlightened as we could wish, in order to see the
threads of the micrometer perfectly distinct.

This will account for the apparent distortions to be observed
in my figures of the Comet's path. Some little irregularity
therein may also proceed from different refractions, as they have
not been taken into account, though the observations have
been made at very different altitudes, where consequently
the refractions must have been very different. But though
this method may be liable to great inconveniences, the principal
of which is, that many parts of the heavens are not suffi-
ciently stored with small stars to give us an opportunity to
measure from them, yet the advantages are not less remarkable.
Thus we see that it enabled me to distinguish the quantity and
direction of the motion of this Comet in a single day (from the
18th to the 19th of March) to a much greater degree of exact-
ness than could have been done in so short a time by a sector or
transit instrument; nay even an hour or two, we see, were in-
tervals long enough to show that it was a moving body, and
consequently, had its size not pointed it out as a Comet, the
change of place, though so trifling as 24 seconds per hour,
would have been sufficient to occasion the discovery. A gen-
tleman very well known for his remarkable success in detecting
Comets * seems to be well aware of the difficulty to discover a
motion in a heavenly body by the common methods when it is
so very small; for in a letter he favoured me with, speaking of
the Comet, he says: "Rien n'etoit plus difficile que de la
reconnoître et je ne puis pas concevoir comment vous avez pu:

* Mons. MESSEUR.

"revenir"
Mr. Herschel’s Account

revenir plusieurs fois sur cette étoile ou Comète; car absolu-
ment il a fallu l’observer plusieurs jours de suite, pour s’ap-
percevoir qu’elle avait un mouvement.”

I need not say that I merely point this out, as a temporary advantage in the method I have taken; for as soon as we can have regular, constant, and long continued observations by fixed instruments, the excellence of them is too well known to say any thing upon that subject: for which reason I failed not to give immediate notice of this moving star, and was happy to surrender it to the care of the Astronomer Royal and others, as soon as I found they had begun their observations upon it.

Description of a micrometer for taking the angle of position.

FIG. I. Represents the micrometer inclosed in a turned case of wood, as it is put together, ready to be used with the telescope. A is a little box which holds the eye-glass. B is the piece which covers the inside work, and the box A is screwed into it. C is the body of the micrometer containing the brass work, shewing the index plate a projecting at one side, where the case is cut away to receive it: D is a piece, having a screw b at the bottom, by means of which the micrometer is fastened to the telescope. To the piece C is given a circular motion, in the manner the horizontal motion is generally given to Gregorian reflectors, by the lower part going through the piece D, where it is held by the screw E, which keeps the two pieces C and D together, but leaves them at liberty to turn upon each other.

Fig. II. Is a section of the case containing the brass work, where may be observed the piece B hollowed out to receive the
Fig. 8.

April 16.
box A, which consists of two parts inclosing the eye lens. This figure also shews how the piece C passes through D, and is held by the ring E: the brass work, consisting of a hollow cylinder, a wheel and pinion, and index plate, is there represented in its place. F is the body of the brass work, being a hollow cylinder with a broad rim c at the upper end; this rim is partly turned away to make a bed for the wheel d. The pinion e turns the wheel d, and carries the index plate a. One of its pivots moves in the arm f, screwed upon the upper part of c, which arm serves also to confine the wheel d to its place upon c. The other pivot is held by the arm g fastened to F.

Fig. III. Is a plan of the brass work. The wheel d, which is in the form of a ring, is laid upon the upper part of F or c, and held by two small arms f and h, screwed down to e with the screws i, i.

Fig. IV. Is a plan of the brass work. d, d, is the wheel placed upon the bed or socket of the rim of the cylinder c, c, and is held down by the two pieces f, h, which are screwed upon c, e. The piece f projects over the center of the index plate to receive the upper pivot of the pinion m, n, is the fixed wire fastened to c, c. o, p, the moveable wire fastened to the annular wheel d, d. The index plate a is divided into 60 parts, each sub-divided into two, and milled upon the edge. When the finger is drawn over the milled edge of the index plate from q towards r, the angle m, s, o, will open, and if drawn from r towards q, it will shut again. The case C, C, must have a sharp corner t, which serves as a hand to point out the division on the index plate.
XXXIII. A Letter from Joseph Willard to the Rev. Dr. Maffelyne, Astronomer Royal, concerning the Longitude of Cambridge in New England.

Read July 5, 1781.

REV. SIR,

The difference of meridians between Greenwich and Cambridge has been generally reckoned 4 h. 44'. This was what the late Dr. Winthrop made use of; but I do not find that he determined it by actual observations, made by him at Cambridge, compared with corresponding ones, made at the Royal Observatory at Greenwich. It appears, that in 1769, at the time of the transit of Venus, the doctor was not entirely certain of the longitude of Cambridge. He mentioned 4 h. 44' as near the truth; but for better fixing it, he gave several of his observations of the eclipses of Jupiter's satellites to be compared with those made at Greenwich; but there were too few corresponding ones to determine the point with precision; and as modern astronomers do not make absolute dependence upon the difference of meridians deduced from the eclipses of Jupiter's satellites, unless there has been a series of observations, both of immersions and emersions, I have wished to find some observations of solar eclipses and occultations of fixed stars by the moon, made at Cambridge, of which corresponding ones were made at Greenwich. I have met with no observations of occultations made by Dr. Winthrop; but a solar eclipse
eclipse was observed by him and several other gentlemen, at his house, August 5, 1766, at which I was present and assisting, being then a resident graduate at Harvard College: this eclipse, Sir, I find that you observed at Greenwich. By your observations in the printed volume, a copy of which the Royal Society was so generous as to send to Harvard College, which was received last spring, and for which the College is very grateful, I find the beginning of the eclipse was seen by you at 5 h. 29' 56'' P.M. and the end at 7 h. 11' 27'' P.M. apparent time. At Dr. Winthrop's house at Cambridge, lat. 42° 25' N. the beginning of this eclipse was observed at 11 h. 33' 23'' A.M. and the end at 2 h. 45' 9'' P.M. apparent time. Allowing for the spheroidal figure of the earth, and going through the parallactic calculations and deductions, I find the difference of meridians between Greenwich and Cambridge, by the observations of this eclipse, to be 4 h. 44' 22''.

In the transit of Venus, in 1769, the internal contact was observed by Dr. Winthrop at 2 h. 47' 30'' apparent time, and by Mr. Hitchins, at the Royal Observatory, at 7 h. 28' 57'' apparent time. Allowing the sun's parallax on the day of the transit to be 8'', 38'', I find by calculation from these observations, that the difference of meridians between Greenwich and Cambridge is 4 h. 44' 12''. The reason of my taking Mr. Hitchins's observation is, your saying, that the telescope which he used was much superior to all the others which were made use of at that day at the Observatory; and to its greater excellence and distinctness you attribute the difference of 26'' by which Mr. Hitchins saw the internal contact before you. There seems to be the greater propriety, when comparing the American observations of that phenomenon with those made at Greenwich, to take that where the observer was peculiarly aided.
aided by the distinctness of his telescope, because the sun was very near the horizon with you, while with us the altitude was great, and the atmosphere exceeding clear. Taking the mean between the deduction made from the observations of the internal contact of Venus, and of the beginning and ending of the above solar eclipse, the difference of meridians between Greenwich and Cambridge is 4 h. 44' 17''.

I find, Sir, in a letter from you to Dr. Smith of Philadelphia, Dec. 26, 1769, that by the observations of the eclipses of Jupiter's satellites made at Norriton you determined the difference of meridians between Greenwich and Norriton to be 5 h. 1' 0' 35''. If we subtract 52'', the difference of meridians between Philadelphia and Norriton, gotten, agreeably to your request, by terrestrial measurement, we find the difference of meridians between Greenwich and Philadelphia to be 5 h. 0' 43'', which is the same that it appears to be by the immersions and emersions of Jupiter's first satellite observed at Philadelphia, corrected in the same manner you corrected the observations for Norriton, which is 8'' more than Dr. Ewing's determination. By observations of the transit of Mercury in 1769, made at Cambridge and Philadelphia, the difference of meridians between those two places appears by the external contact to be 16' 02'', by the internal 16' 28''; the mean 16' 30'' subtracted from 5 h. 0' 43'' leaves 4 h. 44' 13'' for the difference of meridians between Greenwich and Cambridge deduced in this way, which, though not direct, may yet be considered as an evidence of some weight to prove, that the difference is more than 4 h. 44', and that 4 h. 44' 17'' may be very near the truth. This is the difference that I at present take, when I make use of tables fitted to the meridian of Greenwich; but I should be full glad of more corresponding

corresponding observations to ascertain this point. June 24, 1778, there was a solar eclipse, visible both at Greenwich and Cambridge. The beginning of this eclipse was observed at Cambridge by the late Dr. Winthrop at 9 h. 6' 20'' A.M. and the end at 11 h. 37' 22'' A.M. apparent time. If the atmosphere favoured your observing it at Greenwich, I should be extremely obliged to you, if you would communicate to me your observations. I shall also be happy to know the time of the beginning of the solar eclipse of the 23d of next April at Greenwich.

I now, Sir, beg leave to communicate to you some observations of the solar eclipse of the 27th of last October. At Beverly, lat. 42° 36' N. I carefully ascertained the going of my clock, by equal altitudes of the sun's upper and lower limb, for several days preceding the eclipse, and on the day when it happened, constantly applying the equation for the change of declination. October 25th, when the sun's center passed the meridian, it was by the clock 11 h. 59' 11''; on the 26th, 11 h. 58' 15''; and on the 27th, 11 h. 57' 18''.

Two gentlemen observed with me; the Rev. Mr. Cutler of Ipswich, and the Rev. Mr. Prince of Salem. Mr. Cutler and I were each furnished with a reflecting telescope made by James Mann of London, one magnifying 34, and the other 45 times. Mr. Prince had an achromatic refractor magnifying 43 times. The times of observation are as follow:

<table>
<thead>
<tr>
<th>Time of Observation</th>
<th>Clock Time</th>
<th>Reduced to App. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of eclipse observed by Mr. Cutler</td>
<td>10 59 2</td>
<td>11 1 42 A.M.</td>
</tr>
<tr>
<td></td>
<td>10 59 6</td>
<td>11 1 46</td>
</tr>
<tr>
<td></td>
<td>10 59 8</td>
<td>11 1 48</td>
</tr>
<tr>
<td>End of eclipse observed by Mr. Cutler</td>
<td>1 38 37</td>
<td>1 41 23 P.M.</td>
</tr>
<tr>
<td></td>
<td>1 38 43</td>
<td>1 41 29</td>
</tr>
<tr>
<td></td>
<td>1 38 40</td>
<td>1 41 26</td>
</tr>
</tbody>
</table>

U u u 2 I had
Mr. Willard on the Longitude

I had no micrometer to measure the lucid part of the sun in its least state, and thereby determine the error of Mayer's tables in latitude at the middle of this eclipse. But according to the observations of Professor Williams, Dr. Winthrop's successor, the error was not great. He and several assistants observed this eclipse at Long Island in Penobscot Bay. The latitude of the place of observation he found to be $44^\circ 17' 7''$ N. He observed the beginning of the eclipse at 11 h. 11: 8'' A.M. and the end at 1 h. 50' 25'' P.M. apparent time. He was furnished with an excellent Dollond's micrometer, with which he measured the sun's diameter on the morning of the eclipse, and the lucid parts many times during its continuance. By his observations, compared with those made at Beverly, I find the difference of meridians between Beverly and Long Island to be $8' 4''$ in time. The time of the greatest obscurcation was at 12 h. 30' 22'', when the lucid part of the sun was $8''$ on the lower limb. The sun's semi-diameter according to observation was $16' 8'',7$; the moon's horizontal semi-diameter, according to the tables, $16' 23'',8$; the augmentation of her semi-diameter, agreeably to her altitude, $9'',5$; the sum of the visible semi-diameters of the sun and moon therefore $32' 42''$. The lucid part of the sun $8''$ being subtracted from $32' 17'',4$, the sun's diameter, leaves $32' 9'',4$ for the eclipsed part of the sun, which subtracted from $32' 42''$ leaves $32'',6$ for the least distance of the centers of the sun and moon. The visible angle of the moon with the sun was, I find, $15^\circ 54' 54''$, and her motion from the sun in her visible orbit $24'',5$ in one minute; the visible ecliptic conjunction therefore was at 12 h. 29' 57'', and the distance of the centers of the sun and moon $34''$. The moon's parallax in latitude from the sun was then $49' 15'',8$ S. which added to $34''$ gives $49' 49'',8$ N. equal to the moon's latitude.

tude by observation. By Mayer's tables her latitude was then 49° 39', 4, by which it appears, that the error of these tables in latitude, at the middle of the eclipse, by the Penobscot ob-
servation, was – 10'. The error in longitude, taking the mean between that of the beginning and end, I find to be
– 9'. The determination of these errors is upon the supposi-
tion that Beverly is 4 h. 42' 59" W. of Greenwich, which, I believe, very near the truth. Beverly appears by observation to be 1° 18" in time E. of Cambridge, which subtracted from 4 h. 44' 17" leaves 4 h. 42' 59".

I hope, Sir, no umbrage will be taken at my writing to you, on account of the political light in which America is now viewed by Great Britain. I think political disputes should not prevent communications in matters of mere science; nor can I see how any one can be injured by such an intercourse.

I am, &c.

Beverly in Massachussetts,
February 16, 1781.
AN

ACCOUNT

OF SOME

THERMOMETRICAL EXPERIMENTS;

CONTAINING,

I. Experiments relating to the cold produced by the evaporation of various fluids, with a method of purifying ether.
II. Experiments relating to the expansion of mercury.
III. Description of a thermometrical barometer.

By TIBERIUS CAVALLO, F.R.S.

Who was nominated by the President and Council to prosecute Discoveries in Natural History, pursuant to the Will of the late HENRY BAKER, Esq. F.R.S.

Read at the ROYAL SOCIETY, June 28, 1781,
AN ACCOUNT, &c.

It is at present well known, that by the evaporation of various fluids a sensible degree of cold is produced; and that by the evaporation of ether, which is the most volatile fluid we are acquainted with, water may be congealed, and the thermometer may be brought several degrees below the freezing point. But as various thermometrical experiments, which I lately made, have exhibited some new phenomena, and as I have contrived an easy and pleasing method of freezing a small quantity of water in a short time, and in every climate; I think it not improper to give an account of these things in the first part of this lecture.

My first experiments were intended to discover, if possible, a fluid cheaper than ether, by the evaporation of which a degree of cold sufficient for some useful purpose might be generated. But in this my expectation was disappointed, as I found that ether was incomparably superior to any other fluid, as the cold it produced was several degrees greater than that occasioned by any other of the most volatile fluids whatever. Being, therefore, obliged to use ether, I endeavoured to contrive a method, by which the least possible quantity of it might be wasted in the production of a degree of cold sufficient to freeze water, and in this I met with success. But before we come to the description of this method, I shall
Mr. Cavallo's Account of

shall briefly relate some observations made on the cold produced by the evaporation of other fluids besides ether.

In a room, the temperature of which was 64° according to Fahrenheit's thermometer, and in which the air was gently ventilated, I observed the effects produced by various fluids when thrown upon the ball of a thermometer. The ball of this thermometer was quite detached from the ivory piece upon which the scale was engraved. The various fluids were thrown upon the thermometer through the capillary aperture of a small glass vessel, shaped like a funnel, and care was taken to throw them so slowly upon the bulb of the thermometer, that a drop might now and then fall from the under part of it; except when those fluids were used, which evaporate very slowly, in which case it was sufficient to keep the ball of the thermometer only moist, without any drop falling from it. During the experiment the thermometer was kept turning very gently round its axis, in order that the fluid used might fall upon every part of its bulb. This method I find to answer much better than that of dipping the ball of the thermometer into the fluid and removing it immediately after, or that of wetting the thermometer with a feather. The evaporation, and consequently the cold produced by it, may be increased by ventilation. viz. by blowing with a pair of bellows upon the thermometer; but this was not used in the following experiments, because it is not easily performed by one person, and also because it occasioned very uncertain results.

With the above described method I began to examine the effects of water, and found, that the thermometer was brought down to 56°, viz. 9° below the temperature of the room in which the experiment was made, and of the water employed.

This
This effect was produced in about two minutes time, after which a larger continuation did not bring the mercury lower.

By means of spirit of wine the thermometer was brought down to 48°, which is only 16° below the temperature of the room, and of the spirit employed. When the spirit of wine is highly rectified, the cold produced by its evaporation is certainly greater than when it is of the common sort; but the difference is not so great as one, who never tried the experiment, might expect. The purer spirit produces the effect much quicker.

Using various other fluids, which were either compounds of water and spiritous substances, or pure essences, I found that the cold produced by their evaporation was generally in some intermediate degree between the cold produced by the water and that produced by the spirit of wine.

Spirit of turpentine brought the thermometer only 3° lower than the temperature of the room; but olive oil and other oils, which evaporate either very slowly or not at all, did not sensibly affect the thermometer.

Willing to observe how much electrization could increase the evaporation of spirit of wine, and consequently the cold produced by it, I put the tube containing the spirit into an infusing handle, and connected it with the conductor of an electrical machine, which was kept in action whilst the experiment was performed; by these means the thermometer was brought down to 47°. Having tried the three mineral acids I found, that instead of cooling they heated the thermometer, which effect I expected; since it is well known, that those acids attract the water from the atmosphere, and that heat is produced by the combination of water and any of them. The vitriolic acid, which was very strong and transparent, raised the

\[X \times 2 \]
thermometer to 102°; the smoking nitrous acid raised it to 72°; and the marine acid raised it to 66°; the temperature of the room, as well as of the acids, being 64°, as mentioned above.

The apparatus which I contrived for the purpose of using the least possible quantity of ether in freezing water, &c. consists in a glass tube, terminating in a capillary aperture, which tube is to be fixed upon the bottle that contains the ether. Fig. 1. of the annexed drawing exhibits such a tube, round the lower part of which, viz. at A some thread is wound, in order to let it fit the neck of the bottle. When the experiment is to be made, the stopper of the bottle containing the ether is removed, and the above mentioned tube is fixed upon it. The thread round this tube should be moistened a little with water or spittle before it is fixed on the bottle, in order to prevent more effectually any escape of ether between the neck of the bottle and the tube. Then holding the bottle by its bottom FG (fig. 2.) and keeping it inclined as is shewn in the figure, the small stream of ether issuing out of the aperture D of the tube DE, is directed upon the ball of the thermometer, or upon a tube containing water or other liquor that is required to be concealed.

Ether being very volatile, and having the remarkable property of increasing the bulk of air, does not require any aperture, through which the air might enter the bottle, in proportion as the ether goes out: the heat of the hand is more than sufficient to force the ether in a stream from the aperture D.

After this manner, throwing the stream of ether upon the ball of a thermometer in such quantity as that a drop of ether might now and then, for instance every 10 seconds, fall from the under part of the thermometer, I have brought the mercury down to 3°, viz. 29° below the freezing point, when the atmosphere
some Thermometrical Experiments.

atmosphere was somewhat hotter than temperate, and that without blowing upon the thermometer.

When the ether is very good, viz. is capable of dissolving elastic gum, and the thermometer has a small bulb, not above twenty drops of ether are required to produce this effect, and about two minutes of time; but when the ether is of the common sort, a greater quantity of it, and a longer time, is necessary to be employed, though at last the thermometer is brought down very nearly as low by this as by the best sort of ether.

In order to freeze water by the evaporation of ether, I take a thin glass tube about four inches long and about one-fifth of an inch in diameter, hermatically closed at one end, and put a little water in it, so as to fill about half an inch length of it, as is shewn at CB in the figure. Into this tube a slender wire H is also introduced, the lower extremity of which is twisted in a spiral manner, and serves to draw up the ice, when formed. Things being thus prepared, I hold the glass tube by its upper part A with the fingers of the left hand, and keep it continually and gently turning round its axis, first one way, and then the contrary; whilst with the right hand I hold the phial containing the ether in such a manner as to direct the stream of ether on the outside of the tube, and a little above the surface of the water in it. The capillary aperture D should be kept almost in contact with the surface of the tube that contains the water. Continuing this operation for two or three minutes, the water will be froze as it were in an instant; since it will appear to become opaque at the bottom B, and the opacity will ascend at C in less than half a second of time, which exhibits a beautiful appearance. This congelation, however, is only superficial, and in order to congeal the whole quantity of wa-
Mr. Cavallo's Account of

ter, the operation must be continued one or two minutes longer; after which the wire \(H \) will be found to be kept very tight by the ice. Now the bottle with the ether is left upon a table or other place, and to the outside of the glass tube the hand must be applied for a moment, in order to soften the surface of the ice, which adheres very firmly to the glass, and then pulling the wire \(H \) out of the tube, a solid and hard piece of ice will come out, fastened to its spiral extremity.

Instead of the wire \(H \) sometimes I put a small thermometer into this tube so as to have its bulb immersed in the water. With this thermometer I have observed a very remarkable phenomenon, which seems to be not explicable in the present state of knowledge concerning heat and cold. This is, that water will freeze in the winter with a less degree of cold than it will in the summer, or when the weather is hotter: for instance, in the winter the water in the tube \(AB \) will freeze when the thermometer is about \(30^\circ \); but in the summer, or even when the temperature of the atmosphere is about \(60^\circ \), the quicksilver in the thermometer must be brought ten or fifteen, or even more, degrees below the freezing point, before the water which surrounds the said thermometer will be converted into ice, even superficially; hence it appears, that in the summer time a greater quantity of ether and longer time is required to freeze a given quantity of water than in the winter, not only because then a greater degree of heat is to be overcome, but principally because in the summer a much greater degree of cold must be actually produced before the water that is kept in it will assume a solid form. When the temperature of the atmosphere has been about \(40^\circ \), I have froze a quantity of water with an equal weight of good ether, but at present, being
being summer, between two and three times the quantity of
the same ether must be used to produce the same effect.

There seems to be something in the air which, besides heat,
terferes with the freezing of water, and perhaps of all fluids,
though I cannot say from experience whether the above men-
tioned difference between the freezing of water in winter and
summer, takes place with other fluids, as milk and other
animal fluids, oils, wines, &c.

The proportion between the quantity of the ether and of the
water that may be frozen by it, seems to vary according to the
quantity of water; for a larger quantity of water seems to
require a proportionably less quantity of ether than a smaller
quantity of water, supposing that the water is contained in
cylindrical glass vessels; for I have not tried whether a metal
vessel instead of a glass one, and whether some other shape
besides the cylindrical, might not facilitate the congelation. In
the beginning of the spring I froze about a quarter of an ounce
of water with nearly half an ounce weight of ether, the appa-
ratus being larger, though similar to that described above.

Now as the price of ether, sufficiently good for the purpose,
is generally between eighteen pence and two shillings per ounce,
it is plain, that with less than two shillings a quarter of an
ounce of ice, or ice cream, may be made in every climate, and
at any time, which may afford great satisfaction to those per-
sions, who living in places where no natural ice is to be had,
ever saw or tasted any such delicious refreshments.

When a small piece of ice, for instance, of about ten grains
in weight, is wanted, the necessary apparatus is very small,
and the expense of the ether not worth mentioning. I have
a small box, which is four inches and a half long, two inches
broad, and one inch and a half deep, which contains all the appa-
ratus.
Mr. Cavallo's Account of

ratus necessary for this purpose, viz. a bottle capable of containing about one ounce of ether, two pointed tubes (in case that one should break) a tube in which the water is to be frozen, and the wire. With the quantity of ether contained in this small and very portable apparatus, the experiment, when carefully performed, may be repeated about ten times. A person who wishes to perform such experiments in hot climates, and in places where ice is not easily procured, requires only a large bottle of ether, besides the small apparatus described above.

It is a known fact, that the moment a quantity of water becomes ice, a thermometer kept immersed in it, rises a few degrees, and accordingly this is observed in our experiment, viz. the mercury of the thermometer, which is immersed in the water of the tube AB, will suddenly rise, sometimes as much as ten degrees, when the water becomes first opaque. Electrization increases very little the degree of cold produced by the evaporation of ether. Having thrown the electrified, and also the unelectrified, stream of ether upon the bulb of a thermometer, the mercury in it was brought down two degrees lower in the former than in the latter case.

As various persons may, perhaps, be induced by this paper to repeat such experiments, and as ether is a fluid which can with difficulty be preserved, it may be useful to mention, that a cork confines ether in a glass bottle much better than a glass stopple, which it is almost impossible to grind so well as entirely to prevent the evaporation of ether. When a stopple, made very nicely out of a uniform and close piece of cork, which goes rather tight, is put upon a bottle of ether, the smell of that fluid cannot be perceived through it; but I never saw a glass stopple that could produce the same effect. By opening
ing the bottle very often, or by long keeping, the cork becomes loose, in which case it must be changed; and thus ether, spirit of wine; or any fluid, excepting those which corrode cork, may be preserved.

I shall now describe a method of purifying vitriolic ether, which is very easy and expeditious, though not very profitable: this method I learned of Mr. Winch, Chemist, in the Haymarket. Fill about a quarter of a strong bottle with common ether, and upon it pour about twice as much water, then stop the bottle, and give it a shake, so as to mix for a time the ether with the water. This done, keep the bottle without motion, and with the mouth downwards, till the ether is separated from the water and swims over it, which requires not above three or four minutes of time; then open the bottle, and keeping it still inverted, let the greatest part of the water come out very gently; after this the bottle being turned with the mouth upwards, more water must be poured in it, and in short the same operation must be repeated three or four times. Lastly, all the water being separated from the ether by decanting it with dexterity, the ether will be found to be exceedingly pure. By this means I have purified common vitriolic ether, which could not affect elastic gum, and have reduced it into such a state as that elastic gum was easily dissolved by it. Indeed this purified ether appeared by every trial to be purer than I ever saw it, even when made after the best usual method, and in the most careful manner. The only inconvenience attending this process is, that a vast quantity of ether is lost. Not above three or four ounces of a pound of common ether remain after the purification. As the greatest part of the ether is certainly mixed with the water that is used in the process, it may perhaps be worth while to put that water into a retort, and
Mr. Cavallo's Account of

to distil the ether from it, which must come sufficiently pure for common use.

It is commonly believed, that water combines with the purest part of ether, when those two fluids are kept together; whereas, by the above described process, the contrary is established: perhaps when ether is kept in contact with water for a long time, the purest part of it may appear to be lost, because the ether may be combined with, and may retain some water in itself, at the same time that the water combines with and retains some ether, whereas the case may be different when the ether is quickly washed in water, and is immediately after separated from it: but in respect to this I have yet not made any experiments, so as to be able to decide the matter.

II. Experiments relating to the expansion of mercury.

The difficulty and uncertainty attending the various methods hitherto proposed for investigating the expansion of quicksilver, or its increase of bulk when rarified by a given degree of heat, determined me to conceive some method by which this purpose might be effected with more certainty and precision. After various experiments I hit upon the following method, which to me seems both new and capable of great accuracy, though in this I may be deceived.

First, having blown a ball to a capillary tube, such as are commonly used for thermometers, I weighed it, and found that this empty thermometer was equal to 79.25 grains. This empty glass, previous to its being weighed was rendered perfectly
Some Thermometrical Experiments.

Feckly clean as possible, which is a necessary precaution in this experiment, which depends upon a very great accuracy of weight. Then I introduced some mercury into the stem of this thermometer, taking care that none of it entered the ball, and, by adapting a scale of inches to the tube, observed that 4.3 inches length of the tube was filled with the mercury. The thermometer was now weighed again, and from this weight, the weight of the glass found before being subtracted, the remainder, viz. 0.24 gr. shewed the weight of so much quicksilver as filled 4.3 inches of the tube. Now the ball of the thermometer, and also part of the tube, were entirely filled with quicksilver: then, in order to find out the weight of the mercury contained in it, the thermometer was weighed for the last time, and from this weight the weight of the glass being subtracted, the remainder, viz. 320.5 grs. shewed the weight of the whole quantity of quicksilver contained in the thermometer.

By comparison with a graduated thermometer in hot and cold water, I made a scale to the new thermometer according to Fahrenheit's, and by applying a scale of inches found, that the length of 20° in this scale was equal to 1.33 inch. But 0.24 gr. was the weight of so much mercury as filled 4.3 inches length of the tube; therefore, by the rule of proportion it will be found, that the weight of so much quicksilver as fills 1.33 inch of the tube, viz. the length of 20° is equal to 0.0742 gr. nearly, and that the weight of so much quicksilver as fills the length of the tube that is equivalent to one degree is equal to 0.00371 gr. Now it is clear, that the weight of the whole quantity of quicksilver contained in the thermometer is to the weight of so much quicksilver as fills the length of one degree in the tube, as the bulk of the whole quantity of quicksilver

Y y y 2
Mr. Cavallo's Account of

silver in a given degree of heat, to the increase of bulk, that
the same whole quantity of quicksilver acquires when heated
of but 1°; viz. 32.05 grs. is to 0.00371 gr. as 1 is to 0.00111 +;
so that by this experiment it appears, that 1° of Fahrenheit's
thermometer increases the bulk of mercury not above \(\frac{1}{10000} \)ths parts. In this process a small deviation from mathematical
exactness is occasioned by the small difference of weight be-
tween the quicksilver of the tube when first weighed and when
it is afterwards heated to 1°; but by an easy calculation it will
be found, that this difference is so exceedingly small as not to be
perceived by our exactest weighing and measuring instruments.

For clearness' sake I shall subjoin the calculation of the above
related experiments, disencumbered from words. Here the
decimals are not computed to a very large number, that being
unnecessary for this purpose.

Weight of the glass, - - - - 79.25 grs.
Weight of so much quicksilver as filled 4.3 inches
length of the tube, - - - 0.24 grs.
Weight of the whole quantity of quicksilver con-
tained in the thermometer, - - 32.05 grs.
Length of the tube equal to 20°, - - 1.33 inch.

\[
\begin{align*}
4.3 : 0.24 & : 1.33 : 0.0742 = 20° \\
20° : 0.0742 & : 1 : 0.00371 \\
32.05 : 0.00371 & : 1 : 0.00111 + = \text{to the expansion}
\end{align*}
\]

casioned by one degree of heat.

Having repeated this experiment with other thermometers,
and by similar calculations, each process gave a result little dif-
ferent from the others, which irregularity is certainly owing
to the imperfection of my scales, which are not of the nicest
sort: but taking a mean of various experiments it appears, that
that 1° of heat, according to FAHRENHEIT's thermometer, increases the bulk of a quantity of quicksilver of \(\frac{\text{th}}{300} \) parts, viz. if the bulk of a quantity of quicksilver in the temperature of 50° is equal to 100,000 cubic inches, the bulk of the same quantity of quicksilver in the temperature of 51° will be equal to 100,009 cubic inches.

It is almost superfluous to mention, that the cavity of the tubes employed for these experiments, must be perfectly uniform throughout. The scales to be used for this method should be so exact as to be turned by the hundredth part of a grain when charged with about half an ounce weight.

From these observations the method of graduating, or of determining the length of a degree in a new thermometer, is easily deduced, the only requisites for the calculation being the weight of a quantity of quicksilver, which fills a known length of the tube, and the weight of the whole quantity of quicksilver contained in the thermometer when filled. Suppose, for instance, that in making a new thermometer it be found, that the weight of so much quicksilver as fills five inches length of the tube is equal to ten grains, and that the weight of the whole quantity of quicksilver contained in the thermometer weighs 300 grains. It is plain, that if the whole quantity of quicksilver weighs 300 grs. \(\frac{\text{th}}{300} \) parts of it must weigh 0,027 gr. But the weight of so much mercury as fills five inches of the tube is equal to 10 grains; therefore, 0,027 gr. weight of quicksilver must fill 0,0133 inch of the tube, and this is equal to the length of 1°, or the double, treble, &c. of it is equal to two, three, &c. degrees.

By this means the scale may be made; that is, it may be divided into degrees, but the numbers cannot be added to them without finding which of those degrees corresponds with the freezing
Mr. Cavallo's Account of freezing point or boiling point. Either the point of boiling or freezing may be found by experiment, or any other point may be ascertained by comparison with another thermometer, and then the other degrees are nominated accordingly.

III. Description of a thermometrical barometer.

The determination of the various degrees of heat shewn by boiling water under different pressures of the atmosphere, has been attempted by various persons, but it was lately completed by the accurate and numerous experiments of Sir George Shuckburgh, member of this Society. His valuable paper is inserted in the LXIXth vol. of the Phil. Trans. Upon considering this paper, I thought it possible to construct a thermometer with proper apparatus, which, by means of boiling water, might indicate the various gravity of the atmosphere, viz. the height of the barometer. This thermometer, together with the suitable apparatus, might, I thought, be packed into a small and very portable box, and I even flattered myself, that with such an instrument the heights of mountains, &c. might perhaps be determined with greater facility than with the common portable barometer. My expectations are far from having been disappointed, and although the instrument which I have hitherto constructed has various defects, I have, however, thought of some expedients which will undoubtedly render it much more perfect; I shall then present to this Society a more particular account of it, and also of the experiments which I intend to make with it. The instrument in its present state consists of a cylindrical tin vessel, about two inches in diameter and five inches high, in which vessel the water is con-
some Thermometrical Experiments.

contained, which may be made to boil by the flame of a large wax candle. The thermometer is fastened to the tin vessel in such a manner as that its bulb may be about one inch above the bottom. The scale of this thermometer, which is of brass, exhibits on one side of the glass tube a few degrees of Fahrenheit's scale, viz. from 200° to 216°. On the other side of the tube are marked the various barometrical heights, at which the boiling water shews those particular degrees of heat which are set down in Sir G. Shuckburgh's table. With this instrument the barometrical height is shewn within one-tenth of an inch. The degrees of this thermometer are somewhat longer than one-ninth of an inch, and consequently may be subdivided into many parts, especially if a nonius is used. But the greatest imperfection of this instrument arises from the smallness of the tin vessel, which does not admit a sufficient quantity of water: and I find, that when a thermometer is kept in a small quantity of boiling water, the quicksilver in its stem does not stand very steady, sometimes rising or falling even half a degree; but when the quantity of water is sufficiently large, for instance is ten or twelve ounces, and is kept boiling in a proper vessel, its degree of heat under the same pressure of the atmosphere is very settled.
PRESENTS
MADE TO THE
ROYAL SOCIETY
From November 1780 to July 1781;
WITH
The NAMES of the DONORS.

Donors. Presents.
 Recueil des Machines approuvees par l'Academie, tom. 7. 4°
Society of Sciences at Gottingen. Commentationes Societatis Regiae Scientiarum Gottingensis, vol. 2. 4°
Arthur Young, Esq. A Tour in Ireland, in the Years 1776, 1777, 1778, 2 vols. 8°
Mr. Henry Clarke. A Dissertation on the Summation of infinite converging Series, with Algebraic Divisors, translated from the Latin of A. M. Lorgna, with Notes and Observations. 4°
Dr. Forster. The Rationale of Circulating Numbers. 8°
John Bernoulli. Practical Perspective, vol. I. 8°
Mr. Magellan. Chemical Observations and Experiments on Air and Fire. 8°
Board of Longitude. Supplement au Recueil pour les Astronomes. 8°
Nat. Gott. Lccke. Genera Plantarum vocabulis Characteristicis definita. 4°
Vol. LXXI. The Nautical Almanac for the Year 1785. 8°
Anfangsgrunche der Naturgeschichte, erster theil. 8°
Donors.
Donors.

23. Mr. Nichols.

Edward Johnston, M. D.
Dec. 7. Society of Sciences at Upsal.
Royal Academy of Sciences at Stockholm.
Prof. Zimmerman.

Mr. Giral.
21. Mr. Phil. Hurlock.
Mr. Le Baron de Marivet.
Mr. Nicolls.

1781
Jan. 11. Mr. Hope.

Mr. Gough.

25. Mr. W. Wales.
Feb. 8. Andrew Duncan, M. D.
Dr. Du-Pui.

Dr. Caldani.
22. Palatine Academy.

Mar. 1. Mr. John Landen.
15. Edward Waring, M. D.
Apr. 26. Seguin Jackson, M. D.

Present.
Account of a Species of Tenia that breeds in the Head of Sheep. 8°
Bibliotheca Topographica Britannica, No. 1. 4°
Numismatum Romanorum Imperatorum et Imperatricum Series et Valor, a Rogeri Gale. 4°
Dissertatio Medica de Febre puerperali. 4°
Nova Acta Regiae Societatis Scientiarum Upsaliensis, tom. 3. 4°
Transactions of the Royal Academy of Sciences of Stockholm for 1779. 4°
Traité de l'Élasticité de l'Eau et d'autres Fluides. 8°
Memoire sur les Constructions des Ponts. 4°
Commentarii de Rebus in Scientia Naturali et Medicina Geslis, 21 vols. Lipsiæ. 8°
Physique du Monde, par Mons. le Baron de Marivet et Mr. Gouffier. 4°
Franci Nicollsi vita, scriptore Toma Lawrence. 4°

The Second Part of the 16th vol. of the Transactions of the Academy of Sciences of Haerlem. 8°
Travels through Spain, by John Talbot Dillon, Knight and Baron of the Sacred Roman Empire. 4°
Enquiry into the present State of Population in England and Wales. 8°
Heads of Lectures on the Theory and Practice of Physic. 8°
Dissertatio Medica de Homine dextro et sinistro. 8°
Institutiones Physiologicæ. 8°
Monitum ad Observatores Societatis Meteorologæ Palatinæ. 4°
Observations on converging Series. 5°
Proprietates Algebraicarum Curvarum. 4°
History of Quadrupeds, 2 vols. 4°
A Treatise on Sympathy. 8°

Donors.
Donors.

1781.
24. Mr. Guandalmis.
Mr. Thorowgood.
Mr. Peter Dollond.

31. Board of Longitude.

Genera of Birds. 4
Lettere Odeporiche. 8
A Description of a new Watch Key. 8
An engraven Portrait of the late Mr. Dollond, F. R. S.

The Nautical Almanac for 1786. 8
Tables requisite to be used with the Nautical Ephemeris for finding the Latitude and Longitude. 8

A Sexagesimal table, exhibiting at sight the Result of any Proportion where the Terms do not exceed Sixty Minutes, with Precepts and Examples, by Michael Taylor. 4

An Examination of Dr. Price's Essay on the Population of England and Wales. 8

Mr. Frederick Mallet.

A mathematical Description of the Earth, and Eight Mathematical Theorems. 8

Nova Analytis æquilationum Secundi, tertii et quarti gradus. 4

Sir Richard Worsley, Bart.
Dr. Priestley.

Illustrations on the Ion and Bacchæ of Euripides, 2 vol. 8
The History of the Isle of Wight. 4
Experiments and Observations relating to various Branches of Natural Philosophy. 4

Dr. Pulteney.

A general View of the Writings of Linnaeus. 8

Mr. Thomas Henry.

Account of a method of preserving Water at Sea from Putrefaction, and of restoring to the Water its original Pleasantness and Purity. 8

28. Mr. Heofar.

Alexander Dalrymple, Esq.

Two Maps of the East India Company's Lands on the Coast of Coromandel, together with an Explanation. 4

Dr. Simmons.

The Elements of Anatomy, and the Animal Economy, 2d edit. 8

July 5. John Elliot, M. D.

A complete Collection of the Medical and Philosophical Works of John Fothergill, M. D. 8
AN INDEX TO THE SEVENTY-FIRST VOLUME OF THE PHILOSOPHICAL TRANSACTIONS.

A.

ACETOUS acid. See Kirwan.

Acids. It is harder to find the point of saturation with the vegetable than the mineral acids, and why, p. 33.

Adair, James, Esq. amazing effects of lightning on, p. 42.

Adanson, Mr. See Smeathman.

Adscended Equations. See Stanhope, Walde.

Air. The absolute weight of many sorts of, accurately determined by Mr. Fontana, p. 9. Of its specific gravity in its fixed state, p. 33. See Kirwan.

Aldrovandus. Draws his arguments, in relation to the Turkey, from the same source as Belon, p. 73.

Algebra and Geometry. Really but one science, differently treated, p. 457.

Alkali, fixed vegetable. See Kirwan.

Amazon, river. Its medium rate of motion nearly equal to that of the Ganges, p. 93. The tide perceptible there, 600 miles, p. 109.

Angles. Taken at sea by Hadley’s quadrant, p. 396. See Abwood.

Animals producing Cold. See Crawford.

Antelopes and Gazelles, about twenty different kinds of, to be found in Africa, p. 1.

Astronomy. No science has advanced so near perfection, in so short a time, since the invention of the telescope, p. 115.

Athenæus, his account of the Maleagrides, which Belon mislook for the Turkey, p. 73.

Abwood.
Atwood, George, M. A. his general theory for the mensuration of the angle subtended by two objects, &c. p. 395. Tables for taking the diameters of the sun and planets, p. 432-435.

Aqua, river. Supposed to be the same with the Sanpoo, p. 111. But is not, p. 112.

Aurora borealis. See Cavalla.

Aurum fulminans. See Thompson.

Battle powder, double proof, is better than government powder, p. 304. Why so called, ibid.

Barker, Thomas, Esq. his register of the barometer, thermometer, and rain, at Lyndon, in Rutland, 1780, p. 351.

Baths. See Crawford.

Bellinus. The first who described and gave a figure of the Ophidium, p. 436.

Belon. Is the earlist writer who is of opinion that Turkies were natives of the old world, p. 72.

Bengal. Difference between the inundations there and those of the Nile, p. 104. See Rivers, Monsoons.

Bergmann, Mr. See Chemical affinities.

Beschan, an Indian deity. The same with Vishnou, p. 89.

Bird-lime. A sort strong enough to catch peacocks and the largest birds, how made, p. 376.

Births, deficient, p. 361.

— monstrous, 362, 363.

Blagden, Dr. Charles. On the heat of the water in the Gulf-stream, p. 334. Description and cause of that stream, ibid. Its water at least six degrees hotter than the sea into which it runs, p. 337. Great advantages may be derived from the thermometer in crossing that stream, p. 342. Method of determining its velocity, p. 343. Advantage of determining with certainty the time when a ship enters that stream, p. 344.

Bore, that word explained, p. 113. Prevails in the principal branches of the Ganges, ibid.

Bows. An elastic one of light wood will throw a light arrow with greater velocity than a steel one of the same stiffness, p. 313.

Brass ordnance. Easy and effectual remedy for the running of their vents, p. 264.

Breton, Owen Salisbury, Esq. his account of a storm of lightning at Eastbourne, in Sussex, p. 42.

Bristol Channel, the expediency of correct maps of, p. 248.

Buffon, Count de, his method of diverting the currents of rivers, when bridges or other buildings are endangered thereby, p. 97. To what he imputes the increased velocity of the current of the Ganges near the sea, p. 109.

Bullet. See Thompson.

Burrapooter. See Russell. Etymology of that name, p. 87. Is larger than the Ganges, p. 88. 111. Source of, p. 110. Its course described, ibid. Bears a near resemblance to the Ganges, except in one particular, p. 112. See Meina, Sappoo. Was unknown in Europe as a capital river till 1765, p. 111. Is the same with the Sappoo, p. 112.

C.

Cavallo, Mr. Tiberius, his account of a luminous appearance in the heavens, p. 329. Reasons for its not being an aurora borealis, p. 330.

His account of some thermometrical experiments, &c. p. 509. By the evaporation of ether water may be concealed, and the thermometer brought below the freezing point, p. 511. The cold produced by it several degrees greater than that produced by any other of the most volatile fluids, ibid. Observations on the cold produced by other fluids, with the method of applying them to the ball of the thermometer, p. 512. Experiment on water, ibid. Experiments on spirit of wine, spirit of turpentine, and various other fluids, p. 513. Experiment to determine how much electrization could increase the evaporation of spirit of wine, and consequently the cold produced by it, ibid. Apparatus contrived for using the least possible
possible quantity of ether in freezing water, &c. p. 514. Method by which the mercury in the thermometer was brought down to 29 degrees below the freezing point, ibid. Method of freezing water by the evaporation of ether, p. 515. A greater quantity of ether and longer time are required to freeze water in winter than in summer, p. 516. The proportion between the quantity of the ether and of the water that may be frozen by it, seems to vary according to the quantity of water, p. 517. A small apparatus for making ice in hot climates, p. 518. Electrization increases very little the degree of cold produced by the evaporation of ether, p. 518. Cork preferable to glass stopples for confining ether, ibid. Mr. Winch's easy and expeditious method of purifying vitriolic ether, p. 519. Inconvenience attending that process, ibid. The common opinion, that water combines with the purest part of ether, when those two fluids are kept together, refuted, p. 520. Experiments relating to the expansion of mercury, ibid. Method of investigating the expansion of quicksilver, or its increase of bulk when rarified by a different degree of heat, ibid. Apparatus for that operation, ibid. Method of making the scale for it, p. 521. Calculation of the above experiments in decimals, p. 522. The cavity of the tubes employed in these experiments must be perfectly uniform throughout, p. 523. How to determine the boiling or freezing point on the scale, p. 524. Description of a thermometrical barometer, ibid. The determination of the various degrees of heat shewn by boiling water under different pressures of the atmosphere completed by Sir George Shuckburgh, ibid. Probability of constructing a thermometer, with proper apparatus, which, by means of boiling water, might indicate the various gravity of the atmosphere, ibid.

Children. See Bland, Wright.

Chudahb river. The only subordinate branch of the Ganges which is at all times navigable, p. 92.

Chymical affinities. The doctrine of, hath been lately much improved by Mr. Bergman of Upps, and Mr. Wentzel, p. 7.

Coccus Lacca. See Kerr.

Cold. See Herzeli.

Cosa, a river equal to the Rhine. Variation from its former course, p. 97.

Cassimburzr river. See Hoogly.

Cvao's head. A remarkable rock, p. 89.

Crawford, Dr. Adair, his experiments on the power that animals, when placed in certain circumstances, have of producing cold, p. 479. See Fire. That animals have, in certain circumstances, a power of keeping themselves at a lower temperature than the surrounding medium, was a discovery referred for the industry of the present age, p. 483. Which was completed by the experiments of Dr. Fordyce in heated rooms, ibid. Various opinions concerning the causes of the facts established by those experiments, p. 484. Account of those experiments, ibid. Experiments made on frogs, to discover with greater certainty the causes of the refrigeration in
the above experiments, ibid. Experiment on a dog in water above the standard of its natural heat, p. 487. By which a remarkable change was produced in the appearance of the venous blood of the animal, p. 487. Experiment on another in hot air, ibid. Opinion of Mr. Wilson, of Glasgow, concerning the effect produced by external heat upon the colour of the venous blood, p. 488. The true causes of the cold produced by animals in a medium above their natural heat explained, ibid. Experiment on a dog immersed in water much under its natural heat, p. 490. Why animals preserve an equal temperature, notwithstanding the great variations in the heat of the atmosphere, explained, p. 491. The effects of the cold and warm baths accounted for, ibid.

Cather, Mr. See Willard.

Death-watches. Supposed to have wings in their perfect state, p. 144.

Delta. See Ganges.

Dipping-needle. See Meteorological Journal.

Dobon, Dr. Matthew, his account of the Harmattan, a singular African wind, p. 46. Description and situation of the coast where that wind prevails, ibid. Blows from the N.E. p. 47. Always accompanied by a fog or haze, ibid. Which does not extend above four or five leagues over the sea, though the Harmattan is plainly felt ten or twelve, p. 48. Extreme dryness, which greatly injures all the productions of the earth, is another consequence of this wind, ibid. Surprising effects of that dryness on books, furniture, floors, ships, &c. ibid. And on the human body, ibid. Experiments made thereon with salt of tartar, p. 50. Table of thermometrical observations on, p. 51. Derivation of its name, p. 52. Its salubrious effects on the human species, p. 53. Contributes much to the cure of ulcers and cutaneous eruptions, p. 54. Nature of the soil where it prevails, p. 55. Probable source of that wind, ibid. See Norius.

E.

Earthquakes. See Pennant, Lloyd.

Englefield, Sir Henry C. Bart. his account of the appearance of the soil at opening a well at Hanby, in Lincolnshire, p. 345.

Episcopates. See Thompson.

Ether. Is the most volatile fluid we are acquainted with, p. 511. See Cavalle.

F.

Fantos, a nation on the Gold Coast of Guinea. Their manner of dividing the year, p. 56.

Fires. The opinions of the ancients concerning the nature and properties of fire now only bold conjectures, p. 479. The profound veneration with which they contemplated that element accounted for, p. 480. Opinions of the alchemists in the dark ages concerning it, ibid. On the revival of literature the nature of it began very soon to engage the attention of philosophers, p. 481. Difficulties attending a philosophical investigation of it, ibid. The first step that was taken towards the cultivation of this branch of science, ibid.

Fifth. Vaft quantities thrown on shore during a very dry season at the island of Sumatra, p. 384. Conjecture of the cause of that phenomenon, p. 385.

Flies. Their usefulness in destroying putrescent matter, p. 146.

Floods of the tropical rivers. Probably, next to earthquakes, cause the quickest alterations in the face of our globe, p. 100.

Fontana, Mr. See Air.

Forster. See Crawford.

G.

Ganges. See Rennell. Etymology of that name, p. 87. Fabulous account of the origin of, p. 89. Its course described, in which it receives rivers, some equal to the Rhine, and none smaller than the Thames, ibid. Exceeds the Nile in magnitude, though not in length, p. 90. Different widths and depths of, p. 91. Though in some places fordsable, the navigation is never interrupted, but the principal branch cannot be entered by large vessels, ibid. Commencement of the head of the Delta, which is more than twice as large as that of the Nile, ibid. The part of the Delta bordering on the sea described, p. 92. Width of the Ganges at its junction with the sea, p. 93. Medium rate of motion of that river, ibid. Its greater or less velocity, to what to be attributed, p. 94. The gradual change in the course of that river accounted for, p. 95. And the slowness of the tide, ibid. Decrease in the breadth of that river in nine years, p. 96. Various alterations in the appearance of, 99. Presumptive proof of its wandering from one side of the Delta to the other, p. 102. Its annual swelling and overflowing explained, p. 103. Still flows itself by the gaffs, &c. on its banks and its rapid muddy stream, even when the inundation becomes general, p. 104. Particular tracts of land, which require less moisture, are defended from the inundation by dykes, which do not always succeed, and why, p. 105. The tide totally loses its effect during the swoln state of the river, ibid. Manner of navigating the river during the inundation, p. 106. Table of the gradual increase of the river and that of its branches, ibid. See Hoogh, Chundra, Islands. Medium of that increase, p. 107. The inundation is nearly at a stand for some days before it begins to run off, and why, ibid. Particular circumstance
stance attending the increase of the Ganges, with the solution thereof, p. 188
Objection to that solution answered, p. 109. See Buffon. Quantity of water dis-
charged by that river in a second of time, p. 110. See Magu.
Göjer. Mistakes the Turkey for an Indian bird, probably the Peacock-phenant of
Mr. Edwards, p. 74.
Ghaziri. See Antelopes.
Gogra, a river of India, p. 91.
Gour, the ancient capital of Bengal. Where situated, p. 99.
Gowmeoby. See Cow's Head.
Guinea Grass. Its quick growth, p. 146.
Gulf-stream. See Bladen.
Gum. A medicinal one, procured from the Plaß-tree, very similar to gum lash,
p. 376.
Gum laca. See Kerr.
Gunduck, a river in India, p. 91.
Gun-powder. See Thompson.

H.

Harmattan, a remarkable African wind. See Dobson.

Herschel, Mr. William, his observations on the rotation of planets round their axis,
made with a view to determine whether the earth's diurnal motion is perfectly equa-
ble, p. 115. The diurnal rotation of that planet round its axis has hitherto
escaped the scrutiny of observers, ibid. See Time-pieces. His observations on Jupiter
Ditto in 1779, p. 128. The result of the foregoing observations examined, p. 129.
His reason for preferring White's Ephemeris to the Nautical Almanac, p. 131. His
observation of the eclipse of the Sun at Bath, June 24, 1778, p. 138. His calcu-
lated conjectures concerning the appearance of a remarkable dark spot on the disc
of Mars, ibid.

His account of a comet, p. 492. Table of the measure of
the comet's diameter, p. 494. Table of the distance of the comet from certain
telescopic fixed stars, p. 496. Table of the angle of position of the comet with
regard to the parallel of declination of the same telescopic fixed stars, measured by
a micrometer, p. 497. Miscellaneous observations and remarks, p. 498. Remarks
on the path of the comet, ibid. The method of tracing out the path of a celestial
body by taking its distance from certain stars, and the angle of position with regard
to them, cannot be expected to be completely just, p. 498. And why, p. 499. Part
of a letter from M. Messier to Mr. Herschel, concerning the shortness of the time in
which he discovered the motion of the above comet, ibid. Description of a micro-
meter for taking the angle of position, p. 500.

4 A 2

Homberg,
Homberg, Mr. See Kirwan.

Hooghly river (the port of Calcutta). Is formed by the junction of the Cossimbuzar and Jellinghy, the westernmost branches of the Ganges, p. 92. Difficulties of entering that river accounted for, ibid.

Hospitals. Great political advantages might be derived from, by adding to their registers of patients the places of their births, 356.

Hunter, Mr. William, his essay on a new method of applying the screw, p. 58. His method of applying the screw explained, p. 59. And compared with the common method, p. 60.

I.

Jellingby river. See Hooghly. Change in the situation of the outlet of that river in eleven years, p. 96.

Inland navigation. See Rivers.

Islands. Extensive new ones formed in the channel of the Ganges in a much shorter time than a man's life, p. 100. And old ones swept away, p. 101.

Jumna. The first river of note which joins the Ganges, p. 91.

K.

Kirwan, Richard, Esq. On the specific gravities, &c. of saline substances, p. 7. The principles on which the proportion of many neutral salts, and the specific gravities of mineral acids, are determined, ibid. Mathematical specific gravity, what, p. 8. Experiments on spirit of salt, p. 9. Table of the specific gravities of the marine acid and water, p. 13. Experiments on spirit of nitre, p. 16. The method of determining the real specific gravity of that acid, p. 18. Table of the specific gravities and attractions of spirit of nitre, acid, and water, p. 22. Comparison of the result of those experiments on the spirit of nitre with those of Mr. Homberg, p. 23. Experiments on oil of vitriol, p. 26. Table of the specific gravities, &c. of oil and spirit of vitriol, acid, and water, p. 50. Difference between these experiments...
experiments on oil of vitriol and those of Mr. Homberg accounted for, p. 31. Experiments on the acetous acid, p. 32. Deductions from those experiments, p. 33. Experiments on the specific gravity of fixed air in its fixed state, p. 35. Experiments on fixed vegetable alkali, p. 38. Result of these experiments, ibid. Table of the contents of a solution of mild vegetable alkali, according to its specific gravity, p. 45. See Chymical Affinities, Morison.

Kleinius. The difference between his account of the cirri of the Ophidium and Wil-\n\loughby's reconciled, p. 437.

Lac. See Kerr.

Lightning. See Brereton, Adair.

Lind, Dr. See Norris.

Lloyd, John, Esq. his account of an earthquake at Hafodunos near Denbigh, p. 331.

Luckipower. Tragical event there, 105.

Luminous appearance in the heavens. See Cavallo.

Marine acid. See Kirwan.

Marshall, William, Esq. his account of a phenomenon observed upon the island of

Sumatra, p. 383. See Fitz.

Marshall, Robert, Esq. his further account of the usefulness of washing the stems of
trees, p. 449. That usefulness proved by observations on washed and unwashed
beaches and oaks, ibid. Experiment made on the roots of trees with pond-mud, p.

450. Young trees are reasonably expected to increase more than old, ibid. The annual
increase of very old trees hardly measurable with a string, and why, p. 451. See

Oak. All the ingredients of the united vegetation, received from the roots, stems,
branches, and leaves, of a mossy and dirty tree, do not produce half the increase
that another gains whose stem is clean to the head only, p. 452. Cause of that
increase considered, ibid. Observations on his first washed beech, ibid.

Mega. A river which falls into the Burampooter, to which it communicates its name
for the rest of its course, p. 100. Prodigious body of water produced by its junction
with the Ganges below Luckipower, p. 113.

Melagrates. See Athenæus.

Meffier, M. See Herschel.

Midwifery. See Bland.
Monssoons. See Rivers. Little or no rain falls during the continuance of the northerly one in Bengal, p. 103. Different settings of the monsoons in the gulf of Bengal, and in the eastern and northern parts of that province, p. 106.

Montjyil lake. Formed by a winding of the Coimbatuar, p. 99.

Murveau, Mr. of Dijon. The only one who has thought of ascertaining the various degrees of force of chemical attraction, p. 7.

N.

Negro-heads. See Smeathman.

Nile. See Bengal.

Norius, Mr. (a frequent visitor to the Coast of Africa). Differs from Dr. Lind, concerning the effects of the Harmattan. p. 54.

Njauf. Description of, p. 3. See Forster.

O.

Oak. Its long duration in water, p. 178. That near the hon. Mr. Legge's lodge in Holt Forest did not increase above half an inch in nineteen years, p. 451. Dimensions of the hollow one at Cowthorpe in Yorkshire, ibid. Comparison of the contents of that with those of the Hampshire and Yorkshire oaks, p. 452.

Oil of vitriol. See Kirwan.

Ophidium. See Broutmanet.

P.

Palm-tree snout-beetle. Eat in the West Indies as a delicacy, p. 168.

Paragol Ants. Account of, p. 175.

Peacock-pheasants. Description of, p. 74.

Pennant, Thomas, Esq. Gave the first description of the Tyger-cat of any use in natural history, p. 5. His account of the Turkey, p. 67. Description of that bird, p. 68. White variety, ibid. Size, manners, and notes, p. 69. Are irascible, polygamous, and swift, and love to perch high, p. 70. Are gregarious, p. 71. Their haunts, ibid. The flesh of the wild Turkey is said to be superior in goodness to the tame, ibid. The Indians make cloathing of the feathers, and fans of the tails, and the French of Louisiana used to make umbrellas of the latter, p. 72. Its stupidity, ibid. Is a native only of America, p. 72. Opinions of different authors concerning it, p. 73. et seq. When first introduced into England, p. 80. Extraordinary protuberance from the thigh bone of one, p. 81.

His account of several earthquakes in Wales, p. 193. Miners or colliers not sensible of the shock under ground, though sufficiently violent to terrify the inhabitants of the surface, p. 194.

Pigott, Edward, Esq. his account of a nebula in Coma Berenices, p. 82. Its mean right ascension for April 20, 1779, ibid. Its north declination. p. 83.
Pigott, Nathaniel, Esq. His discovery of double stars at Frampton-houfe, in Glamorganshire, 1779, p. 84. His method of deducing their declination, ibid. p. 85. And of observing them, p. 85. Their places described, p. 86. His astronomical observations, p. 347. Longitude of Wickhill, the seat of Lady Widdrington, near Stow in the Wold, Gloucestershire, determined, ibid. Latitude of his observatory at Frampton-houfe determined, ibid. Situation of Frampton-houfe, which is nearly under the same meridian as Watchet, in Somersetshire, p. 348. His method of determining the difference of meridians between that house and Greenwich, p. 349. Occultations of fixed stars observed at Frampton-houfe, 1778, 1779, p. 350.

Planets. See Altwood.

Pond-mud. See Marsham.

Pregnant Woman. See Woman.

Presents, list of, p. 527.

Prince, Mr. See Willard.

Pulvis fulminans. See Thompson.

Purple Fever. Reasons why poor women so generally escape that fatal disease, p. 361.

Q.

Quadrant, Hadley's. See Angle.

—- astronomic. Useless at Sea, p. 396.

R.

Kennell, James, Esq. His account of the Ganges and Burrampooter rivers, p. 87. Great resemblance between them, p. 88. See Thibet.

Rice. A particular kind, p. 105.

Rivers. Those in Bengal form the compleatest and easiest inland navigation conceivable, p. 87. Number of boatmen employed thereon, ibid. Great trade carried on by means of that navigation, p. 88. Which greatly surpasses the inland navigation of North America, p. 89. Proportional lengths of some of the most noted rivers in the world, p. 90. Causes of their winding courses, p. 97. All those situated within the limits of the monsoons are subject to annual overflowings, p. 103. See Buffon.

Robins, Mr. See Thompson.

Rondeletius. Has given a better description and more accurate figure of the Ophidium than Bellonius, p. 436. Difference in their drawings accounted for, p. 437.
Saline substances. See Kirwan.

Simpoo, or Zanciu, the name of the Burrampooter in the country of Thibet, p. 110. See Ava.

Screw. See Hunter.

Sea-worms. Though pernicious to shipping, are yet of important use to mankind, p. 177.

Shuckburgh, Sir George. See Cavalle.

Silk-cotton-tree worm. Preferred by the Indians and negroes to marrow, p. 168.

Small-pox. See Wright.

Smeathman, Mr. Henry, his account of the Termites [or White Ants], which are found in Africa, and other hot climates, p. 159. Their contrivance and executions in their buildings scarce fall short of human ingenuity and prudence, ibid. Sagacity of those insects, p. 140. Various names by which they are called, ibid. Different species described by Dr. Solander, p. 141. Destroy every thing softer than metal or stone, p. 142. Live in communities like ants, but are not of the same kind of insect, ibid. Surpass all other animals in the art of building, p. 143. Why called Fatalis or Destructor, ibid. Size of the queen, ibid. Their communities described, p. 144. Have been erroneously classed by Linnaeus, ibid. Differ as much as birds in the manner of building their habitations, ibid. Are of three different orders, p. 145. Are both pernicious and useful, p. 146. Will in a few weeks destroy and carry away the bodies of large trees, without leaving a particle behind, p. 147. Mons. Adanson’s description of their hills, ibid. Have many thousand ways out of, and into, their buildings, but all subterraneous, p. 148. Amazing magnitude of their buildings, with a comparison of them and those of mankind, ibid. Description of their buildings, p. 149. Their manner of building their houses, p. 150. Which, when half-built, the wild bulls stand on to guard the herds below, p. 151. Description of the king’s and queen’s royal chamber, ibid. And other interior parts of their buildings, p. 152. The king and queen, from their extraordinary magnitude, cannot possibly go out, ibid. Their magazines described, and the provisions for their young, ibid. The royal chamber is enlarged as the queen increases in bulk, p. 153. Remarkable circumstance relating to their nurseries, ibid. Their nurseries described, p. 154. The royal apartments described, p. 155. Their subterraneous passages for carrying off the water described, p. 156. Their manner of preparing the clay or stone, with which they construct their buildings, p. 157. At a spiral slope within their hills, for the labourers and soldiers to pass up and down, like a stair-case, ibid. And a vast arch from the floor of the area towards the top of the building, to shorten the distance from the royal apartments to the upper nurseries, p. 158. One of those bridges described, with its dimensions, ibid. The turrets
Not of the smaller species described, p. 159. Which, if estimated by the size of the builders, are four or five times the height of the monument, ibid. Strength of those turrets, and their manner of rebuilding them, when overthrown, p. 160. Two sizes of those nests built by two different species of Termites, with their dimensions, ibid. Negro-heads, or nests built in trees, described, p. 163. The working insects, or labourers, called wood-lice, which they much resemble at a distance, by the French, ibid. The soldiers which are much larger than the labourers, p. 164. And the insect in its perfect state, which is furnished with four wings, ibid. And are only to be found just before the commencement of the rainy season, p. 165. Their dwellings sometimes invaded by the real ants and other vermin, ibid. Have in their present state two large eyes, which are very conspicuous, p. 166. 191. The season of their coming abroad, ibid. When astonishing numbers of them are destroyed by their numerous enemies, p. 167. Are eaten in some parts of Africa, ibid. Method of taking and preparing them for food in the East Indies, ibid. And in Africa, p. 168. Great change in their dispositions after being exposed to the rains, p. 169. Manner in which the labourers protect their king and queen from their enemies, p. 179. Extraordinary change in the queen when pregnant, p. 170. And the prodigious number of eggs laid by them, p. 171. Which are instantly carried by the attendants to the nurseries, where they are hatched, and the young provided for till able to shift for themselves, p. 172. The working and fighting forts never expose themselves to the open air, but in cases of necessity, p. 173. A species of them, called Vag Vague, described by Mr. Adanson, ibid. Their manner of travelling and of escaping when alarmed, p. 174. Are not a match for the ants, p. 175. Avoid all communication with other insects or animals, and never meddle with them but when dead, ibid. Their expedition in repairing their covered ways, &c. 176. 188. Will sink under the foundations of houses, and eat their way through the poles up to the thatch, p. 177. Their curious method of fortifying polls, which have some weight to support, p. 178. Various surprising depredations committed by them, p. 179. et seq. Will excavate a board, without perforating the surface, in such a manner as to render it nearly as light as two pieces of paste-board of the same dimensions, p. 180. And will enter at the bottom of a sound hedge-stake, destroy the inside entirely, and leave the bark standing, p. 181. Disagreeable mistake the author has been led into by the outward appearance of large fallen trees, which have been entirely hollowed within, ibid. Behaviour of the soldiers on their buildings being broke open, 183. 185. And of the labourers, 184. 185. Obstinate of the soldiers in defending their ruined works, p. 186. While the soldiers defend the outworks, the labourers stop up all the passages to the royal chamber, &c. 187. When the royal chamber is removed, and the queen exposed to the air, the labourers will work an arch completely over her before the next morning, p. 188. Behaviour of the king when the royal chamber is removed, ibid. If the hill is thrown into a heap of ruins, provided the VOL. LXXI.
king and queen be safe, the animals, if undisturbed, will nearly repair the whole in about a year, p. 189. Their loyalty and fidelity to their sovereigns, ibid. The marching Termites described, p. 189. Some of the soldiers act as regulating officers during their march, p. 190. The labourers and soldiers appear to have no eyes, p. 191.

Sone, a river of India, p. 91.

Spirit of nitre. See Kirwan.

Spirit of salt. See Kirwan.

Staubohe, Philip, Earl, his letter on algebraic equations, p. 195.

Sun. See Atwood.

T.

Thompson, Benjamin, Esq. his experiments on Gun-powder, p. 229. Description of the apparatus employed therein, p. 230. et seq. Description of the pendulum for determining the velocity of the bullets, p. 234. Method of measuring the recoil of the barrel, p. 236. Description of the gun-carriage, p. 237. The powder made use of, p. 239. And the manner in which it was kept, and made into cartridges for use, ibid. Manner of charging the piece, p. 240. Table of the weights and dimensions of the principal parts of the apparatus, p. 242. et seq. General table of the experiments, p. 245. Order of them, p. 246. et seq. Method of preventing the impulse of the flame upon the pendulum, p. 247. Leaden bullets cast upon plaiter of Paris, p. 251. Experiments with powder only, p. 253. Of the method of computing the velocities of the bullets, p. 256. Of the spaces occupied by different charges of powder, p. 257. Of the effect that the heat which pieces acquire in firing produces upon the force of powder, p. 258. The augmentation of the force of powder, when fired from a warm piece, accounted for, 259. Meal-powder the best for priming, p. 260. Of the manner in which pieces acquire heat in firing, p. 261. Which heat is greater when fired with powder only than when with powder and ball, p. 262. That circumstance accounted for, ibid. Bullets are not heated by the flame of the powder, but by percussion against hard bodies, p. 263. The running of the metal in brass guns on repeated firing explained, p. 264. The vent of a piece lined with gold is much more durable than one made in iron, ibid. To what the heat acquired by guns in firing is principally owing, p. 265. Observations on the generation of that heat, p. 266. Of the effect of ramming the powder in the chamber of the piece, p. 268. The result of different experiments with rammed and unrammed powder, ibid. Of the relation of the velocities of bullets to the charges of powder by which they are impelled, p. 270. Tables shewing that when the weights and dimensions of bullets are the same, and they are discharged from the same piece by different quantities of powder, the velocities are very nearly in the sub-duplicate ratio of the weights of the charges, ibid, 271. Of the effect of placing the vent in different parts of the charge,
Mr. Robins's opinion with respect to the manner in which gun-
powder takes fire, ibid. Table of experiments shewing that effect, p. 274. In the
formation of fire-arms no regard is to be had to any supposed advantages from par-
ticular situations for the vent, p. 277. The best form for the bottom of the bore,
and the situation of the vent, in great guns and fire-arms, p. 279. New method of
determining the velocities of bullets, ibid. The momentum of a gun must be pre-
cisely equal to the momentum of its charge, ibid. Method of determining the
velocity of bullets, p. 280. Another simpler and easier method of determining that
velocity, p. 282. Table shewing the result of experiments in those methods, p.
287. Table shewing how those methods agreed upon the whole, p. 289. Compara-
tion of the two methods, p. 291. Of a very accurate method of proving gun-
powder, p. 298. All the eprouvettes, or powder-triers, in common use are defec-
tive in many respects, ibid. Powder may answer to the proof commonly required,
yet turn out very indifferent when used in service, ibid. The abovementioned
method of proving gun-powder explained, p. 299. The apparatus described, p.
300. The temperature of the atmosphere has a very sensible effect upon the force
of gun-powder, p. 302. Of the comparative goodness or value of powder of dif-
terent degrees of strength, p. 303. Of the relation of the velocities of bullets to
their weights, p. 305. Mr. Robin's theory defective, ibid. Figure explaining the
relation of the velocity to the weight, p. 309. Table of the quantity of powder
inflamed in several experiments, p. 312. Observations on the weight of gun-pow-
der, p. 314. Different sorts of powder mentioned by French authors, ibid. The
weakest powder, or the heaviest in proportion to its elastic force, ought to be used to
impel the heaviest bullet, p. 315. An objection to that position answered, ibid.
Table of the relation of the velocities of bullets to their weights, supposing their
velocities to be in the reciprocal sub-triplicate ratio of their weights, p. 316. Table
of experiments with half the weight of the powder added to the weight of the bul-
lets, p. 317. Table of the result of these experiments, p. 319. Of an attempt to
determine the explosive force of aurum fulminans, or a comparison between its force
and that of gun-powder, p. 321. Description of a barrel provided on purpose for
that experiment, ibid. Result of that experiment, p. 322. Of the specific gravity
of gun-powder, p. 323. Miscellaneous experiments, p. 324. Of some unsuccessful
attempts to increase the force of gun-powder, ibid. Account of an experiment to
try the force of water rarified into steam in impelling bullets, ibid. Result of that
experiment, p. 325. Result of others made with highly rectified spirits of wine,
etherial oil of turpentine, and small quantities of quicksilver, instead of water, ibid,
With ætheis mineral intimately mixed with gun-powder, p. 326. Ingredients of
common pulvis fulminans, ibid. Result of an experiment made by mixing falc of
tartar with gun-powder, p. 327. With sal ammoniacum, ibid. With brass dust,
ibid. Earthy particles and all kinds of impurities are very detrimental to gun-
powder, and why, p. 328. Of an attempt to shoot flame instead of bullets, ibid.
See Brat's Ordnance, Battle Powder.
Filets, See Astronomy.

Termes, or White Ants. See Smethman.

Thermometer. Great advantages resulting from the invention of that machine, p. 455. See Cavaliis.

Titic, mountains of. Are the sources of the Ganges and Burrampooter, p. 83. From whence they flow in opposite directions, ibid.

Time pieces. Not sufficiently perfect to examine the earth's diurnal motion, p. 116.

Trees. See Marsham.

Turkey. See Pennant, Bolen, Athenæus, Aldrovandus, Gesner.

Tusser, his account of the Christmas Husbandlie Fare, p. 80.

Tyger-cat. See Forster.

V.

Vag Vague. A species of White Ants. See Smethman.

Variation. See Meteorological Journal.

Velocity of bullets. See Thompson.

W.

Wales, Mr. William. On the resolution of affected equations, p. 454. Table of the sines, cosines, and tangents, of arcs, of circles, and of the multiples of these arcs, 459, 460. Observations on those tables, p. 461.

Weather. Meteorological Journals of, at Nain and Okak, on the Coast of Labrador, p. 197.

Wenial. See Chemical Affinity.

Westminster General Dispensary. See Bland.

White's Ephemeris. See Herschel.

Willard, Mr. Joseph, his letter concerning the longitude of Cambridge in New England, p. 502. The generally reckoned difference of meridians between Greenwich and Cambridge, which was used by the late Dr. Winthrop, not exact, ibid. His observation of the eclipse of the sun, Oct. 27, 1780, in company with Mr. Cuthber of Ipswich and Mr. Prince of Salem, p. 505.

Willoxby. See Kleinius.

Wino. See Cavaliis.

Winthrop, Dr. See Willard.

Wilsom, Patrick, M. A. his farther experiments on cold at the Macfarlane Observatory at Glasgow College, p. 386. Registers of the difference of temperature between snow and air, p. 387, et seq.
Winds. See Dobson.

Women. See Bland. Pregnant, seized with the small-pox, or inoculated by mistake; generally miscarry in, or soon after, the eruptive fever. p. 373.

Wood Ants. The most pernicious of all others, p. 180.

Wrecks of Ships. Inhuman practice of plundering them still practised on the Welsh Coast, p. 348.

Wright, Dr. William, his account of a child who had the small-pox in the womb, p. 372.
ERRATA.

V O L. LXXIX.

Page. Line.
16. 5. for Goan read Jean.
17. 1. for of vitriol read of tartar of vitriol.
18. 7. for erica, formed, read erica-formed.
19. 19. for wetted read melted.
21. 13. for clays read clay.
24. 1. for 3y. read 3v.
26. 6. for dale read deal.
30. 20. for tin read fire.
33. last line, omit the word than.
34. 23. after iron insert ore.

V O L. LXX.

478. 1. Journal of the Weather at Senegambia, &c. should be Journal of the Weather at Senegal, [For Senegambia is the whole province, the river Gambia included, in which river the weather must have been quite different at this period from what it was at Senegal, because the disorder did not rage there.
483. last line, read that the wind in the same month in the river Gambia, &c.
490. 6. for blank read planked.

4 B 4.
ERRATA

VOL. LXXI.

Page. Line.
334. 5. for Isis read Isis
343. 20. for flown read flowed
363. 3. of the note*, for after a labour read after a natural labour.
— 9. ———— for eight inches read five inches.
383. 13. for then read there
417. 1. art. 23. for (art. 27.) read (art. 28.)
423. 5. art. 28. for (art. 24.) read (art. 23.)
425. last line but two, for 1–p read 1–2p²

* * * There are TWENTY-SEVEN plates in this volume.

FROM THE PRESS OF J. NICHOLS.

MDCCCLXXXII.